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Abstract We present evaluation experiments of a hand-eye calibration and camera-
camera calibration method, which is applicable to cases where classical calibration
methods fail. As described in our earlier works, the calibration works by performing
rotational movements with the robot and estimating the rotational axes by tracking
fiducial markers or other static parts of the environment (if the camera is moved with
the robot, as in this experiment; otherwise tracking the robot itself or markers on it
with a static camera). We extend our earlier work by virtually increasing the field
of view of the cameras by using a mapping approach. We compare our results with
an extended classical approach for the challenging case of calibrating a compliant
humanoid robot having cameras with non-overlapping fields of view. We also show
another application of this method: By observing markers attached to a robot’s end
effector, we can calibrate the markers to each other as well as to the robot’s frame
of reference.

1 Motivation

Cameras are the most commonly used sensors for robotic perception due to their
excellent combination of data density and cost and energy efficiency. Therefore,
important robotic perception tasks such as navigation, localization, or object detec-
tion are usually addressed by processing images from cameras that are mounted on
the robot. This requires an accurate computation of the transformation between the
camera coordinate frame and the robot or end effector frame, as well as the pairwise
transformation between the cameras. The former is usually denoted hand-eye cali-
bration, and it can be done by estimating the unknown transformations from the for-
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ward kinematics of the robot [12] or by employing an external tracking system [5].
The latter is known as camera-to-camera calibration, and it is usually performed by
observing a known calibration pattern with both cameras [13] and minimizing a set
of error equations from pairs of corresponding features. This can also be done for
other sensors such as 3D laser scanners [1].

However, those classical calibration methods can fail, e.g. if no (precise) kine-
matic information of the robot is available, or if there is not enough overlap between
the cameras and no external tracking is available (e.g. for recalibration during de-
ployment). In this study, we show how calibration can be done in those challeng-
ing situations. In particular, we perform rotational movements with the robot and
estimate the rotational axes by tracking fiducial markers (AprilTags [10]) in the sur-
rounding. Note that in principle any feature or object detection providing 6D poses
would work for our approach. If only 3D positions are given, as in [14], the mapping
part can be skipped, as explained below.

This paper builds on our previous work [8, 9] and extends it two ways: First,
we address here the limitation of cameras with relatively small opening angles and
without any overlap, which can lead to unstable results. In the improved method
presented here, we additionally build a map of relative transformations between
markers in the surrounding to virtually increase the field of view.

Second, we show the applicability of this new approach by calibrating a hu-
manoid robot using this map. Before, only hand-eye calibration could be done in
this particular case, but now we also provide an accurate camera-to-camera calibra-
tion.

2 Technical Approach

2.1 Mapping

If several markers are seen in a camera image, this additional information can be
used. A graph of connected markers is built, refer to figure. 1. Here, each node is
a seen marker, and each edge is a vector of relative transformations. By averag-
ing multiple detections in this connected graph, an optimal solution for the relative
transformations between makers is obtained. In order to do this, a weight/quality
value for each edge of the graph is computed. For the rotational part, a Bingham
distribution [3] is fitted to all relative rotations of this marker pair. The concentra-
tion term of the Bingham distribution describes the spread of the distribution and
can therefore be used as a quality term for the rotation. For the translational part, a
Principal Component Analysis (PCA) is performed. The Eigenvalue of the PCA de-
scribes the quality of the translational distribution. The translational and rotational
quality value are then combined using the SRT distance [11]. The optimal paths are
found using the Dijkstra algorithm, resulting in the “best” connections (depending
on the quality values) of all markers to one chosen parent marker.
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2.2 Calibration

By obtaining the relative transformations between the markers, a map of the envi-
ronment is known. This can be used for calibration by transforming all markers to a
common coordinate system. The robot is firstly rotated around one axis. During this
motion, all visible markers are tracked. By fitting the detections with a Bingham
distribution (for the orientation) and a set of concentric circles (for the centroid),
an axis of rotation can be obtained. Following this, the robot is tilted around one
consecutive axis and the same rotation is repeated. For a more detailed description
of the procedure please see [8, 9].

3 Experiments

Two experiments are presented: a hand-eye calibration and camera-camera of a hu-
manoid robot and a hand-eye calibration of a robotic arm of a mobile platform. In
figure 3 the humanoid robot be seen during the experiment, in figure 2 the experi-
ment using the mobile platform is depicted.

3.1 Hand-eye and Camera-Camera Calibration of Humanoid
Robot

The goal of the experiment was to calibrate the humanoid robot Rollin’ Justin [2],[7].
For this robot, no reliable (forward) kinematics are available due to its compliant
joints and it employs cameras with very little to no overlap, which makes a classical
calibration challenging. See also figure 3 for a picture of the robot and its cameras,
which are attached at the front, left, right and back of the platform of the robot.

—— Considered Edges
Cutted Edges

(a) (b)

Fig. 1 (a) The initial graph, showing connected marker pairs; (b) the optimized graph, in which
the optimal pose between a chosen master marker and all seen markers is computed
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In a first step, a map of surrounding markers is built by moving the robot and
tracking markers from several angles (see section 2).By optimizing the graph, all
tracked markers can be transformed to a common frame of reference. This is then
used in the actual calibration procedure: while rotating the robot around one axis,
AprilTags in the surrounding are tracked and transformed into a common frame of
reference (found before). The robot is tilted around another axis and the same ro-
tation like before is repeated (e.g. rotation 1 is performed leaned back, rotation 2
is performed leaned to the front), at the same time tracking AprilTags again. The
goal of the calibration is to find the rotation axis in space, around which the robot’s
rotation occurred. The estimation of the rotation axis can be split up in two parts:
first, the vector around which the rotation occurs is estimated by fitting a Bingham
distribution to the relative rotations of the transformed markers. Afterwards, the
point around which the rotation occurs is estimated by fitting a circle to all detected
marker positions. More details about this procedure can be found in [9]. After find-
ing the rotation axes for several tilts, the intersection of those axes are estimated.
Based on this, the transformation of all cameras relative to each other and to the
robot’s frame can be estimated. In total three different robot orientations are used in
the experiment: a position of the robot tilted back relative to its upright axis (called
orientationl in the following), an upright position (orientation2) and leaning to the
front (orientation3). In the next section we evaluate the quality of the found camera-
camera calibration regarding the different configurations.

3.2 TCP Modeling

In addition to the presented marker graph generation , we are able to replace the
master April Tag with an external coordinate frame. Therefore, the corresponding
pose of the desired coordinate frame to each April Tag detection is recorded and
treated as the master marker. In this experiment the marker graph is modeled with
respect to the Tool Center Point (TCP) of a robotic arm which results in a marker
graph representing the relative pose of each April Tag with respect to the TCP (see
7}2’.’;”‘”* in Fig. 2). In other words, by observing at least one of the related AprilTags
the TCP pose can be estimated visually, which is an essential part of vision-based
robot control. Furthermore, given the relative TCP-to-April Tag poses the Hand-
Eye calibration (Camera-to-TCP) can be evaluated by comparing the visual TCP
pose estimation and the one obtained by the forward kinematics.

The robotic system used in this experiment, consists of a mobile platform, addi-
tionally equipped with a robotic arm as well as a stereo-camera mounted on a pan
tilt unit (see Figure 4). To generate the TCP-to-April Tag graph the robotic arm is
placed in various (here five) arm joint configurations and rotates the TCP stepwise
(in this set-up 60 steps) around its z-axis.

Besides the images, which are recorded by the stereo-camera directed towards
the gripper, we also log the TCP poses obtained by the forward kinematic for each
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marker;

Fig. 2 (left) a picture of the used robotic arm and camera attached to a mobile platform, (right) an
overview of the transformations, where the transformation colored in pink is assumed static and
provided to the algorithm, and the transformations colored in green are estimated by the algorithm

step. This results in 60 images of the robot’s end effector and corresponding TCP-
logs for each of the five arm joint configurations.

The gathered data is then divided by its joint configurations into five data splits.
In a 5-fold cross-validation manner the marker graph is modeled on four data splits
and evaluated on the remaining one.

Fig. 3 The robot used in the experiment during the rotational motion around its up axis, tracking
AprilTags in the surrounding(placed at the walls). The image on the right shows a close-up of the
robot with its used cameras (marked red)

4 Results

In order to evaluate the quality of the resulting relative marker transformations
described in section 2, ground truth was recorded by measuring a test object
equipped with several AprilTags, by using a measurement arm (FaroArm Quan-
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tum M). The differences to the result of our mapping yield a translational error of
0.44mm 4+ 0.36mm and a rotational error of 0.65° +0.34° (mean + STD based on
pairwise tag detections in 15 frames).

The result of this obtained map is applied to the tracked markers by transforming
them to a common frame of reference, the result of this can be seen in Fig. 4. In
Fig. 4 (left) the individual markers seen by a camera are shown, whereas the local-
ization of the common frame of reference yields much larger segments (Fig 4 right).

Fig. 4 (left) The tracked AprilTags during a rotation seen by one camera, the colors representing
connected components of the graph, i.e. markers seen together; (right) By changing the detections
to the mapped common frame of reference the field of view gets virtually increased, facilitating a
better circle fit

By estimating the axis of rotation based on the transformed markers instead of
the individual markers, a stable estimation of the rotation axis can be obtained. The
result of this can be seen in figure 4 (left), which shows two rotation axes as seen
by two different cameras. Those two rotation axes are describing the same rotation,
which can be seen by overlaying one on another (Fig.4 (right)): they match perfectly.

camera 1 camerg.2 cameral & camera 2

=

Fig. 5 (left) Two rotation axes seen by two cameras, by overlaying one onto the other we can find
the relative transformations between the cameras (right)
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4.1 Calibration Evaluation

In table 1 we are evaluating the quality of the found rotation axis in several ways:
Firstly, we estimate both the line-to-line distance (d) for each found axis pair and
the estimated angle () between the two rotation axes. Secondly, we calculate the
area spanned by the estimated rotation axes intersection. The are of this triangle, for
which each edge consists of an intersection point of an axis pair gives an estimate of
how good three axes intersect. The result can be seen in table 3 for the case without
the marker modeling part described before for all combinations of orientations.

Table 2 shows the corresponding results after marker modeling. It can be seen
that the line-to-line distances are reduced and the area of the spanned triangle re-
duced drastically. Note that a small line-to-line distance d doesn’t necessarily mean
a better axis estimation, because (non-parallel) lines in space always produce a point
with a minimal distance. However, the opposite is true: if the distance d is very high,
the found axes intersection is also of poor quality. The spanned area of the triangle
is a good estimate of how well the axis intersect. By repeating the experiment for
different orientations (more than 3) this would allow to find the optimal combina-
tion.

Table 1 Intersection error of estimated axes (d) of each camera and estimated tilt (&) of the robot
without marker modeling

orientation1-3 |orientation1-2 | orientation2-3 | all orientations
d(mm)| a®) |d(mm)| a(®) |d(mm)| a(®) A(m?)
front| 10.09 | 8.07 | 9.54 | 4.40 | 2.89 | 3.67 0.0050
left 113 | 6.84 | 594 | 429 | 76.52 | 3.07 0.0267
right| 34.77 | 850 | 5.94 | 429 | 27.17 | 4.22 0.0011
back| 6.16 | 8.03 | 6.26 | 426 | 1.12 | 3.77 0.0117

Table 2 Intersection error of estimated axes (d) of each camera and estimated tilt (&) of the robot
after marker modeling

orientation1-3|orientation1-2 | orientation2-3 | all orientations
d(mm)|a(®) |d(mm)|o(®) |d(mm)|a(®) A(m?)
front| 2.08 | 8.00 | 0.47 | 4.13 | 3.17 | 3.83 0.0008
left | 13.06 | 7.62 | 12.18 | 4.06 | 0.85 | 3.56 0.0007
right| 7.18 | 8.14 | 13.50 | 4.20 | 5.75 | 3.94 0.0002
back| 4.76 | 8.15 | 1.99 | 424 | 242 | 3.91 0.0024

In table 3 we compare our results with calibration results performed by an ex-
tension of classical hand-eye calibration and camera-camera calibration, using the
upper cameras at the head of Justin to estimate the transformation between non-
overlapping cameras.
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Without the marker modeling the results produce relatively large rotational and
translational errors, the camera pairs left to right were even not possible to calibrate
at all. Table 4 shows the results after marker modeling, which reduces the rotational
and translational error in all cases. It can also be seen that by averaging over all
found calibrations, a calibration can be found which deviates from the classical
solution by a few cm and degrees.

Note however that in that case the “classical” calibration cannot be considered
ground truth, but also introduces errors by relying on the kinematics of the head
cameras.

Table 3 Results of camera calibration compared to classical calibration, without marker modeling,
showing both translational (e;,s) and rotational errors (e, ) for all camera combinations (rows)
and robot orientations (columns), as well for a solution based on averaging all found calibrations
(mean)

orientationl-3|orientation1-2 |orientation2-3 mean

€trans €rot €trans €rot €trans Crot Ctrans | €rot |

left - right | — — — — —
back - left [1.69| 27.03 [0.55| 25.21 | 1.06| 25.7 |1.19|11.14
back - right| 0.35 | 7.87 [0.18| 596 |0.27| 6.73 |0.31|6.73
back - front{ 0.22 | 2.84 [1.21| 2.84 |0.58| 2.76 |0.68| 2.8

front - left | 1.81| 11.51 [0.65| 9.17 | 0.5 | 14.41 |0.53|11.69
front - right| 0.46 | 11.7 |1.08| 10.83 [0.33| 11.01 |0.32|11.11

Table 4 Results of camera calibration compared to classical calibration, after marker modeling,
showing both translational (e;,4s) and rotational errors (e, ) for all camera combinations (rows)
and robot orientations (columns), as well for a solution based on averaging all found calibrations
(mean)

orientation1-3 |orientation1-2 |orientation2-3| mean

Ctrans| C€rot _ |C€trans| €rot  |Ctrans| €rot  |Ctrans| €rot |

left - right [0.03| 9.36 [0.08| 9.85 |0.09| 9.45 |0.04(9.45
back - left |0.24| 2.36 [0.05| 2.85 [0.21| 1.88 |0.16|2.35
back - right{ 0.25| 548 | 0.1 | 533 |0.15| 595 |0.16(5.51
back - front| 0.17| 1.46 | 0.3 1.5 [036| 1.47 [0.08|1.46
front - left {0.08| 3.06 [0.32| 3.59 |0.16| 2.64 | 0.1 {3.04
front - right| 0.09| 9.4 ]0.39| 937 [021| 9.6 | 0.1 |9.43
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4.2 TCP Modeling

In figure 6 the translational errors(right) and rotational errors (left) are shown for
five different configurations of the robot. Generally the errors are in the range of
less than 1cm and 2°, which is consistent to the ground truth estimates shown be-
fore. However, there are configurations of the robot which lead to a slightly higher
error, like e.g. fold 4 in figure 6. This can be explained by the relatively imprecise
angle encoders and therefore poor kinematics of the robot. However, if the TCP
is visible in the camera image, this can be accounted for by employing the found
transformations of our method.
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Fig. 6 Pose estimation error per fold. The average over all folds results in a translation error of
0.0089 +0.0052 meters and a rotation error of 2.24 + 2.64 degrees

5 Discussion

Based on the results of the experiments, we have shown two things:

First, we built a map of markers in the environment by tracking markers during
movement of the robot. By building a graph and optimizing it, we obtain the relative
transformations (rotations and translations) between all seen markers.

This map can be used to calibrate the robot: another point of view is to regard
this map as one large calibration object. In contrast to classical calibration methods
the idea here is not to estimate the transformations based on the forward kinematics
of the robot, but by estimating rotation axes around which the robot rotates based
on tracked markers in the surrounding.

We previously [9] compared our method to state-of-the art, classical hand-eye
and camera-camera calibration methods. In this study we improved on previous
limitations of our method by utilizing a parallel running mapping algorithm. We
experimentally show the application of this to the camera-camera and hand-eye cal-
ibration of a humanoid robot, which could not be calibrated in a stable manner with
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our method before. The robot does not offer forward kinematic information and its
cameras have no overlapping field of view, which hinders the application of classi-
cal methods. We show the comparison of our method to a method based on external
tracking using the robot’s head cameras.

We also show another application of this method: By observing markers attached
to a robot’s TCP, we are able to both estimate the transformations in between the
markers and the transformations between the robot’s TCP frame to this markers,
thereby finding a model describing the TCP.

One limitation of our method is the dependency on the angle of view of seen
markers. This can make the estimation of the centroid of rotation unstable, resulting
in relatively large translational errors compared to classical calibration methods.
We showed in this study that we can mitigate this effect by building a map of the
environment. However, this is a direction we want to pursue further. In the future we
want to implement methods from the SLAM community like GTSAM [4] and error
redistribution (e.g. g20 [6]), enhancing the quality of the rotation centroid estimation
and reducing the translational error.
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