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Abstract We present a survey and a comparison of a variety
of algorithms that have been proposed over the years to
minimize multi-label optimization problems based on the
Potts model. Discrete approaches based on Markov Random
Fields as well as continuous optimization approaches based
on partial differential equations can be applied to the task. In
contrast to the case of binary labeling, the multi-label prob-
lem is known to be NP hard and thus one can only expect
near-optimal solutions. In this paper, we carry out a theo-
retical comparison and an experimental analysis of existing
approaches with respect to accuracy, optimality and runtime,
aimed at bringing out the advantages and short-comings of
the respective algorithms. Systematic quantitative compar-
ison is done on the Graz interactive image segmentation
benchmark. This paper thereby generalizes a previous exper-
imental comparison (Klodt et al. 2008) from the binary to the
multi-label case.

Keywords Multi-label · Survey · Comparison ·
Optimization · Markov random fields ·
Partial differential equations

1 Introduction

The optimization of energies with respect to a set of variables
which can take one of multiple labels is among the central
algorithmic challenges in computer vision and image analy-
sis. The prototypical example of multi-label problems is mul-
tiregion image segmentation, where every pixel is assigned
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one of finitely many region labels. Apart from segmentation,
continuous estimation problems such as denoising, deblur-
ring, stereo and optical flow can be approximated as a multi-
label problem on a discretized label space. We will restrict our
attention to algorithms which aim at minimizing a specific
class of multiregion segmentation functionals, often referred
to as the Potts problem in the MRF community or the minimal
partition problem in the PDE community.

Over the years, numerous algorithms have been proposed
to tackle multi-label optimization problems, both in the com-
munity of partial differential equations (PDEs) and in the
community of Markov random fields (MRFs). As a result
one may ask how these algorithms compare in theory and in
practice. Klodt et al. (2008) presented an experimental com-
parison of discrete and continuous optimization approaches
for the specific case of binary labeling problems. In recent
years, the focus has shifted from binary labeling to the more
general multi-label problem, with a multitude of competing
algorithms to solve it. The contribution of this paper is to
provide a systematic theoretical and experimental compar-
ison of algorithms for multi-label problems of the minimal
partition type, pointing out relations, equivalences and dif-
ferences.

In general, the segmentation task can be formulated as an
energy minimization problem. In the spatially discrete set-
ting, this energy is defined on a set of nodes, leading to MRF
problems whose solution is often calculated using graph cut
methods. In the spatially continuous setting, the respective
optimality conditions for the continuous energy are written
in terms of a set of partial differential equations which are
then solved on a discrete grid.

The contributions of this paper are twofold: Firstly,
we present relations between the following relaxations of
multi-label optimization problems from the MRF and PDE
communities:
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– The linear KT-relaxation (Kleinberg and Tardos (2002)),
– The linear S-relaxation (Schlesinger (1976), revisited by

Werner (2007)).
– The convex CCP-relaxation (Chambolle et al. (2008)),
– The convex ZGFN-relaxation (Zach et al. (2008)),

where the acronyms denote the initials of the authors’ last
names. Secondly, we qualitatively and quantitatively com-
pare the following popular PDE- and graph cut-based algo-
rithms for multi-label segmentation from the continuous and
discrete domain:

– The primal–dual algorithm (Pock et al. (2009)),
– The discrete α-expansion approach with four and eight

connectivity (Boykov et al. 2001),
– The discrete Fast-PD approach with four and eight con-

nectivity (Komodakis et al. 2007).

A preliminary version of this work was published in
Nieuwenhuis et al. (2011). We plan to make code publically
available at ‘https://vision.in.tum.de/data/software’.

2 Advantages and Drawbacks of Discrete and
Continuous Methods

Concerning graph cut based MRF approaches and PDE meth-
ods we encountered several advantages and short-comings.
In particular:

2.1 Parameters and Termination Criterion

Graph cuts do not require numerical tuning parameters, so
they can easily be applied as a blackbox algorithm with-
out further need to understand the underlying optimization
process. Instead, PDE approaches typically require more
expert knowledge. Optimal step sizes can be computed auto-
matically (Pock and Chambolle (2011)). However, general-
purpose termination criteria are hard to find. Typically one
performs a fixed number of optimization cycles or iter-
ates until the change in the solution or in the energy falls
below a certain threshold. Alternatively one can thresh-
old the primal–dual gap, i.e. the difference between the
primal and dual energies which goes to zero upon conver-
gence. Depending on the problem formulation, this gap can
either be computed by solving a simple point-wise opti-
mization problem or it can be as complicated to determine
as the original problem. In the latter case, only upper or
lower energy bounds can be computed leading to approx-
imations of the primal–dual gap but no hard termination
criteria.

2.2 Ambiguities

Since we can only compute approximate solutions to the
multi-label segmentation problem, results come with certain
ambiguities. The commonly used α-expansion and Fast-PD
algorithms are based on iteratively solving binary problems.
In each step, each pixel is allowed to choose between its cur-
rent label and a fixed label α. As we show in Fig. 5, results
may therefore depend on the order the labels α are chosen
and also on the initialization. In the PDE domain ambiguities
arise after the optimization stage, when the globally optimal
solution of the relaxed problem is binarized to obtain a fea-
sible labeling of the original problem. The results, however,
do not depend on the initialization of the algorithm due to
the convexity of the relaxations.

2.3 Metrication Errors

MRF approaches exhibit metrication errors since they only
approximate the Euclidean boundary length—see Sect. 7.1.2.
Instead, the PDE approaches for multi-label optimization
provide smooth object boundaries that do not exhibit a promi-
nent grid bias.

2.4 Parallelization Potential

Graph cuts cannot be parallelized in a straight forward man-
ner, since the max-flow problem lies in the P-complete
complexity class of problems, which are probably not effi-
ciently parallelizable (Goldschlager et al. 1982). The popu-
lar augmenting path algorithms sequentially search for paths
through the flow network along which the flow can be incre-
mented. Regardless of the various strategies that exist to find
such a path, these algorithms are not well suited for paral-
lelization due to two reasons: Firstly, augmenting path oper-
ations are interdependent, since different augmentation paths
can share edges. Secondly, the updates of the edge residu-
als have to be carried out simultaneously in each augmenta-
tion operation as they all depend on the minimum capacity
within the augmentation path. Although push relabel algo-
rithms relax the first issue, update operations are still inter-
dependent. In contrast to MRF approaches, the considered
PDE approaches are easily parallelizable on graphics hard-
ware yielding drastic speedups over CPU algorithms. How-
ever, they come with the drawback of an increased power
consumption per pixel.

2.5 Runtime Variance

Graph cut methods exhibit a high runtime variance even
among images with the same number of labels (see Table 4).
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There are mainly two reasons for this: firstly, for α-expansion
the number of max flow problems that need to be solved
until convergence highly depends on the input image and the
chosen label order. Secondly, the number of augmentation
steps needed to solve each of the max flow problems in turn
depends on the graph structure and edge residuals. These
parameters strongly differ with the current labeling and the
currently chosen label α. In contrast, PDE approaches carry
out the same computation steps on each pixel and thus exhibit
smaller runtime variances. Nevertheless, the number of iter-
ations until convergence depends on the input image.

While the above advantages and drawbacks are more or
less known today, systematic practical comparisons of both
worlds concerning quality and runtimes for multi-label par-
titioning problems have not been undertaken so far. Hence,
in this paper we extend the research by Klodt et al. (2008) to
multi-label problems and investigate theoretical and practical
differences for the most prevalent relaxations and algorithms
from the MRF and PDE community.

3 Image Segmentation as a Multi-label Problem

In the context of image segmentation, the multi-label problem
can be formulated as follows: let I : Ω → R

d denote the
input image defined on the domain Ω ⊂ R

2 (in the discrete
case Ω = {1, . . . , N }×{1, . . . , M}). The task of segmenting
the image plane into a set of n pairwise disjoint regions Ωi ,
with Ω = ⋃n

i=1 Ωi , Ωi ∩Ω j = ∅ ∀ i �= j, can be solved
by computing a labeling l :Ω → {1, . . . , n} indicating which
of the n regions each pixel belongs to: Ωi = {x

∣
∣ l(x) = i}.

Segmentation can be formulated as an energy minimiza-
tion problem consisting of a data term and a regularization
term. The data term carries information on how strongly a
pixel should be associated with each region. The regular-
ization term corresponds to a prior on the space of feasible
solutions. The most common regularizer for segmentation is
the one favoring minimal boundary length. We will give the
corresponding energy minimization problems in the spatially
continuous domain in Sect. 4 and in the spatially discrete
domain in Sect. 5.

4 The Spatially Continuous Setting

In this section, we focus on energy minimization problems for
multi-label segmentation which are solved by means of vari-
ational calculus. We will review the two convex relaxations
by Chambolle et al. (2008) and Zach et al. (2008), which
allow for near-optimal solutions to the multi-label segmen-
tation problem.

4.1 Minimal Partitions and Mumford-Shah

The multi-label segmentation problems we consider are of
the following form

min
Ω1,...,Ωn

⎧
⎪⎨

⎪⎩

λ

2

n∑

i=1

Perg(Ωi ,Ω) +
n∑

i=1

∫

Ωi

fi (x)dx

⎫
⎪⎬

⎪⎭
. (1)

Here, Perg(Ωi ,Ω) denotes the perimeter of the segment
Ωi , measured with a metric defined by the non-negative
function g : Ω → R

+
0 . For example, the choice g(x) =

exp (−γ |∇ I (x)|) energetically favors boundaries that coin-
cide with strong gradients of the input image I : Ω → R. The
data term fi : Ω → R associated with region Ωi takes on
smaller values if the respective pixel (based on its color) has
stronger affinity to region Ωi . In a Bayesian MAP inference
approach, fi = − log P(I, x |Ωi ) corresponds to the nega-
tive logarithm of the conditional probability for observing
a specific color at the given location within region Ωi —see
also Cremers et al. (2007) and Nieuwenhuis and Cremers
(2012).

In the continuous setting, the minimal partition problem is
related to the piecewise constant case of the Mumford-Shah
model (Mumford and Shah 1989) which aims at segment-
ing the image plane into a set of pairwise disjoint regions
with minimal color variance and minimal boundary length.
Optimization of this functional is difficult. Among the most
popular techniques are local optimization approaches such
as level set methods (Chan and Vese 2001; Tsai et al. 2001).

4.2 Total Variation

More recently, minimal partition problems have been tackled
on the basis of functions of bounded variation BV (Ω, R), i.e.
functions for which the total variation (TV) is finite. The key
idea is to encode the regions Ωi by their indicator function
u ∈ BV(Ω, {0, 1})n

ui (x) =
{

1, if l(x) = i
0, otherwise

∀ i = 1, . . . , n (2)

and to solve for ui using convex relaxation techniques.
The total variation is well suited for geometric opti-

mization problems since it is convex and—for binary func-
tions ui —equal to the perimeter of the encoded set Ωi . Let
ξ ∈ C1

c (Ω, R
2)n , where C1

c denotes the set of smooth func-
tions with compact support. Then the perimeter of Ωi is
given as

123



Int J Comput Vis

Perg(Ωi ,Ω) = T Vg(ui ) =
∫

Ω

g |Dui |

= sup
ξi :|ξi |≤g

⎧
⎨

⎩
−

∫

Ω

ui div ξi dx

⎫
⎬

⎭
. (3)

Here Dui refers to the distributional derivative of the function
ui , which is also defined for non-smooth functions. The
representation on the right arises through integration by
parts and relies on the dual variables ξi . It is valid for any
L1-integrable function (including characteristic functions of
sets with measurable boundary).

Minimization of total variation based geometric optimiza-
tion problems is typically done by convex relaxation tech-
niques. To this end, one ignores the binary constraint on the
indicator variables ui , optimizes respective energies over the
convex function space BV (Ω, [0, 1]) and subsequently bina-
rizes the computed real-valued solutions. Such total-variation
based approaches to partitioning problems were proposed in
Chan et al. (2006), Cremers et al. (2004) and Cremers et al.
(2006).

4.3 Convex Relaxations of the Multi-label Segmentation
Problem

For the multi-label segmentation problem three convex relax-
ations of the minimal partition problem (1) were proposed
in the fall of 2008 by Lellmann et al. (2009), by Zach et al.
(2008) and by Chambolle et al. (2008). These approaches dif-
fer in the norm used in the regularizer, in their computational
complexity and in the tightness of the relaxation. Since the
latter two relaxations were shown to be tighter (Chambolle
et al. 2008), we will concentrate on these in the following.

Zach et al. (2008) and Chambolle et al. (2008) represent
the n regions Ωi by the indicator function u in (2) which
transforms the minimal partition problem (1) into the equiv-
alent form

min
u∈BV(Ω,{0,1})n

⎧
⎨

⎩

n∑

i=1

∫

Ω

ui fi dx + λ

2

∫

Ω

g|D ui |
⎫
⎬

⎭

s.t.
n∑

i=1

ui (x) = 1, ∀x ∈Ω. (4)

As shown in (3), the total variation can be rewritten based
on the dual variables ξi . Relaxing the binary variables ui to
real-valued ones, we obtain the relaxed convex problem

min
u∈B

sup
ξ∈Kλg

⎧
⎨

⎩

n∑

i=1

∫

Ω

ui fi dx −
n∑

i=1

∫

Ω

ui div ξi dx

⎫
⎬

⎭
(5)

B =
{

u ∈ BV(Ω, [0, 1])n
∣
∣
∣
∣

n∑

i=1

ui (x) = 1, ∀x ∈ Ω

}

.

The difference between the relaxations by Zach et al. (2008)
and Chambolle et al. (2008) only lies in the definition of the
constraint set Kλg .

4.3.1 ZGFN-Relaxation

The relaxation by Zach et al. (2008) is based on the energy
in (5) with the following constraints on the dual variables
according to the dual formulation of the total variation in (3)

Kλg
ZGFN =

{

ξ ∈ C1
c (Ω, R

2)n
∣
∣
∣
∣ |ξi (x)| ≤ λg(x)

2
,

1 ≤ i ≤ n, ∀ x ∈ Ω

}

. (6)

4.3.2 CCP-Relaxation

Chambolle et al. (2008) originally proposed an energy for-
mulation based on the upper level sets, which can be trans-
formed into the energy formulation in (5) with the following
constraint set on the dual variables where ξn+1 = 0

Kλg
CCP =

{

ξ ∈ C1
c

(
Ω, R

2
)n+1∣∣

∣ |ξi (x) − ξ j (x)|≤ λg(x),

1≤ i < j ≤ n+1, ∀ x ∈Ω

}

. (7)

4.4 Optimization

For the indicated continuous relaxations we give update
schemes, which are iterated until convergence. They are
based on the primal–dual algorithm proposed by Pock et al.
(2009) with step sizes chosen according (Pock and Cham-
bolle 2011).

4.4.1 ZGFN-Relaxation

Optimization of Sect. 4.3.1 is done by iterating the following
update scheme. Essentially, it consists of alternating a pro-
jected gradient descent in the primal variables u with pro-
jected gradient ascent in the dual variables ξ . In addition, it
contains an over-relaxation step in the primal variables (giv-
ing rise to auxiliary variables ū) assuring fast convergence of
the algorithm (Pock et al. 2009):

ξ t+1 = ΠKλg
ZGFN

(
ξ t + 1

2∇ūt
)

ut+1 = ΠB
(

ut − 1
4

(
f − div ξ t+1

) )

ūt+1 = ut+1 + (ut+1 − ut ) = 2ut+1 − ut . (8)

The projection ΠKλg
ZGFN

of the dual variables ξ is carioud out

by simple clipping, while that of the primal variables ΠB is
a projection onto the simplex in R

n (Michelot 1986).
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4.4.2 CCP-Relaxation

In order to find the globally optimal solution to the relaxed
convex optimization problem in Sect. 4.3.2 we introduce the
constraints on the dual variables (7) into the energy in (5) by
means of Lagrange multipliers μi j : Ω → R

2 and additional
variables qi j := ξi − ξ j ∈ Q

Q :=
{

qi j ∈ C1
c (Ω, R

2)

∣
∣
∣ |qi j (x)| ≤ λg(x),

1 ≤ i < j ≤ n + 1, ∀ x ∈ Ω} . (9)

We obtain

min
u∈B

μi j ∈M
sup

ξi ∈C1
c

qi j ∈Q

⎧
⎨

⎩

n∑

i=1

∫

Ω

ui
(

fi − div ξi
)

dx

+
∑

1≤i< j≤n+1

∫

Ω

μi j
(
ξi − ξ j − qi j

)
dx

⎫
⎬

⎭
. (10)

Note again that ξn+1 = 0. As before we employ the primal–
dual algorithm published in Pock et al. (2009) based on the
following update scheme:

ξ t+1 = ξ t + 1
2+n

⎛

⎝∇ūt +
( ∑

j>i

μ̄t
i j −

∑

i> j

μ̄t
j i

)

1≤i≤n

⎞

⎠

qt+1 = ΠQ
(

qt + (−μ̄)
)

ut+1 = ΠB
(

ut − 1
4

(
f − div ξ t+1)

)

μt+1 = μt − 1
3

(
ξi − ξ j − qi j

)

ūt+1 = 2ut+1 − ut

μ̄t+1 = 2μt+1 − μt . (11)

The projections of the dual variables ΠQ are carried out by
simple clipping, while that of the primal variables ΠB is a
projection onto the simplex in R

n (Michelot 1986).

4.5 Implementation and Optimality

For the implementation of the continuous approaches, infor-
mation on the discretization, the convergence, termination
criteria, the computation of the binary solutions based on
the relaxed solution and the pseudocode of the algorithms is
given in the following.

4.5.1 Discretization

For optimization of the given relaxations, the energies have
to be discretized. The computation of the gradient of the
primal variables, ∇ui , is done by forward differences with
von Neumann boundary conditions. Let w denote the width

of the image and h its height. Then the gradient is given by

∇ui (x, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
ui (x+1, y)−ui (x, y),

ui (x, y+1)−ui (x, y)
) if x<w, y<h

(
0, ui (x, y+1)−ui (x, y)

)
if x=w, y<h(

ui (x+1, y)−ui (x, y), 0
)

if x<w, y=h
(0, 0) if x=w, y=h

The divergence of the dual variables ξi is computed by back-
ward differences

div ξi (x, y) =
⎧
⎨

⎩

ξ1
i (x, y) − ξ1

i (x − 1, y) if 1< x <w

ξ1
i (x, y) if x = 1

−ξ1
i (x − 1, y) if x = w

+
⎧
⎨

⎩

ξ2
i (x, y) − ξ2

i (x, y − 1) if 1< y <h
ξ2

i (x, y) if y = 1
−ξ2

i (x, y − 1) if y = h

4.5.2 Convergence and Termination Criteria

There are different ways to determine the convergence of the
algorithm. Ideally, the primal–dual gap can be computed,
which is the difference between the primal and the dual
energy of the optimization problem. This is not always possi-
ble as the primal and dual energies themselves are optimiza-
tion problems of variable complexity. Exemplarily, we give
the primal energy of the optimization problem by (4):

E p(u) =
⎧
⎨

⎩

n∑

i=1

∫

Ω

ui fi dx − λ

∫

Ω

g|D ui |
⎫
⎬

⎭
+ δB(u), (12)

where δB is the indicator function of the set B: δB(u) ={
0, u ∈ B
∞, u /∈ B . Computation of the dual energy amounts to

a point-wise optimization problem

Ed(ξ) = min
u∈B

⎧
⎨

⎩

n∑

i=1

∫

Ω

ui
(

fi − div ξi
)

dx − δKλg
ZGFN

(ξ)

⎫
⎬

⎭

=
∫

Ω

min
i

(
fi − div ξi

)
dx − δKλg

ZGFN
(ξ). (13)

Here δKλg
ZGFN

denotes the indicator function for the set Kλg
ZGFN.

During the optimization, the primal energy decreases, while
the dual energy increases. When the optimal solution is
reached, the primal–dual gap goes to zero. The size of the
gap can be used to formulate suitable convergence criteria
for the algorithm, e.g. if the gap decreased less than 1% from
one iteration to the next. Figure 1 shows the primal–dual gap
for the ZGFN algorithm for up to 2,500 iterations.

As the primal–dual gap is difficult to compute for the CCP-
relaxation, we apply a different convergence criterion in this
survey. It is based on the difference between the current and
the previous relaxed solution of the optimization problem.

123



Int J Comput Vis

Fig. 1 Convergence analysis of the algorithm by Zach et al. for two
examples from the Graz benchmark database. The progress of the pri-
mal energy (blue) is depicted with respect to the dual energy (green).

The optimal solution of the relaxed optimization problem is obtained
as soon as the primal–dual gap goes to zero (Color figure online)

If the norm of this difference vector averaged over the num-
ber of pixels falls below a certain threshold we regard the
optimization procedure as converged. In this paper we use
0.0001 as the threshold.

4.5.3 Binarization and Optimality Bounds

To obtain a labeling function l : Ω → {1, .., n} and a binary
indicator function u : Ω → {0, 1}n from the globally opti-
mal relaxed solution ũ ∈ B some rounding scheme must be
applied, which can lead to suboptimal results. We assign each
pixel x to the first label with maximum indicator function ũi

l(x) = min{arg max
i

{ũi (x)}},

ui (x) =
{

1, l(x) = i
0, otherwise

∀x ∈ Ω. (14)

There are other rounding schemes, which can be more appro-
priate e.g. in the case of anisotropic total variation regular-
ization (Lellmann et al. 2009).

Chan et al. (2006) proved the thresholding theorem for
total variation approaches, which states that for the case of
two segments (i.e. n = 2 with a single indicator function
u : Ω → R) any threshold T ∈ (0, 1) can be applied to
obtain a globally optimal binary solution. No such theorem
can be proved for the case of more than two segments. Yet, in
the multiregion case we can compute bounds of optimality.

Let u∗ ∈ B be the global minimizer of the original
binary problem formulation (4), ũ ∈ B the solution of the
relaxed problem (5) and u the binarized solution (14) of the
relaxed problem. Chambolle et al. (2008) gave an a posteriori
optimality bound, which states that

E(u) − E(u∗) ≤ E(u) − E (̃u). (15)

This means that the energy difference between the glob-
ally optimal binary result and the binarized solution of the
algorithm is bounded by the energy difference between the
relaxed and the binarized solution.

In (Lellmann et al. 2011), an a priori optimality bound
based on a probabilistic rounding scheme was given stating
that

E(E(u)) ≤ 2E(u∗) (16)

for the Potts model. A similar “factor of two”-bound was ear-
lier suggested in the discrete setting by Boykov et al. (2001)
(see Sect. 5.3.3).

4.5.4 Pseudocode

The pseudocode for the algorithm by Pock et al. (2009) is
given as Algorithm 1. The only input parameters are the data
term f , the smoothness parameter λ and the stopping para-
meter ε.

Algorithm 1 Continuous Multi-label-Segmentation
1: procedure Optimize( f, λ, ε)
2: Initialize u0 ∈ [0, 1]n arbitrarily, t := 1
3: repeat
4: t = t + 1
5: Compute primal–dual updates as in (8) or (11)
6: Compute difference vector d = ut − ut−1 (Sect. 4.5.2)
7: until |d| < ε|Ω| 
 Stopping criterion
8: Compute labeling l as in (14)
9: return labeling
10: end procedure
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4.6 Related Approaches

There have been several extensions to the presented TV-based
segmentation approaches. Examples include weighted TV
norms which depend on the label indices (Lellmann et al.
2009), anisotropic TV norms (Kolev et al. 2010) and multi-
label approaches which allow direction-dependent transition
penalties (Strekalovskiy and Cremers 2011).

5 The Spatially Discrete Setting

In this section we discuss discrete multi-label segmenta-
tion based on the minimization of the Potts energy derived
from an MRF model. We review different relaxations as
well as minimization and inference algorithms and concen-
trate on the best performing methods today, α-expansion and
Fast-PD.

5.1 Segmentation via Inference on Markov Random Fields

In the discrete setting the segmentation task can be formu-
lated as an undirected graph, a so called Markov random field.
The nodes of the graph represent random variables taking on
different labels whereas the edges encode the dependencies
between different variables.

The multi-label segmentation problem can then be formu-
lated as the minimization of the following energy, which is a
discrete version of (1)

min
u

∑

x∈Ω

∑

i∈L
fi x uix + λ

2

∑

x∼y

gxy

∑

i∈L
|uix − uiy | (17)

s.t.
∑

i∈L
uix = 1, {uix } ∈ {0, 1}|L×Ω|.

Here, x ∼ y denotes that x and y are neighboring nodes
in the grid. Typically four or eight pixel neighborhoods are
considered.

The unary terms determine how well each pixel complies
with each label, where fi x indicates the cost for assigning
pixel x ∈ Ω to label i ∈ L. The pairwise terms impose some
sort of regularity on neighboring labels. They are weighted by
the edge indicator function gxy = g(x)+g(y)

2 (see explanation
following (1)).

We will present two linear relaxation schemes for the
above energy formulation, which are directly related to the
continuous ZGFN- and CCP-relaxations.

5.1.1 KT-Relaxation

The following linear relaxation of the energy in (17) was
proposed by Kleinberg and Tardos (2002):

min
u

∑

x∈Ω

∑

i∈L
fi x uix + λ

2

∑

x∼y

gxy

∑

i∈L
uixy (18)

s.t.
∑

i∈L
uix = 1, uixy ≥ |uix − uiy |, uix ≥ 0, uixy ≥ 0

The indicator variables in their binarized form, uix ∈
{0, 1}|L×Ω| and uixy ∈ {0, 1}|L×Ω×Ω|, can be understood
as follows:

uix =
{

1, l(x) = i
0, otherwise

uixy =
{

1, l(x)= i ⊕ l(y)= i
0, otherwise,

where ⊕ means exclusive or.

5.1.2 S-Relaxation

A more general linear relaxation of the energy in (17)
was suggested by Schlesinger (1976) and later revisited by
Werner (2007):

min
u

∑

x∈Ω

∑

i∈L
fi x uix + λ

2

∑

x∼y

gxy

∑

i, j∈L
ui j xy (19)

s.t.
∑

i∈L
uix = 1, uix =

∑

j∈L
ui j xy ∀y,

u jy =
∑

i∈L
ui j xy ∀x, uix ≥ 0, ui j xy ≥ 0.

The indicator variables in their binarized form, uix ∈
{0, 1}|L×Ω| and ui j xy ∈ {0, 1}|L×L×Ω×Ω|, can be under-
stood in a slightly different way

uix =
{

1, l(x) = i
0, otherwise

ui j xy =
{

1, l(x)= i ∧ l(y)= j
0, otherwise.

5.2 Optimization

For the Potts model with two labels a polynomial-time opti-
mal solution of the MRF problem can be computed by solv-
ing a minimum s-t-cut (Greig et al. 1989). For more than
two labels, the problem is NP-hard (Boykov et al. 2001).
Therefore, efficient algorithms only allow for approximate
solutions with corresponding optimality bounds with respect
to the global optimum. Several inference algorithms exist to
compute such approximations:

5.2.1 Message passing

Describes iterative algorithms for computing MAP estimates
or marginals in Markov Random Fields. For calculating
MAP estimates the max-product (or min-sum) algorithm
can be applied. For computing marginals, the sum-product
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algorithm is used of which Belief Propagation (Pearl 1988)
is a special case. In general, message passing strategies find
the global optimum only for tree shaped graphs. Newer
algorithms for graphs containing cycles were proposed by
Wainwright et al. (2005) and Kolmogorov (2006). A mes-
sage passing scheme based on dual decomposition was pro-
posed by Komodakis et al. (2007). It decomposes the original
problem into a set of simpler optimization problems under the
assumption that their solutions are consistent. If the domain is
decomposed into trees the algorithm is parallelizable. How-
ever, the smaller the trees the slower is the convergence of
the algorithm. Hence, qualitatively this parallelization is not
comparable to that obtained by the continuous algorithms on
the GPU.

Apart from message passing, algorithms that iteratively
change one or several node labels in order to improve the
solution are often applied for optimization. Iterated condi-
tional modes (Besag 1986) (ICM) and simulated anneal-
ing (Geman and Geman 1984) only allow for label changes
of single nodes in each iteration leading to local min-
ima in the former case and an exponential runtime in
the latter. Algorithms that change labels of multiple nodes
include α-β-swap, α-expansion and FastPD, all of which
are optimized by iteratively solving a set of graph cut
problems.

Szeliski et al. (2006) compared different algorithms for
the minimization of Markov random field approaches: ICM,
graph cuts (α- expansion and α − β-swap) and belief prop-
agation algorithms. Of those algorithms, α-expansion yields
the best performance results for the Potts model. Hence, in
this paper we concentrate on α-expansion and its recent gen-
eralization FastPD.

Both algorithms approximate the Potts model segmenta-
tion problem (17) based on graph cuts. They do not com-
pute a relaxation of the minimization problem in the sense
of Kleinberg and Tardos or Schlesinger, but instead the orig-
inal functional (17) is optimized under relaxed optimality
conditions, see Sect. 5.2.3.

In computer vision, graph cuts were applied for the first
time by Greig et al. (1989). The basic idea is to compute a
binary partition (‘cut’) of the nodes in a graph that separates a
source from a sink node. The sum of the edge weights which
are cut by the partition interface should be minimal over all
possible separations. This is equivalent to computing a max-
imum flow on the graph, which can be done in polynomial
time.

A globally optimal graph cut solution for multi-label seg-
mentation problems was proposed by Ishikawa (2003) for
the case of a convex regularizer and a linear label space. A
related convex variational approach was proposed by Pock
et al. (2010). Unfortunately the Ishikawa approach does not
apply to discontinuity preserving energies such as the Potts
model.

5.2.2 α-Expansion

In 2001, Boykov et al. (2001) proposed to solve multi-label
segmentation problems by repeated graph cuts. Each step
of the algorithm iterates over all labels α. For each α an
‘expansion move’ is computed in which each pixel can either
switch to α or keep its current label. The procedure terminates
if no expansion moves exist that reduce the energy.

Two advantages come with α-expansion: firstly, for each
label α the optimal expansion move can be computed given
that the pairwise term is a metric in the label space. Secondly,
the solution lies energetically within a constant factor from
the global optimum (see Sect. 5.3.3). Other strategies for
label changes, such as α-β-swap, have no provable optimality
bounds and do not perform as well in practice.

5.2.3 Fast Primal–Dual

A generalization ofα-expansion was proposed by Komodakis
and Tziritas (2005). They suggested a primal–dual technique
to minimize the energy in (17) based on the S-relaxation (19).
The relaxed linear program and its dual are of the following
form with suitable A, b and c for (19)

primal: min cT u, s.t. Au = b, x ≥ 0

dual: max bT v, s.t. AT v ≤ c.
(20)

In contrast to other LP-relaxation techniques, Komodakis et
al. do not solve the relaxed linear program directly, but instead
generate a sequence of integer-primal and relaxed-dual solu-
tions in each step. The basic idea is that if the relaxed dual
complementary slackness conditions

∀ui > 0 �⇒ ci

h
≤

m∑

j=1

a jiv j ≤ ci (21)

are fulfilled, then the primal (integer) solution u is an approx-
imation of the global (integer) optimum u∗ with cT u ≤
h · cT u∗ where h := maxi hi .1 For the Potts model h equals
two.

Algorithmically, FastPD works similarly to α-expansion:
each step iterates over all labels and for each label computes a
new pair of integer-primal, relaxed-dual solutions by solving
a graph cut problem. If no more label changes occur the
algorithm terminates and the solution is shown to fulfill (20).

FastPD and α-expansion are equivalent in the sense that
both algorithms compute the optimal α-expansion in each
step leading to identical results and optimality bounds. How-
ever, in contrast to α-expansion, the Fast-PD method keeps

1 In Komodakis and Tziritas (2005) several algorithms are proposed for
different choices of parameters hi . In this paper we use the α-expansion
equivalence of FastPD (called PD2μ=1 by Komodakis and Tziritas)
since it corresponds to the Potts model.
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track of the relaxed dual energy which leads to a simplified
graph cut problem in each step and decreases the overall
runtime. In the following, the FastPD-method will be called
FastPD4 and FastPD8 depending on the size of the selected
pixel neighborhood.

5.3 Implementation and Optimality

In the following we will give details on the implementation
of the discrete approaches and discuss optimality bounds for
solutions.

5.3.1 Label Selection Strategy

Different orders are conceivable for the selection of labels for
α-expansion and FastPD. We will show in the experimental
Sect. 7 that the segmentation results as well as the runtime
are influenced by this order. α-expansion maintains a priority
list of labels for which a previous expansion step led to an
energy reduction. In contrast, FastPD uses a fixed label order
in each cycle.

5.3.2 Pseudocode

For testing the discrete methods we use the following publicly
available implementations: the α-expansion code by Veksler
and Delong,2 which uses the graph cut implementation by
Boykov and Kolmogorov (2004), and the FastPD code imple-
mented by Komodakis and Tziritas (2005).3 Pseudocode for
both algorithms are given in Algorithms 2 and 3.

Algorithm 2 α-Expansion
1: procedure Optimize( f, λ)
2: Initialize labeling u arbitrarily
3: labelChanged = false
4: for all α ∈ L do 
 Label priority list, see Sect. 5.3.1
5: Compute the α-expansion û with lowest energy E(û) via

graph cuts
6: if E(û) < E(u) then
7: u = û
8: labelChanged = true
9: end if
10: end for
11: if labelChanged then
12: goto 3
13: end if
14: return labeling
15: end procedure

2 http://vision.csd.uwo.ca/code/
3 http://www.csd.uoc.gr/~komod/FastPD/

Algorithm 3 Fast Primal Dual Algorithm
1: procedure Optimize( f, λ)
2: Initialize labeling u arbitrarily
3: Initialize dual variables v according to the dual constraints
4: for all α ∈ L do 
 Linear label list, see Sect. 5.3.1
5: Pre-edit dual variables v (Komodakis et al. 2007)
6: Compute new integer-primal and dual pair (û, û) via graph

cuts
7: Post-edit dual variables û (Komodakis et al. 2007)
8: if û �= u then
9: (u, v) = (û, û)

10: labelChanged = true
11: end if
12: end for
13: if labelChanged then
14: goto 4
15: end if
16: return labeling
17: end procedure

5.3.3 Optimality Bounds

Both α-expansion and Fast-PD can be shown to yield solu-
tions lying within specific a priori optimality bounds, e.g. for
the Potts model

E(l) ≤ 2E(l∗), (22)

Here l is the computed solution and l∗ is a globally
optimal solution of (17). Note that this bound is the dis-
crete equivalent to the bound shown by Lellmann et al. in
(16) for the continuous multi-label minimal partition prob-
lem.

Similar to the continuous methods, an a posteriori bound
can also be computed for the discrete approaches. Let l̃
be the solution of the relaxed problem, then we can state
that

E(l) − E(l∗) ≤ E(l) − E (̃l). (23)

5.4 Related Approaches

There are several extensions to the presented approaches, e.g.
the LogCut algorithm (Lempitsky et al. 2007) which fuses
the current solution with an alternate solution in each step,
ordering constraints enforcing spatial relationships between
labels (Liu et al. 2010; Felzenszwalb and Veksler 2010),
anisotropic regularization based on Wulff-shapes (Zach et al.
2009) and performance improvements (Alahari et al. 2010;
Batra and Kohli 2011). Veksler (2007, 2009) proposed multi-
label moves to minimize multi-label segmentation energies
with truncated convex priors resulting in piecewise smooth
solutions.
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6 A Theoretical Comparison of Continuous
and Discrete Multi-label Approaches

We have presented several relaxations of the Potts model
suggested in the MRF and PDE communities. We will now
characterize their relation for L1 regularity (

∫
Ω

|∇u|1 dx)
and L2 regularity (

∫
Ω

|∇u|2 dx).

Proposition 1 For L1 regularity the convex relaxations by
Zach et al. in 4.3.1, Chambolle et al. in 4.3.2, Kleinberg and
Tardos in 5.1.1 and Schlesinger in 5.1.2 are equivalent.

Proof 1. Equivalence of the relaxations by Zach et al. and
Chambolle et al. for L1 regularity

For one-dimensional problems this equivalence was shown
by Chambolle et al. (2008). We generalize this proof to L1

regularity by showing that the minimum energies for both
relaxations are equal. Remember that both relaxations merely
differ in the constraint set of the dual variables, i.e. the sets
Kλg

ZGFN in (6) and Kλg
CCP in (7). For simplicity, we will omit

the dependency on x .
Let ξ ∈ Kλg

ZGFN. The dual norm of the L1 norm is the
maximum norm, so for all elements 1 ≤ i ≤ n we have
|ξi |∞ ≤ λg

2 . For any two indices i and j it follows that

|ξi − ξ j |∞ ≤ λg and hence ξ ∈ Kλg
CCP. This implies that

Kλg
ZGFN ⊂ Kλg

CCP and thus EZGFN(u, ξ) ≥ ECCP(u, ξ).

Let now ξ̂ ∈ Kλg
CCP, i.e. |ξ̂i − ξ̂ j |∞ ≤ λg. We will now

define a translation which maps each ξ̂ ∈ Kλg
CCP to an element

ξ ∈ Kλg
ZGFN without affecting the energy—see below. To this

end, we define ξ ∈ C1
c (Ω, R

2)n

ξi := ξ̂i − C, C := maxi ξ̂i + mini ξ̂i

2
∈ R

2, (24)

where min/max denote the component-wise minimum/maxi-
mum. We obtain

|ξi |∞ = max
{
|ξ1

i |, |ξ2
i |

}

= max
{∣
∣
∣ξ̂1

i − C1

∣
∣
∣ ,

∣
∣
∣ξ̂2

i − C2

∣
∣
∣
}

≤ λg

2
. (25)

It follows that ξ ∈ Kλg
ZGFN.

The constant shift introduced in (23) does not affect the
energy. To see this, it suffices to consider the energy term
measuring the contour length, since the data term is inde-
pendent of ξ . Due to the Divergence Theorem of Gauss we
have

ETV(u, ξ) =
n∑

i=1

∫

Ω

ui div ξi dx

= ETV(u, ξ̂ ) −
∫

Ω

n∑

i=1

ui div Cdx= ETV(u, ξ̂ )

(26)

since
∑

i ui = 1 and ξ̂ ∈ C1
c (Ω, R

2)n . It follows that
ECCP(u, ξ̂ ) ≥ EZGFN(u, ξ) ∀ ξ̂ ∈ KCCP. Altogether,
we obtain minu,ξ ECCP(u, ξ) = minu,ξ EZGFN(u, ξ). This
proves the equivalence of both relaxations in the case of L1

regularity.

2. Equivalence of the relaxations by Zach et al. and Klein-
berg and Tardos for L1 regularity

We now show the equivalence between the relaxed opti-
mization problems in (18) and (4) (with relaxed u : Ω →
[0, 1]n). Kleinberg and Tardos minimize over the variables
uixy , which only appear in the second energy term defin-
ing the contour length. Thus, in the minimum the constraint
uixy ≥ |uix − uiy | holds with equality and we obtain the
following energy

min
u

∑

x∈Ω

∑

i∈L
fi x uix + λ

2

∑

x∼y

gxy

∑

i∈L
|uix − uiy |

s.t.
∑

i∈L
uix = 1, uix ≥ 0. (27)

For a 4-neighborhood relation for x ∼ y, this energy is equiv-
alent to the discretization of the energy in (4) after relaxation
of the indicator function u.

3. Equivalence of the relaxations by Kleinberg and Tardos
and by Schlesinger

This equivalence was shown by Osokin et al. (2011).
Interestingly, the above equivalence of various relaxations

is no longer true for L2 regularity. ��
Proposition 2 For L2 regularity the linear relaxations of
Kleinberg and Tardos and Schlesinger no longer apply.
Moreover, the relaxation by Chambolle et al. is tighter than
that by Zach et al.

Proof In the case of L2 regularity the linear relaxations by
Kleinberg and Tardos and by Schlesinger are not applicable
since they do not admit quadratic constraints. Among the
convex relaxations the one by Chambolle et al. dominates the
one by Zach et al.—see also Chambolle et al. (2008): W.l.o.g.
we assume λg = 1. While we still have K1

ZGFN ⊂ K1
CCP, the

converse no longer holds. We indicate an element ξ ∈ K1
CCP

which does not admit a corresponding element ξ̂ ∈ K1
ZGFN:

Let ξ = (ξ1, ξ2, ξ3, 0, . . . , 0) ∈ K1
CCP with ξ1 = (− 1

2 , 0),

ξ2 = ( 1
2 , 0), ξ3 = (0,

√
3

2 ). As shown in Fig. 2, these vec-
tors form an isosceles triangle with edge length one. A cor-
responding ξ̂ ∈ K1

ZGFN must preserve these distances and,
thus, must fulfill:
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Fig. 2 For L2 regularity, the CCP-relaxation dominates the ZGFN-
relaxation because the set of permissible dual variables is strictly larger:
K1

ZGFN � K1
CCP. The three corners of the blue isosceles triangle define

an element ξ = (ξ1, ξ2, ξ3, 0, . . . , 0) ∈ K1
CCP which cannot be mapped

to a corresponding element ξ̂ ∈ K1
ZGFN, because there exists no circle

of radius 1/2 which contains this triangle

|ξ̂i | ≤ 1

2
and |ξ̂1 − ξ̂2| = |ξ̂1 − ξ̂3| = |ξ̂2 − ξ̂3| = 1.

(28)

Clearly, there exists no circle with radius 1
2 which contains

all three vertices ξ̂i of this isosceles triangle. ��
From this follows that the CCP-relaxation dominates the

ZGFN-relaxation for L2 regularity, i.e. ECCP ≥ EZGFN, and
thus the solution of the relaxed problem is energetically closer
or equally close to the global optimum of the binary prob-
lem. However, the ZGFN-relaxation is simpler than the CCP-
relaxation since it leads to simpler constraints on the dual
variables. In addition, it can be implemented more efficiently
because the number of constraints on the dual variables (6)
increases only linearly with the number of labels. In contrast,
the CCP-relaxation imposes quadratically many constraints
on the dual variables (7) yielding higher computation times.
In practice, one can accelerate the CCP-relaxation by first
solving the ZGFN-relaxation and locally switching to the
CCP-relaxation if needed, i.e. if the boundary of the smaller
constraint set is reached (Zach et al. 2012).

7 An Experimental Comparison of Discrete and
Continuous Multi-label Approaches

We have introduced the main approaches for solving the min-
imal partition problem for multiple labels and have discussed
relations, differences, advantages and drawbacks. To experi-
mentally evaluate the performance of the different algorithms
we apply them to the problem of interactive segmentation.

In this section we compare results of the proposed
multi-label segmentation approaches for the relaxations by
Zach et al. (PdeZGFN), by Chambolle et al. (PdeCCP),
for α-expansion based on four and eight-neighborhood
(Alpha4, Alpha8) as well as for the algorithm by Komodakis
et al. (FastPD4, FastPD8). For the PDE approaches we set
λ = 67. We used a GTX 680 for the parallel GPU computa-

tions. For α-expansion and Fast-PD we used λ = 5.2 for the
4-neighborhood case and λ = 1.7 for the 8-neighborhood
case. Computations were carried out on an Intel Xeon Quad
Core with 2.27GHz. All values for λ were chosen optimally
for each approach with respect to the chosen data base.
For segmentation we require a data term f , which indi-
cates the association of each pixel with each label. Here,
we use the data term for interactive segmentation proposed
by Nieuwenhuis and Cremers (2012) with the parameters
σ = 1.2, α = 0.7 and γ = 5.

In the following, we will experimentally compare the
different approaches with respect to segmentation quality,
optimality and runtimes. Note that the energy formulations
depend on model choices whose optima do not necessarily
coincide with the ground truth of the segmentation. Hence
the quality evaluation reflects both the quality of the opti-
mization and of the chosen model.

7.1 Segmentation Accuracy

For unsupervised segmentation several benchmarks are avail-
able, e.g. the Berkeley database, the GrabCut database or the
Pascal VOC Database. As extensively discussed by Santner
(2010), these benchmarks are not suited for testing interac-
tive segmentation. Hence, Santner et al. recently published
the first benchmark for interactive scribble based multi-label
segmentation containing 262 seed-groundtruth pairs from
158 natural images containing between 2 and 13 user labeled
segments. The label frequencies (Table 1) are not uniformly
distributed. Instead, small label numbers up to four appear
frequently, whereas large numbers are rare. This influences
the statistics on quality and runtime.

To assess the segmentation quality, the Dice-score relates
the overlap area of the groundtruth Ω̄i and the computed
segment Ωi to their sum. Taking the arithmetic mean over all
segments yields

Dice(Ω, Ω̄) = 1

n

n∑

i=1

2|Ω̄i ∩ Ωi |
|Ω̄i | + |Ωi |

. (29)

The closer to one the Dice-score the more accurate is the
segmentation. To evaluate the segmentation accuracy of the
continuous and discrete approaches we computed the arith-
metic mean and standard deviation of the Dice-score over all
images of the database in Table 2. The values are very similar
for all methods suggesting that the segmentation accuracy is
independent of the optimization method.

7.1.1 Statistical Evaluation

We want to statistically validate this statement. To this end,
we used the Kolmogorov-Smirnov test in order to test the
following hypothesis for each two optimization methods
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Table 1 Appearance frequency
for different label numbers in the
Graz benchmark for interactive
segmentation (Santner 2010)

Labels 2 3 4 5 6 7 8 9 13

Frequency 66 104 58 18 11 2 2 1 1

Table 2 Comparison of the examined methods for PDE (PdeZGFN and PdeCCP) and MRF (Alpha4, Alpha8, FastPD4, FastPD8) optimization on
the Graz benchmark

Optimization Average Dice-score 2 regions Average Dice-score Average runtime

PdeZGFN 0.9397 (±0.0724) 0.9322 (±0.0746) 0.49 (±0.44) sec

PdeCCP 0.9350 (±0.0803) 0.9314 (±0.0782) 1.77 (±2.46) sec

Alpha4 0.9477 (±0.0533) 0.9358 (±0.0686) 1.29 (±1.37) sec

Alpha8 0.9466 (±0.0550) 0.9372 (±0.0680) 2.63 (±2.59) sec

FastPD4 0.9472 (±0.0533) 0.9360 (±0.0682) 0.74 (±0.63) sec

FastPD8 0.9466 (±0.0550) 0.9366 (±0.0683) 1.52 (±1.81) sec

The mean and standard deviation are given for the Dice-score for the (globally optimally solvable) case of two regions and for the whole database,
as well as for the runtime per image on the whole database
Bold are the best performances in each column, e.g. highest score in column 1 and 2 and lowest runtime in column 3

H : The Dice-scores follow the same distribution. (30)

The test is based on the comparison of the empirical cumu-
lative distribution function of each Dice-score dataset. This
hypothesis could not be rejected for any two optimization
approaches on a significance level of 5%. Figure 3 shows the
empirical cumulative distribution function of the Dice-score
values for all methods. The plot confirms that the overall qual-
ity of the results does not depend on the optimization method.

7.1.2 Visual Evaluation

To visually assess the quality of the compared optimization
schemes we show results on a few benchmark images in
Fig. 4. When inspecting the results of the algorithms we
notice only slight quality differences, which confirm the
result of the statistical test.

Visual differences between results of continuous and dis-
crete methods are often due to metrication errors, which
occur in discrete optimization (Fig. 5c) ). Region bound-
aries tend to run either horizontally, vertically or diagonally,
since the boundary length is either measured with respect to
the L1 norm (4-connectivity) or an approximated L2 norm
(larger connectivity). This is especially true for regions with
uncertain data fidelity.

7.2 Ambiguities of the Segmentation Results

For more than two labels, none of the introduced algorithms
yield globally optimal results in general. Hence, ambiguities
can appear in the results.

For the two graph cut algorithms, ambiguities arise due to
the order in which labels α are visited in each outer iteration.
The order of traversal influences both the quality and the run-
time of the algorithm. For four regions we registered a run-

Fig. 3 Statistical evaluation of the Dice-score for all methods. The plot
shows the empirical cumulative distribution function of the Dice-score
(P(Dice-score > d)) over all benchmark images. The closer to one the
function is the higher is the quality of its segmentation results. Based on
the Kolmogorov-Smirnov test we could not find any significant quality
differences (Color figure online)

time difference of up to five seconds depending on whether
we iterated over labels 1, . . . , N or N , . . . , 1. Segmentation
results can also vary locally for different iteration orders, see
Fig. 5d. Results also depend on the initialization, which can
lead to the flipping of small regions or even whole labels. In
Figs. 5f, g the first run was initialized with a constant label,
the second with random values in the lower half of the image.

In contrast, with PDEs the order in which the label indica-
tor functions ui are updated has no impact on the result. This
is because each ui is updated separately, whereas the con-
straints are enforced at the end of each iteration by projection.
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Fig. 4 Results for the compared algorithms on selected images from the Graz benchmark (a) PdeZGFN, (b) PdeCCP, (c) Alpha8, (c) FastPD8

Furthermore, since the relaxed problems 4.3.1 and 4.3.2 are
convex, their global minimum will always be attained inde-
pendent of the initialization. However, ambiguities also occur
for PDE-based approaches for more than two labels when the
relaxed solution is binarized (14), see Fig. 5e.

7.3 Experimental Optimality Bounds

For both the continuous and the discrete approaches, a priori
and a posteriori optimality bounds were given in (16), (21),
(15) and (22).
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Fig. 5 Ambiguities and
metrication errors in
optimization results on given
input images (a) and (b) from
the Graz benchmark. (c)
Metrication errors for Alpha4
(top), Alpha8 (center) in
contrast to a smooth boundary
for the PDE result (bottom), (d)
Ambiguous MRF results
depending on the traversed label
order, (e) Ambiguous PdeCCP
results due to binarization, (f,g)
Ambiguous MRF results due to
different initializations

Table 3 Experimental optimality bounds which indicate how far the
computed multi-label solutions are from the global minima of the seg-
mentation energies, i.e. the relative gap given in (31)

PdeCCP (%) PdeZGFN (%) Alpha4 (%) FastPD4 (%)

0.18 0.25 0.0002 0.001

The continuous approaches are not comparable to the discrete
approaches, but the PdeCCP approach is tighter than the ZGFN
approach, and the Alpha4 approach is tighter than the FastPD4
approach

To compute the a posteriori bounds, we use the benchmark
results. Let u indicate the integer solution of the respective
algorithm and ũ the result of the solution of the corresponding
relaxed optimization problem. Then we can compute the fol-
lowing relative optimality bound

G(u, ũ) = E(u) − E (̃u)

E (̃u)
. (31)

For computing the relaxed energy of the discrete appoa-
ches we optimized the linear program (19). Table 3 shows the
average bounds on the Graz benchmark for the considered
continuous and discrete approaches. The results suggest that
only very small numbers of pixels are not optimal after opti-
mization terminates. Thus, even though the algorithms do not
yield the global optimum for more than two labels, they are
very close to it with negligible error. Figure 6 shows results of
the relaxed optimization problems for the continuous algo-
rithms. The number of non-binary grey pixels without clear
label assignment is very small, e.g. the elephant’s tooth and
the top of the church tower.

Table 3 suggests that the discrete approaches yield even
smaller gaps than the continuous approaches. Concluding
a higher accuracy of the discrete approaches from these

results would, however, be misleading for two reasons: (1)
since the original optimization problems are different (i.e.
the discrete approaches only approximate the L2-norm),
the energy relation between the original problems and their
respective relaxations differs as well. Thus the measured
bounds are not comparable between continuous and discrete
approaches. (2) The error bounds are only upper bounds—
there is no indication on how far the optimal binary solu-
tion actually is from the computed solution. The results for
the continuous approaches confirm that the relaxation pro-
posed by Chambolle et al. is tighter than that by Zach et al.
They also suggest that α-expansion results are closer to opti-
mality than Fast-PD results due to different label orders and
initializations.

7.4 Runtimes

For interactive image segmentation runtimes close to real-
time are indispensable. One of the advantages of PDE based
methods is that they can be parallelized and run on graph-
ics hardware. In contrast, computing the maximum flow
on a graph in parallel is difficult leading only to limited
speedups.

The average runtime for each method on the whole data-
base is indicated in Table 2. The continuous approaches yield
lower runtimes on average per image than the discrete meth-
ods, with PdeZGFN exhibiting 0.49 s. Among the discrete
approaches FastPD4 yields the lowest average runtime with
0.74 s. Note that when PdeCCP is implemented as originally
proposed by Chambolle et al. (2008) no exact solution is
computed due to the inexact Dykstra projections onto the set
(7). However, the results are very similar and the runtime is
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Fig. 6 Results of the relaxed
optimization problems before
binarization (a) by Chambolle et
al. and (b) by Zach et al. The
fact that the indicator functions
are non-binary in very few
locations only (marked by red
circles) indicates
near-optimality of the computed
solutions (Color figure online)

Fig. 7 Statistical evaluation of the runtimes for all methods. The
plot shows the cumulative distribution functions of the runtimes
(P(runtime ≤ t)) over all benchmark images. The closer to one
the plotted function is the faster is the corresponding algorithm. The
Komogorov-Smirnov test shows that the runtime differences are signif-
icant, i.e. PdeZGFN is the fastest algorithm. All runtimes above 5 s are
cut to 5 s for better readability (Color figure online)

diminished by a factor of three with strongly reduced mem-
ory consumption.

7.4.1 Statistical Evaluation

To statistically evaluate differences in the computational
speed between all methods, we used the Kolmogorov-Smirnov

test in order to examine the following hypothesis for each two
optimization methods

H : The runtimes follow the same distribution. (32)

For the runtimes, this hypothesis was rejected for any two
optimization approaches on a significance level of 5% and
even of 1%. Figure 7 shows the empirical cumulative distri-
bution functions of the runtimes for all methods. Runtimes
above five seconds were cut to the maximum value of five
seconds in this Figure to improve readability. The plot con-
firms that the runtimes strongly differ.

In general, the continuous ZGFN-relaxation exhibits the
lowest runtime. Among the continuous methods, only the
PdeCCP approach obtains runtimes above five seconds in
case of more than six labels, with up to 28.83 s maximum
for 13 labels. In contrast, the PdeZGFN approach does not
take more than 2.54 s and thus scales well with the num-
ber of labels. Comparable results to the PdeZGFN method
among the discrete methods can only be obtained by the
FastPD4 method. Alpha4 and FastPD8 show similar runtime
distributions, whereas Alpha8 yields the longest runtimes on
average, however, with only 7.9 s maximum for 13 labels.
The percentage of images requiring more than 5 s until con-
vergence are 0% (PdeZGFN), 5% (PdeCCP), 3% (Alpha4),
12% (Alpha8), 0% (FastPD4) and 5% (FastPD8).

7.4.2 Runtimes per Label Number

Finally, we examine the runtimes with respect to the num-
ber of labels for all approaches. Figure 8 and correspond-
ing Table 4 show the average runtime in seconds for each
label computed over the whole benchmark. For the PDE
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Fig. 8 Comparison of average runtimes for different numbers of labels
for PDE optimization schemes (PdeZGFN and PdeCCP) compared to
MRF optimization (Alpha4, Alpha8, FastPD4, FastPD8) for the prob-
lem of interactive image segmentation

Table 5 Average runtimes in seconds of the proposed multi-label seg-
mentation algorithms PdeZGFN and FastPD4 with respect to differently
scaled smoothness values

Method λopt/100 λopt/10 λopt λopt · 10 λopt · 100

FastPD4 0.37 0.43 0.74 2.10 8.18

PdeZGFN 0.13 0.23 0.49 0.96 1.41

λopt is the optimal smoothness parameter with respect to the benchmark

approaches the runtime increases with the number of con-
straints on the dual variables: approximately linearly in the
case of the PdeZGFN approach with linearly increasing con-
straint set (6), approximately quadratically in the case of the
PdeCCP approach with quadratically increasing constraint
set (7). The runtimes of the MRF approaches are less pre-
dictable as they strongly depend on the data term and thus the
image content as discussed in Sect. 2. The computation times
vary with the smoothness parameter λ as shown exemplarily
for FastPD4 and PdeZGFN in Table 5.

8 Conclusion

In this paper we have reviewed and experimentally com-
pared the most popular recent multi-label relaxations and
optimization methods for the Potts model from the continu-
ous PDE and discrete MRF domain. To evaluate their perfor-
mance with respect to the quality of the results and runtimes,
we applied them to the problem of interactive multi-label
segmentation. We statistically tested the hypotheses that the
quality and runtime followed the same distribution for each
two of the optimization methods under consideration. The
quality hypothesis could not be rejected, whereas the runtime
hypothesis was rejected. We conclude that all optimization
approaches yield results of comparable quality, whereas the
runtimes differ. The lowest runtime could be achieved with
the relaxation by Zach et al. with 0.49 s on average per image
containing 2–13 labels.

Table 4 Average runtimes in seconds per label number on the Graz benchmark

Method 2 3 4 5 6 7 8 9 13 Avg-std

PdeZGFN 0.29 0.45 0.54 0.56 1.24 1.63 1.04 1.38 2.54 0.51

PdeCCP 0.68 1.33 1.85 2.24 5.50 8.79 7.34 12.03 28.83 2.16

Alpha4 0.56 1.19 1.61 1.63 2.80 4.88 2.70 3.35 4.74 1.03

Alpha8 1.33 2.54 3.03 3.53 5.06 8.72 5.75 4.55 7.93 1.85

FastPD4 0.42 0.67 0.91 0.94 1.35 2.05 2.13 1.54 2.44 0.46

FastPD8 0.77 1.40 1.86 2.14 2.67 4.25 5.22 2.46 3.92 1.22

For the last column we computed the standard deviation of the runtime for each label number (comprising more than a single image) and took the
average
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