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Abstract. Dense optical flow fields are required for many applications.
They can be obtained by means of various global methods which employ
regularization techniques for propagating estimates to regions with in-
sufficient information. However, incorrect flow estimates are propagated
as well. We, therefore, propose surface measures for the detection of
locations where the full flow can be estimated reliably, that is in the
absence of occlusions, intensity changes, severe noise, transparent struc-
tures, aperture problems and homogeneous regions. In this way we obtain
sparse, but reliable motion fields with lower angular errors. By subse-
quent application of a basic motion inpainting technique to such spar-
sified flow fields we obtain dense fields with smaller angular errors than
obtained by the original combined local global (CLG) method and the
structure tensor method in all test sequences. Experiments show that this
postprocessing method makes error improvements of up to 38% feasible.

1 Introduction

Optical flow calculation is a crucial step for a wide variety of applications rang-
ing from scientific data analysis and medical imaging to autonomous vehicle
control and video compression. Despite high quality results on common test se-
quences, there are several challenging situations in image sequences, where many
or even all known methods fail, e.g. in the case of difficult occlusions, transparent
structures, severe noise, aperture problems, homogeneous regions or incoherent
motion. Previously, some of these situations could be identified by means of con-
fidence measures. In this paper we demonstrate that optical flow fields obtained
by both local and global methods can be improved significantly by identifica-
tion of situations, where a reliable estimation is possible, and subsequent motion
inpainting in order to obtain a dense optical flow field. Our approach consists
of two steps. First, we propose new confidence measures called ”surface mea-
sures”, which indicate the feasibility of a correct flow estimation. In a second
step we minimize a basic motion inpainting functional in order to estimate the
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flow within the unreliable regions only based on the flow information classified
as reliable by the surface measures. In this way we obtain significantly improved
optical flow fields. For the local structure tensor method we even obtain results
superior to the global CLG method. Let a given image sequence I be defined
on a space-time interval Ω × [0, T ], I : Ω × [0, T ] → R, Ω ⊆ R

2. Then the
notion ”optical flow” refers to the displacement field u of corresponding pixels
in subsequent frames of an image sequence, u : Ω × [0, T ] → R

2.

2 Related Work

Previously measures for the detection of difficult situations in the image sequence
have been understood as a subclass of confidence measures. They mainly focus on
the detection of features in the image, which make a correct estimation difficult.
Such measures examine for example the magnitude of the image gradient or the
eigenvalues of the structure tensor [1]. In contrast, other confidence measures are
based on the flow computation method, e.g. [2] for variational methods or [3] for
local methods. Limited comparisons of confidence measures have been carried
out by Barron and Fleet [4] and Bainbridge and Lane [5]. Yet, the measures
proposed so far are not able to detect all relevant difficult situations in an image
sequence. Hence, to detect situations, where a reliable optical flow computation
is feasible, we propose to examine the intrinsic dimensionality of image invariance
functions similar to correlation surfaces. Correlation surfaces have for example
been applied by Rosenberg and Werman [6] in order to detect locations where
motion cannot be represented by a Gaussian random variable and by Irani and
Anandan in [7] to align images obtained from different sensors. The inpainting
of motion fields has been proposed before by Matsushita et al. [8] in order to
accomplish video stabilization. Their approach differs from ours in two points:
1) The flow field is only extrapolated at the edges of the image sequence to
continue the information to regions occluded due to perturbations of the camera.
In contrast, we interpolate corrupted flow field regions within the sequence, which
are identified by surface measures. 2) Instead of a fast marching method we use
a variational approach to fill in the missing information.

3 Intrinsic Dimensions

According to [9] the notion ’intrinsic dimension’ is defined as follows: ’a data set
in n dimensions is said to have an intrinsic dimensionality equal to d if the data
lies entirely within a d-dimensional subspace’. It has first been applied to image
processing by Zetzsche and Barth in [10] in order to distinguish between edge-like
and corner-like structures in an image. Such information can be used to identify
reliable locations, e.g. corners, in an image sequence for optical flow computation,
tracking and registration. An equivalent definition of ’intrinsic dimension’ in
image patches is based on its spectrum assigning the identifier
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– i0d if the spectrum consists of a single point (homogeneous image patch)
– i1d if the spectrum is a line through the origin (edge in the image patch)
– i2d otherwise (e.g. edges and highly textured regions)

In [11,12] Barth has introduced the intrinsic dimensionality of three-dimensional
image sequences and applied it to motion estimation, especially for multiple and
transparent motions. Krüger and Felsberg [13] proposed a continuous formula-
tion of the intrinsic dimension and introduced a triangular topological structure.
Provided the assumption of constant brightness over time holds, motion of a
single point corresponds to a line of constant brightness in the image sequence
volume. Thus, the intrinsic dimension of locations in image sequences, where
motion takes place is lower or equal to two. In the case of intrinsic dimension
three the brightness constancy assumption is violated which can be due to e.g.
noise or occlusions. Only in the i2d case a reliable estimation of the motion vec-
tor is possible, since then the trajectory of the current pixel is the only subspace
containing the same intensity. Otherwise, severe noise (i3d), aperture problems
(i1d) or homogeneous regions (i0d) prevent accurate estimates. As indicated in
[11] occlusions or transparent structures increase the intrinsic dimension by one
thus leading to the problem of occluded i1d locations misclassified as reliable
i2d locations. Hence, the detection of i2d situations which do not originate from
the occlusion of i1d situations would be beneficial for optical flow computation
methods, as only in these cases reliable motion estimation is possible. This new
situation will be denoted by ’i2d-o situation’.

4 Surface Measures

In order to estimate the accuracy of a given optical flow field we investigate the
intrinsic dimension of invariance functions f : Ω×[0, T ]×R

2 → R which evaluate
the constancy of invariant image features at corresponding pixels in subsequent
frames, e.g. the constancy of a) the brightness [14], b) the intensity, c) the gra-
dient or d) the curvature at a given position x ∈ Ω × [0, T ] with corresponding
displacement vector u ∈ R

2:

a) brightnessConst: f(x, u) = ∇I(x) u(x) + ∂I(x)
∂t

b) ssdConst: f(x, u) = ‖I(x) − Iw(x)‖2
l2

c) gradConst: f(x, u) = ‖∇I(x) −∇Iw(x)‖2
l2

d) hessConst: f(x, u) = ‖H(x) − Hw(x)‖2
l2

Here Iw and Hw denote the image sequence and the Hessian of the image se-
quence warped by the computed flow field u. The set of invariance functions
will be denoted by E . A surface function for a given flow vector u reflects the
variation of an invariance function f ∈ E over the set of modifications of the
current displacement vector. Hence, it can be understood as an indicator for
possible alternatives to the current displacement vector:

Sx,u,f : R
2 → [0, 1], Sx,u,f (d) := f(x, u + d) . (1)
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The surface functions are used to derive surface measures for the detection of
the id2-o situation based on any given invariance function f ∈ E and the follow-
ing theoretical considerations. Low surface function values Sx,u,c(d) for several
displacements d denote uncertainty in the flow estimation, such as in the case of
homogeneous regions and aperture problems. These situations can be detected
by analyzing the curvature of the surface function along its principal axes, which
is small along both axes for homogeneous regions and along one principal axis for
aperture problems. In the case of occlusion, transparent structures and noise the
minimum of the surface function is usually high indicating that no good estimate
is possible at all. In contrast, a single, low minimum suggests a unique, reliable
displacement vector. Hence, the intrinsic dimension of the surface function to-
gether with its minimum value yield information on the reliability of optical flow
estimates. Only in the case of intrinsic dimension two and a low minimum value
an optical flow estimate can be understood as reliable due to missing alterna-
tives and a low value of the invariance function. The case of i1d and i0d can be
detected by at least one low curvature value of the principal surface axes. The
case of occlusion, severe noise and transparent structures yields a high minimum
value of the surface function as none of the modified displacement vectors ful-
fills the assumption of the invariance function. Therefore, the confidence value
should always be close to 1 if the smaller curvature value cS is high and the
surface minimum mS is low. Let S be the set of surface functions defined in
Equation (1). Then the surface measure can be defined as

mf : Ω × R
2 → [0, 1], mf(x, u) := ϕ(Sx,u,f ) (2)

ϕ : S → [0, 1], ϕ(Sx,u,f ) :=
1

1 + mS
· (1 − 1

1 + τc2
S

) . (3)

τ ∈ R
+ is used to scale the influence of the minimum curvature value. In this

paper we use τ = 60. The discretization of the surface measure has a large
influence on the quality of the result. To discretize a surface function Sx,u,f we
use a step size h denoting the distance between two surface points and a fixed size
b referring to the number of surface points in horizontal and vertical direction
after discretization, e.g. h = 0.5, b = 13 yielded good results. For high accuracy
h is chosen between 0 and 1 and bicubic interpolation is used. Examples for
discretized surface functions are shown in Figure 1.

To obtain robustness towards noise we weight the surface by a Gaussian func-
tion centered on the central pixel before choosing the minimum value mS and
ignore all surface positions separated from the minimum by a local maximum for

a) b) c) d)

Fig. 1. Discretized surface functions: a) i0d, b),c) i1d, d) i2d
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the calculation of the principal surface axes. Since the eigenvalues of the Hessian
yield noisy curvature estimates, a robust curvature estimator is introduced. It
averages n curvature values along the principal axis using the following filter
mask: 1

n (1 . . . 1
︸ ︷︷ ︸

n

−2n 1 . . . 1
︸ ︷︷ ︸

n

).

5 Motion Inpainting

We will show that sparsification based on the information contained in a surface
measure map with subsequent motion inpainting improves the flow fields calcu-
lated with the combined local global and the structure tensor method on our test
sequences (the well-known Marble and Yosemite sequence as well as the Street
and Office sequence [15]). Motion inpainting is formulated as the minimization
of a functional, which can be optimized by means of a variational approach. Let
ω ⊂ Ω × [0, T ] be a closed subset of the image domain, where the flow field
is to be reconstructed. This is the case for all pixel positions which have been
classified as unreliable by the surface measure. Let ∂ω be the boundary of ω,
and let u∗ be the reconstructed flow field within the region ω. Then u∗ is the
solution to the minimization problem

min
∫

ω

‖∇3u
∗‖2 with u∗|∂ω = u|∂ω . (4)

Here ∇3 means the spatio-temporal gradient. The minimizer satisfies the fol-
lowing system of Euler-Lagrange equations consisting of the Laplacian of each
component of the flow field:

�ui = uixx + uiyy + uitt = 0, i ∈ {1, 2}, u∗|∂ω = u|∂ω . (5)

We discretize the Euler-Lagrange equations using finite differences, von Neumann
boundary conditions and the three-dimensional seven point Laplace stencil. The
resulting linear system of equations is solved by successive overrelaxation.

6 Experiments and Results

To evaluate our results we first compare the quality of the surface measures to
the previously known confidence measures detecting i2d situations and show that
all of our surface measures - independent of the underlying invariance function
- perform better than the best previously proposed measures and are robust to
noise as well. Then we show motion inpainting results which demonstrate the
usefulness of the suggested postprocessing method.

6.1 Comparison to i2d Measures

As test sequence we use the synthetic sequence on the left in Figure 2, as it
contains every intrinsic dimension and occlusions of every intrinsic dimension.
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Fig. 2. Left: test sequence for surface measures containing four different intrinsic di-
mensions and the case of augmented intrinsic dimensions due to occlusion of the upper
half in the lower half; Right: Comparison of surface measures (SSM-measures) based on
different invariance functions for the recognition of i2d-o situations to known confidence
measures for increasing noise levels

In this way we can examine if the surface measures are able to recognize the i2d-o
situation and if they can distinguish it from occluded lower intrinsic dimensions.
The patterns are moving to the lower right, and the lower half of the sequence
is occluded by the sine pattern in the current frame in order to obtain examples
of increased intrinsic dimensions due to occlusion.

To obtain numerical results let g(x) denote the ground truth at position x. We
compute two values expressing the average deviation of the measure for the set
of pixels P where the i2d-o situation is present and for the set of pixels Q where
the situation is not present. The sum of both values serves as error measure.

r = rin +rout =
∑

x∈P |mc(x, u(x)) − g(x)|
|P | +

∑

x∈Q |mc(x, u(x)) − g(x)|
|Q| (6)

As no measures are known for the detection of the i2d-o situation we compare
our surface measures to the best known measures for the i2d situation: struct-
MultMotion derived from [16], structCc [1], Anandan’s measure [17] and struct-
MinorsAngle [18]. Figure 2 (right) shows the error measure r plotted against
an increasing noise level σ ∈ [0, 5] in the test sequence. The proposed surface
measures are labeled by the prefix ”SSM” and an abbreviation of the invariance
function they are based on. We can see that the proposed surface measures gen-
erally perform better than the best previously proposed i2d measures for any
underlying invariance function f . All surface measures are robust to noise, but
depend on the robustness of the underlying invariance function. The susceptibil-
ity to noise increases with the order of the derivatives in the invariance function.
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However, the influence of noise on the surface measures is limited by the robust
curvature estimation along the principal axes.

6.2 Application to Other Test Sequences

For further validation of the surface measures we apply them to standard test
sequences. As no ground truth concerning the i2d-o situation is available for
these sequences, only a visual evaluation is feasible.

Figure 3 a)-f) shows six different cropped regions of the Marble sequence
and the corresponding surface measure result based on the brightness constancy
invariance function (brightnessConst). In Figure 3 a), b) and c) we can see the
application of the surface measure to different textures. In a) and b) the Marble
blocks show only very little texture which makes these regions unreliable for
flow estimation. In contrast, most parts of the block texture in c) are classified
as sufficient for a reliable flow computation. In d) and e) we can see examples
of aperture problems (i1d). The diagonal line on the table as well as the edges
of the flagstones in the background of the sequence are typical examples for
this situation. Both are recognized well by the surface measure. The corners
of the flagstones are correctly recognized as i2d-o regions. The table region in
f) is partially recognized as i2d-o and partially as i0d. This is due to the larger
homogeneous regions in the table texture, as here the result depends on the size of
the surface considered. If the whole surface function lies within the homogeneous
region, the curvature along the main axis is 0 and thus the surface measure result
as well. To demonstrate that our surface measures can also detect occlusions, we

a) b) c) d) e) f)

Fig. 3. Top: Cropped Marble sequence regions with result of brightness constancy
surface measure for the recognition of i2d-o situations scaled to [0,1]; a),b),c) texture of
blocks (i2d-o/i0d), d) diagonal table line (i1d) e) flagstones in the background (i1d,i2d-
o at corners), f) table (i2d-o/i0d), Bottom: Office sequence with additional lens flare
and result of the SSD constancy Surface Measure correctly idetifying the occlusion
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use the cropped Office sequence [15] with an additional lens flare occluding part
of the background in Figure 3 (this kind of lens flare often poses problems e.g.
in traffic scenes). The brightness constancy surface measure detects this region.

6.3 Motion Inpainting

To evaluate the performance of the motion inpainting method we use a surface
measure map to sparsify flow fields calculated on four ground truth sequences
(Marble, Yosemite, Street and Office) by the three dimensional linear CLG
method by Bruhn et al. [19] (a widely used global method) and by the structure
tensor method by Bigün [20] (a fast local method). We apply motion inpainting to
the sparsified displacement fields in order to reconstruct the flow at pixels with low
surface measure values. We demonstrate that the angular error [4] is reduced sig-
nificantly by means of motion inpainting. Table 1 shows the average angular error
and standard deviation over ten frames for the sparsification and reconstruction
of the flow field for the best previously proposed confidence measure (structMult-
Motion) and the new surface measures. For sparsification, we chose the flow field
density optimal for motion inpainting with respect to the angular error.

Concerning the quality of the proposed measures, we can draw several con-
clusions from the results presented in Table 1. Firstly, the average angular error
of the motion inpainting algorithm based on the surface measures is lower than
the error we obtain based on the best previously proposed confidence measure.
Hence, using the surface measures we can make more accurate statements on
the reliability of the flow estimation than by means of previous i2d confidence
measures. Secondly, the average angular error after motion inpainting is lower
than the original angular error for the CLG and the structure tensor method.
Thus, we conclude that the remaining flow vectors after sparsification contain
all relevant information of the original flow field, and that any other information
is dispensable, even obstructive, for the computation of a 100% dense flow field.

Table 1. Angular error for four test sequences for original field, sparsified field with
given density, result of motion inpainting based on best surface measure and result of
motion inpainting based on previously best confidence measure (structMultMotion),
averaged over ten frames for the CLG and the structure tensor (ST) method; the
density indicates the density optimal for motion inpainting

CLG original sparsification density (%) inpainting previously best

Marble 3.88 ± 3.39 3.59 ± 3.03 70.6 3.87 ± 3.38 3.88 ± 3.39

Yosemite 4.13 ± 3.36 2.78 ± 2.24 20.7 3.85 ± 3.00 4.13 ± 3.36

Street 8.01 ± 15.47 2.77 ± 2.52 11.5 7.73 ± 16.23 7.99 ± 15.48

Office 3.74 ± 3.93 3.25 ± 4.80 26.7 3.59 ± 3.93 3.62 ± 3.91

ST original sparsification density inpainting previously best

Marble 4.49 ± 6.49 2.96 ± 2.25 42.3 3.40 ± 3.56 3.88 ± 4.89

Yosemite 4.52 ± 10.10 2.90 ± 3.49 37.5 2.76 ± 3.94 4.23 ± 9.18

Street 5.97 ± 16.92 2.07 ± 5.61 34.6 4.95 ± 13.23 5.69 ± 16.47

Office 7.21 ± 11.82 2.59 ± 4.32 5.1 4.48 ± 4.49 6.35 ± 10.14
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Finally, the table also indicates the average angular error for the sparsification of
the flow field by means of the surface measures. Here we chose the sparsification
density which has been found optimal for motion inpainting. The sparsification
error is lower than the motion inpainting error and can be achieved if a dense flow
field is not required. Hence, we have demonstrated that the quality of the surface
measures is superior to previous measures and that the information contained
in the remaining flow field after sparsification is sufficient for reconstruction.

Concerning the results of the motion inpainting algorithm we can draw the
following conclusions. For both the CLG and the structure tensor method the
sparsification of the flow field based on surface measures and subsequent inpaint-
ing yields lower angular errors than the original methods for all test sequences.
The results of the local structure tensor method after motion inpainting are
even superior to the original and the inpainted global CLG method in all cases
but one. Therefore, we can conclude that - in contrast to the accepted opinion
which favors global methods over local methods if dense flow fields are required
- the filling-in effect of global methods is not necessarily beneficial for obtaining
an accurate dense flow field. Instead, local and global methods alike can lead
to better results if motion inpainting in combination with surface measures for
sparsification is employed. Here, local methods often even seem preferable.

7 Summary and Conclusion

We have presented a method to estimate the feasibility of accurate optical flow
computation. The proposed surface measures have proven robust to noise and
are able to detect the situations where the full flow cannot be estimated reliably.
They yield better results than previously proposed confidence measures and
contain all relevant information for the reconstruction of the original flow field
with even higher quality. Based on these measures we sparsified the original
locally or globally computed flow field and filled in the missing flow vectors
by a basic motion inpainting algorithm. Tests have been conducted using the
CLG method and the structure tensor method on four standard test sequences.
For our test sequences we can conclude that the application of a postprocessing
method to sparsified flow fields calculated with local or global methods yields
better results than can be achieved by exploiting the filling-in effect of global
methods. Hence, in contrast to the accepted opinion, global methods are not
always preferable to local methods if a dense flow field is required, because motion
inpainting only based on reliable flow vectors can lead to superior results.
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