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Figure 1. We present a differentiable nonlinear least squares (DNLS) framework for learning feature correspondence quality by
computing per-feature positional uncertainty. The uncertainty estimates (left, bottom images) are regressed from a pose estimation error
(middle), enabling the framework across a range of (handcrafted, learned) feature extractors. Our learned covariances (right, orange trajec-
tory) improve orientation estimation by up to 11% over state-of-the-art probabilistic pose estimation methods on the KITTI dataset [21].

Abstract

We propose a differentiable nonlinear least squares
framework to account for uncertainty in relative pose es-
timation from feature correspondences. Specifically, we
introduce a symmetric version of the probabilistic normal
epipolar constraint, and an approach to estimate the co-
variance of feature positions by differentiating through the
camera pose estimation procedure. We evaluate our ap-
proach on synthetic, as well as the KITTI and EuRoC real-
world datasets. On the synthetic dataset, we confirm that
our learned covariances accurately approximate the true
noise distribution. In real world experiments, we find that
our approach consistently outperforms state-of-the-art non-
probabilistic and probabilistic approaches, regardless of
the feature extraction algorithm of choice.

1. Introduction
Estimating the relative pose between two images given

mutual feature correspondences is a fundamental problem
in computer vision. It is a key component of structure from
motion (SfM) and visual odometry (VO) methods which in
turn fuel a plethora of applications from autonomous vehi-
cles or robots to augmented and virtual reality.

Project Page

Estimating the relative pose – rotation and translation
– between two images, is often formulated as a geomet-
ric problem that can be solved by estimating the essential
matrix [42] for calibrated cameras, or the fundamental ma-
trix [24] for uncalibrated cameras. Related algorithms like
the eight-point algorithm [23, 42] provide fast solutions.
However, essential matrix based approaches suffer issues
such as solution multiplicity [18,24] and planar degeneracy
[33]. The normal epipolar constraint (NEC) [34] addresses
the issues by estimating the rotation independently of the
translation, leading to more accurate relative poses [33].

Neither of the aforementioned algorithms takes into ac-
count the quality of feature correspondences – an impor-
tant cue that potentially improves pose estimation accuracy.
Instead, feature correspondences are classified into inliers
and outliers through a RANSAC scheme [11]. However,
keypoint detectors [12, 56] for feature correspondences or
tracking algorithms [63] yield imperfect points [40] that ex-
hibit a richer family of error distributions, as opposed to an
inlier-outlier distribution family. Algorithms, that make use
of feature correspondence quality have been proposed for
essential/fundamental matrix estimation [7, 53] and for the
NEC [48], respectively.

While estimating the relative pose can be formulated as
a classical optimization problem [15, 33], the rise in popu-
larity of deep learning has led to several works augmenting

ar
X

iv
:2

30
5.

09
52

7v
2 

 [
cs

.C
V

] 
 1

8 
M

ay
 2

02
3

https://dominikmuhle.github.io/dnls_covs/


(a) covariances from [48] per pixel (b) points and covariances [48]

(c) learned covariances per pixel (Ours) (d) points and learned covariances (Ours)
Figure 2. Comparison between covariances used in [48] (first row) and our learned covariances (second row). The first column shows a
dense color coded (s, α, β mapped to HLS with γ correction) representation for each pixel, while the second column shows subsampled
keypoints and their corresponding (enlarged) covariances. The higher saturation in (a) shows that the covariances are more anisotropic.
The learned covariances (c) show a more fine-grained detail in the scale (brightness) and less blurring than the covariances in (a).

VO or visual simultaneous localisation and mapping (VS-
LAM) pipelines with learned components. GN-Net [67]
learns robust feature representations for direct methods like
DSO [15]. For feature based methods Superpoint [12] pro-
vides learned features, while Superglue [57] uses graph neu-
ral networks to find corresponding matches between feature
points in two images. DSAC introduces a differential re-
laxation to RANSAC that allows gradient flow through the
otherwise non-differentiable operation. In [53] a network
learns to re-weight correspondences for estimating the fun-
damental matrix. PixLoc [58] estimates the pose from an
image and a 3D model based on direct alignment.

In this work we combine the predictive power of deep
learning with the precision of geometric modeling for
highly accurate relative pose estimation. Estimating the
noise distributions for the feature positions of different fea-
ture extractors allows us to incorporate this information into
relative pose estimation. Instead of modeling the noise for
each feature extractor explicitly, we present a method to
learn these distributions from data, using the same domain
that the feature extractors work with - images. We achieve
this based on the following technical contributions:
• We introduce a symmetric version of the probabilistic

normal epipolar constraint (PNEC), that more accurately
models the geometry of relative pose estimation with un-
certain feature positions.

• We propose a learning strategy to minimize the rela-
tive pose error by learning feature position uncertainty
through differentiable nonlinear least squares (DNLS),
see Fig. 1.

• We show with synthetic experiments, that using the gradi-
ent from the relative pose error leads to meaningful esti-
mates of the positional uncertainty that reflect the correct
error distribution.

• We validate our approach on real-world data in a vi-
sual odometry setting and compare our method to non-

probabilistic relative pose estimation algorithms, namely
Nistér 5pt [50], and NEC [33], as well as to the PNEC
with non-learned covariances [48].

• We show that our method is able to generalize to different
feature extraction algorithms such as SuperPoint [12] and
feature tracking approaches on real-world data.

• We release the code for all experiments and the training
setup to facilitate future research.

2. Related Work

This work is on deep learning for improving frame-to-
frame relative pose estimation by incorporating feature po-
sition uncertainty with applications to visual odometry. We
therefore restrict our discussion of related work to relative
pose estimation in visual odometry, weighting correspon-
dences for relative pose estimation, and deep learning in
the context of VSLAM. For a broader overview over VS-
LAM we refer the reader to more topic-specific overview
papers [10, 65] and to the excellent books by Hartley and
Zisserman [24] and by Szeliski [62].

Relative Pose Estimation in Visual Odometry. Find-
ing the relative pose between two images has a long his-
tory in computer vision, with the first solution for perspec-
tive images reaching back to 1913 by Kruppa [35]. Mod-
ern methods for solving this problem can be classified into
feature-based and direct methods. The former rely on fea-
ture points extracted in the images together with geomet-
ric constraints like the epipolar constraint or the normal
epipolar constraint [34] to calculate the relative pose. The
latter optimize the pose by directly considering the inten-
sity differences between the two images and rose to pop-
ularity with LSD-SLAM [16] and DSO [15]. Since direct
methods work on the assumption of brightness or irradiance
constancy they require the appearance to be somewhat sim-
ilar across images. In turn, keypoint based methods rely



on suitable feature extractors which can exhibit significant
amounts of noise and uncertainty. In this paper we propose
a method to learn the intrinsic noise of keypoint detectors –
therefore, the following will focus on feature based relative
pose estimation.

One of the most widely used parameterizations for re-
constructing the relative pose from feature correspondences
is the essential matrix, given calibrated cameras, or the
fundamental matrix in the general setting. Several solu-
tions based on the essential matrix have been proposed
[36, 38, 42, 50, 61]. They include the linear solver by
Longuet-Higgins [42], requiring 8 correspondences, or the
solver by Nistér et al. [51] requiring the minimal number
of 5 correspondences. However, due to their construction,
essential matrix methods deteriorate for purely rotational
motion with noise-free correspondences [33]. As an alter-
native, methods that do not use the essential matrix have
been proposed – they either estimate the relative pose using
quaternions [17] or make use of the normal epipolar con-
straint (NEC) by Kneip and Lynen [33, 34]. The latter ad-
dresses the problems of the essential matrix by estimating
rotation independent of the translation. [6] shows how to
obtain the global minimum for the NEC. Further work, that
disentangles rotation and translation can be found in [39].

Weighting of Feature Correspondences. Keypoints
in images can exhibit significant noise, deteriorating the
performance for pose estimation significantly [22]. The
noise characteristics of the keypoint positions depend on the
feature extractor. For Kanade-Lucas-Tomasi (KLT) track-
ing [44, 63] approaches, the position uncertainty has been
investigated in several works [20, 59, 60, 72]. The uncer-
tainty was directly integrated into the tracking in [14]. [71]
proposed a method to obtain anisotropic and inhomoge-
neous covariances for SIFT [43] and SURF [3].

Given the imperfect keypoint positions, not all corre-
spondences are equally well suited for estimating the rel-
ative pose. [22] showed the effect of the noise level on the
accuracy of the pose estimation. Limiting the influence of
bad feature correspondences has been studied from a ge-
ometrical and a probabilistic perspective. random sample
consensus (RANSAC) [19] is a popular method to classify
datapoints into inliers and outliers that can be easily inte-
grated into feature based relative pose estimation pipelines.
Ranftl et al. [53] relax the hard classification for inlier and
outlier and use deep learning to find a robust fundamental
matrix estimator in the presence of outliers in an iteratively
reweighted least squares (IRLS) fashion. DSAC [5] mod-
els RANSAC as a probabilistic process to make it differen-
tiable. Other lines of work integrate information about po-
sition uncertainty directly into the alignment problem. For
radar based SLAM, [8] incorporates keypoint uncertainty
in radar images, with a deep network predicting the uncer-
tainty. Image based position uncertainty was investigated

from the statistical, [27, 28], the photogrammetry [46] and
the computer vision perspective [7,29]. [7] and [29] debated
the benefit of incorporating position uncertainty into funda-
mental matrix estimation. We base our method on the prob-
abilistic normal epipolar constraint (PNEC) [48], that im-
proved on the NEC by extending it to a probabilistic view. It
achieved better results on real-world data with covariances
approximated using the Boltzmann distribution [4]. We ex-
pand on this idea by learning covariances (see Fig. 2) agnos-
tic of the keypoints extractor used to further improve pose
estimation.

Deep Learning in VSLAM. Deep Learning has trans-
formed computer vision in the last decade. While deep
networks have been successfully used for tasks like detec-
tion [54], semantic segmentation [41], and recently novel
view synthesis [47], they have also found application in VS-
LAM pipelines. DVSO [69] and D3VO [68] leveraged deep
learning to improve the precision for direct methods, while
GN-Net [67] predicts robust and dense feature maps. Sev-
eral works proposed to learn keypoint extractors, for feature
based pose estimation, such as SuperPoint [12] and LIFT
[70]. SuperGlue [57] enabled feature matching with graph
neural networks. Other lines of work leverage deep learn-
ing for localization by making parts of the pose estimation
pipeline differentiable [2,5,58,64]. Works, that directly pre-
dicting the pose include PoseNet [30] and CTCNet [25] that
uses self-supervised learning with a cycle-consistency loss
for VO. [40] learns image representations by refining key-
point positions and camera poses in a post-processing step
of a structure-from-motion pipeline. ∇SLAM [26] presents
a differentiable dense SLAM system with several compo-
nents (e.g., the Levenberg-Marquardt [37, 45] optimizer).

3. Method
In the following, we present our framework to estimate

positonal uncertainty of feature points by leveraging DNLS.
We learn the noise covariances through a forward and back-
ward step. In the forward step, the covariances are used
in a probabilistic pose estimation optimization, namely the
PNEC. In the backward step, the gradient from the pose
error is back-propagated through the optimization to the co-
variances. From there we can train a neural network to pre-
dict the keypoint position uncertainty from the images. We
start by summarizing the asymmetric PNEC [48] and for the
first time introduce its symmetric counterpart.

3.1. Prerequisites

Notation. We follow the notation of [48]. Bold low-
ercase letters (e.g. f ) denote vectors, whereas bold upper-
case letters (e.g. Σ) denote matrices. û ∈ R3×3 represents
the skew-symmetric matrix of the vector u ∈ R3 such that
the cross product between two vectors can be rewritten as a
matrix-vector operation, i.e. u× v = ûv. The transpose is
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Figure 3. Architecture: We extract the uncertainty per image for every pixel using a UNet [55] backbone. Using keypoint locations from
a keypoint detector, we obtain the keypoints with their estimated positional uncertainty. The relative pose is then estimated using a DNLS
optimization. The UNet is updated by backpropagating the gradient (obtained by implicit differentiation) to the network output.

denoted by the superscript >. We deviate from [48] in the
following: variables of the second frame are marked with
the ′ superscript, while variables of the first frame do not
have a superscript. We represent the relative pose between
images as a rigid-body transformation consisting of a rota-
tion matrix R ∈ SO(3) and a unit length translation t ∈ R3

(‖t‖ = 1 is imposed due to scale-invariance).

3.2. The Probabilistic Normal Epipolar Constraint

The asymetric probabilistic normal epipolar constraint
(PNEC) estimates the relative pose, give two images I, I ′

of the same scene under the assumption of uncertain fea-
ture positions in the second image. A feature correspon-
dences is given by pi,p

′
i in the image plane, where the un-

certainty of p′i is represented by the corresponding covari-
ance Σ′2D,i. To get the epipolar geometry for the PNEC the
feature points are unprojected using the camera intrinsics,
giving unit length bearing vectors f i,f

′
i. The uncertainty

of f ′i is now represented by Σ′i. Estimating the relative pose
is done by minimizing the PNEC cost function as defined
in [48]. For convenience we recap the energy function

E(R, t) =
∑
i

e2i
σ2
i

=
∑
i

|t>(f i ×Rf ′i)|2

t>f̂ iRΣ′iR
>f̂ i

>t
, (1)

in our notation. As mentioned previously, this asymmetric
PNEC in [48] only considers uncertainties Σ′ in the sec-
ond frame. While this assumption might hold for the KLT
tracking [66] used in [48], this leaves out important infor-
mation when using other keypoint detectors like ORB [56]
or SuperPoint [12]. Therefore, we will introduce a symmet-
ric version of the PNEC that is more suitable for our task in
the following.

Making the PNEC symmetric. As in [48] we assume
the covariance of the bearing vectors f i and f ′i to be gaus-
sian, their covariance matrices denoted by Σi and Σ′i, re-
spectively. The new variance can be approximated as

σ2
s,i = t>( ˆ(Rf ′i)Σi

ˆ(Rf ′i)
> + f̂ iRΣ′iR

>f̂ i
>)t . (2)

In the supplementary material (see App. C), we derive the
variance and show the validity of this approximation given
the geometry of the problem. This new variance now gives
us the new symmetric PNEC with its following energy func-
tion

Es(R, t) =
∑
i

e2i
σ2
s,i

(3)

3.3. DNLS for Learning Covariances

We want to estimate covariances Σ2D and Σ′2D (in the
following collectively denoted as Σ2D for better readability)
in the image plane

Σ2D = argmin
Σ2D
L , (4)

such that they minimize a loss function L of the estimated
pose. Since we found that the rotational error of the PNEC
is more stable than the translational error, we chose to min-
imize only the rotational error

erot = ∠R̃>R (5)

L(R̃,R;Σ2D) = erot (6)

between the ground truth rotation R̃ and the estimated rota-
tion R. We obtain

R = argmin
R

Es(R, t;Σ2D) (7)

by minimizing Eq. 3. To learn the covariances that min-
imize the rotational error, we can follow the gradient
dL/dΣ2D. Implicit differentiation allows us to compute the
gradient as

dL
dΣ2D

= − ∂2Es
∂Σ2D∂R>

(
∂2Es

∂R∂R>

)−1
erot

∂R
. (8)

For a detailed derivation of Eq. 8 and other methods, that
unroll the optimization, to obtain the gradient we refer the
interested reader to [13].
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Figure 4. Rotational error (a) and differences between the true
residual variance σ̃2 and the learned variance σ2 (b) over the train-
ing epochs. Starting from uniform covariances, our method adapts
the covariances for each keypoint to minimize the rotational error.
Simultaneously, this leads to a better estimate of σ2.

(a) covariance matrices in the 1st frame after 100 epochs training

(b) covariance matrices in the 2nd frame after 100 epochs training

Figure 5. Estimated (red) covariance ellipses in the first (a) and
the second (b) frame, learned from 128 000 examples. Ground
truth (green) covariances as comparison. Although the gradient
minimizes the rotational error (see Fig. 4a), it is not capable of
learning the correct covariance in the image plane.

Supervised Learning. The goal of the paper is for a
neural network F learn the noise distributions of a keypoint
detector. Given an image and a keypoint position, the net-
work should predict the covariance of the noise Σ2D,i =
F (I,pi). The gradient dL/dΣ2D allows for the network to
learn the covariance matrices in an end-to-end manner by
regression on the relative pose error. Given a dataset with
know ground truth poses, we can use

Lsup = erot (9)

as a training loss. This ensures, that learned covariances
effectively minimize the rotational error. See Fig. 3 for
overview of the training process.

Self-Supervised Learning. Finding a suitable annotated
dataset for a specific task is often non-trivial. For our task,
we need accurate ground truth poses that are difficult to ac-

quire. But given a stream of images, like in VO, our method
can be adapted to train a network in a self-supervised man-
ner without the need for ground truth poses. For this, we
follow the approach of [25] to exploit the cycle-consistency
between a tuple of images. The cycle-consistency loss for a
triplet {I1, I2, I3} of images is given by

Lcycl = ∠
∏

(i,j)∈P

Rij , (10)

where Rij is the estimated rotation between images Ii and
Ij and P = {(1, 2), (2, 3), (3, 1)} defines the cycle. As
in [25], we also define an anchor loss

Lanchor =
∑

(i,j)∈P

∠RijR
>
ij,NEC (11)

with the NEC rotation estimate, as a regularising term. In
contrast to [25], our method does not risk learning degener-
ate solutions from the cycle-consistency loss, since the ro-
tation is estimated using independently detected keypoints.
The final loss is then given by

Lself = Lcycl + λLanchor . (12)

4. Experiments
We evaluate our method in both synthetic and real-world

experiments. Over the synthetic data, we investigate the
ability of the gradient to learn the underlying noise distribu-
tion correctly by overfitting covariance estimates directly.
We also investigate if better noise estimation leads to a re-
duces rotational error.

On real-world data, we use the gradient to train a net-
work to predicts the noise distributions from images for dif-
ferent keypoint detectors. We explore fully supervised and
self-supervised learning techniques for SuperPoint [12] and
Basalt [66] KLT-Tracks to verify that our method is agnostic
to the type of feature descriptor used (classical vs learned).
We evaluate the performance of the learned covariances in
a visual odometry setting on the popular KITTI odometry
and the EuRoC dataset. We also evaluate generalization ca-
pabilities from the KITTI to the EuRoC dataset.

For our experiments we implement Eq. 3 in both Theseus
[52] and ceres [1]. We use the Theseus implementation to
train our network, since it allows for batched optimization
and provides the needed gradient (see Eq. 8). However, we
use the ceres implementation for our evaluation. We found
the Levenberg-Marquardt optimization of ceres to be faster
and more stable than its theseus counterpart.

4.1. Simulated Experiments

In the simulated experiments we overfit covariance es-
timates for a single relative pose estimation problem using
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Figure 6. Rotational error (a) and differences between the true
residual variance σ̃2 and the learned variance σ2 (b) over the train-
ing epochs. As previously, our method learns to adapt the covari-
ances for each keypoint to minimize rotational error. Minimizing
the rotational error leads to a significantly better estimate of σ2.

(a) covariance matrices in the 2nd frame after 100 epochs training

Figure 7. Estimated (red) covariance ellipses in the second frame,
learned from 128 000 examples. Ground truth (green) covariances
as comparison. Training data with enough variety gives a gradient
that allows to correctly learn the covariances even in the image
plane, overcoming the unobservabilities of the first experiment.

the gradient from Eq. 8. For this, We create a random rel-
ative pose estimation problem consisting of two camera-
frames observing randomly generated points in 3D space.
The points are projected into camera frames using a pin-
hole camera model. Each projected point is assigned a ran-
dom gaussian noise distribution. From this 128 000 random
problems are sampled. We learn the noise distributions by
initializing all covariance estimates as scaled identity matri-
ces, solving the relative pose estimation problem using the
PNEC and updating the parameters of the distribution using
the gradient of Eq. 8 directly. We train for 100 epochs with
the ADAM [31] optimizer with (0.9, 0.99) as parameters
and a batch size of 12 800 for a stable gradient.

Fig. 4a shows the decrease of the rotation error over the
epochs. The learned covariances decrease the error by 8%
and 16% compared to unit covariances and the NEC, re-
spectively. This validates the importance of good covari-
ances for the PNEC, shown in [48]. Fig. 4b shows the aver-
age error for the normalized variance σ2

norm, given by

σ2
i,norm =

N · σ2
i∑N

j=0 σ
2
j

(13)

over the training epochs, obtained at the ground truth rela-
tive pose. We compare the normalized error variance, as the
scale of σ2 is not observable from the gradient. The covari-
ances that minimize the rotational error also approximate
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Figure 8. Qualitative trajectory comparison for KITTI seq. 00.
Since we compare monocular methods, that cannot estimate the
correct scale from a pair of images, we use the scale of the ground
truth translations for visualization purposes. Both, our supervised
and self-supervised approaches lead to significant improvements
in the trajectory. There is little drift even without additional rota-
tion averaging [11] or loop closure [49].

the residual uncertainty σ2 very closely. However, while
the residual uncertainty is approximated well, the learned
2D covariances in the image plane do not correspond to the
correct covariances (see Fig. 5). This is due to two differ-
ent reasons. First, due to σ2

i dependence on both Σ2D,i and
Σ′2D,i, there is not a single unique solution. Secondly, the
direction of the gradient is dependent on the translation be-
tween the images (see App. D for more details). In this
experimental setup, the information flow to the images is
limited and we can only learn the true distribution for σ2

but not for the 2D images covariances.
To address the problems with limited information flow

of the previous experiment, we propose a second experi-
ment to negate the influence of these aforementioned fac-
tors. First, each individual problem has a randomly sam-
pled relative pose, where the first frame stays fixed. This
removes the influence of the translation on the gradient di-
rection. The noise is still drawn from the same distributions
as earlier. Second, we fix the noise in the first frame to be
small, isotropic, and homogeneous in nature. Furthermore,
we only learn the covariances in the second frame and pro-
vide the optimization with the ground truth noise in the first
frame. Fig. 6 and Fig. 7 show, that under these constraints,
we are not only able the learn the distribution for σ2 but
also Σ′2D. Together, both experiments show, that we can
learn the correct distributions from noisy data by following
the gradient that minimizes the rotational error.

4.2. Real World Data

We evaluate our method on the KITTI [21] and EuRoC
[9] dataset. Since KITTI shows outdoor driving sequences



NISTÉR-5PT [50] NEC [33] NEC-LS WEIGHTED OURS OURS SELF-
NEC-LS SUPERVISED SUPERVISED

Seq. RPE1 RPEn et RPE1 RPEn et RPE1 RPEn et RPE1 RPEn et RPE1 RPEn et RPE1 RPEn et

08 0.195 17.020 4.24 0.081 8.284 3.66 0.056 7.004 2.50 0.054 6.059 2.50 0.050 4.067 2.46 0.050 4.118 2.46
09 0.142 5.754 1.74 0.053 1.646 1.43 0.052 1.553 0.71 0.051 1.354 0.70 0.049 1.317 0.71 0.049 1.278 0.70
10 0.295 16.678 6.57 0.167 9.264 4.43 0.064 4.787 1.79 0.063 4.389 1.76 0.063 3.513 1.64 0.065 3.821 1.65

train 0.249 11.506 4.13 0.141 10.127 2.97 0.082 6.910 1.72 0.081 6.410 1.72 0.077 2.378 1.69 0.077 2.505 1.69
test 0.200 14.349 4.07 0.089 6.917 3.28 0.056 5.353 1.96 0.055 4.676 1.95 0.052 3.333 1.91 0.053 3.408 1.91

Table 1. Quantitative comparison on the KITTI [21] dataset with SuperPoint [12] keypoints. We compare two rotation and one translation
metric. The results are shown for each test sequence together with the mean results on the training and test set weighted by the sequence
length. Both our training setups outperform the non-probablitic algorithms but also the weighted NEC-LS using SuperGlue confidences
consistently across unseen data. The learned uncertainties are able to generalise well and improve the relative pose estimation significantly.

NISTÉR-5PT [50] NEC [33] NEC-LS KLT-PNEC [48] OURS OURS SELF-
SUPERVISED SUPERVISED

Seq. RPE1 RPEn et RPE1 RPEn et RPE1 RPEn et RPE1 RPEn et RPE1 RPEn et RPE1 RPEn et

08 0.126 6.929 3.44 0.088 3.902 8.91 0.053 2.908 2.49 0.054 2.524 2.42 0.048 2.373 2.36 0.047 1.706 2.36
09 0.090 2.544 1.28 0.054 2.027 6.76 0.052 2.307 0.74 0.046 1.003 0.69 0.043 1.244 0.64 0.042 1.141 0.64
10 0.188 11.554 4.43 0.119 8.302 8.53 0.066 4.576 1.78 0.063 4.480 1.71 0.058 3.789 1.58 0.056 3.623 1.60

train 0.204 9.677 3.19 0.173 8.301 8.59 0.103 3.955 1.73 0.104 4.213 1.66 0.094 2.782 1.60 0.096 2.737 1.61
test 0.129 6.722 3.11 0.085 4.237 8.34 0.055 3.060 1.96 0.054 2.514 1.90 0.048 2.359 1.82 0.048 1.910 1.83

Table 2. Quantitative comparison on the KITTI [21] dataset with KLT tracks [66]. As in Tab. 1, we show the results on the test set together
with the mean on the train and test set weighted by the sequence lengths. As for SuperPoint, our methods improve all metrics consistently
for unseen data. Our learned covariances are significantly better for relative pose estimation than the approximation used in [48].

and EuRoC shows indoor scenes captured with a drone, they
exhibit different motion models as well as a variety of im-
ages. For KITTI we choose sequences 00-07 as the train-
ing set for both supervised and self-supervised training. Se-
quences 08-10 are used as the test set. We use a smaller
UNet [55] architecture as our network to predict the covari-
ances for the whole image. We chose this network since it
gives us a good balance between batch size, training time
and performance. The network predicts the parameters for
the covariances directly. We choose

Σ2D(s, α, β) = sRα

(
β 0
0 1− β

)
R>α (14)

as a parameterization [7]. To ensure that our network pre-
dicts valid covariances the network output is filtered with

f1(x) = (1 + |x|)sign(x) (15)
f2(x) = x (16)

f3(x) =
1

1 + e−x
(17)

for s, α, β, respectively. Feature points that have subpixel
accuracy use the nearest pixel covariance. See App. E for
more details on the training setup.

Supervised Learning. To show that our method gen-
eralizes to different keypoint detectors, we train two net-
works, one for SuperPoint [12] and one for KLT tracks ob-
tained from [66]. The SuperPoint keypoints are matched

using SuperGlue [57]. For training we use a batch size of
8 images pairs for SuperPoint and 16 images pairs for KLT
tracks. We trained for 100 epochs for both SuperPoint and
KLT tracks. More training details are provided in the sup-
plementary material. To ensure our network does not overfit
on specific keypoint locations, we randomly crop the im-
ages before finding correspondences during training time.
During evaluation we use the uncropped images to obtain
features. During training we randomly perturb the ground
truth pose as a starting point. To increase robustness, we
first use the eigenvalue based optimization of the NEC in a
RANSAC scheme [32] to filter outliers. This is followed by
a custom least squares implementation of the NEC (NEC-
LS), followed by optimizing Eq. 3. As reported in [48]
we found, that such a mutli-stage optimization provides the
most robust and accurate results. We show examples of how
the DNLS-learned covariances change the energy function
landscape in the supplementary material.

Self-Supervised Learning. We evaluate our self-
supervised training setup on the same data as our supervised
training. Due to needing image tuples instead of pairs, we
reduce the batch size to 12 for KLT image triplets. This
gives us 24 and 36 images pairs per batch, respectively. The
training epochs are reduced to 50. More training details for
the supervised and self-supervised training can be found in
the supplementary material.

Results. We evaluate the learned covariances in a VO
setting. We compare the proposed DNLS approach to the



NISTÉR-5PT [51] NEC [33] NEC-LS WEIGHTED OURS SELF- OURS TAB. 1
NEC-LS SUPERVISED SUPERVISED

Seq. RPE1 RPEn et RPE1 RPEn et RPE1 RPEn et RPE1 RPEn et RPE1 RPEn et RPE1 RPEn et

V1 01 0.501 71.87 31.86 0.320 39.50 43.12 0.387 52.92 46.31 0.388 56.52 46.82 0.327 31.12 35.56 0.332 31.81 34.01
V1 02 0.541 32.01 20.36 0.389 28.11 26.95 0.540 70.08 28.94 0.542 68.35 29.81 0.444 30.39 21.98 0.436 29.07 21.29
V1 03 0.660 27.39 25.00 0.492 25.42 31.06 0.552 76.72 31.58 0.555 78.14 32.25 0.510 29.52 24.19 0.520 31.18 24.13
V2 01 0.515 61.45 33.51 0.316 31.95 39.79 0.310 35.84 39.00 0.314 38.62 39.62 0.285 17.61 32.40 0.295 22.41 30.58
V2 02 0.545 43.73 22.24 0.396 25.48 32.21 0.369 26.96 25.36 0.365 25.09 25.81 0.382 25.32 21.16 0.386 21.91 20.34
V2 03 1.123 36.71 28.77 0.976 48.26 37.60 0.939 107.11 36.74 0.941 100.73 36.71 0.942 52.72 31.13 0.991 55.41 30.40

mean 0.631 48.45 27.56 0.463 33.51 36.03 0.494 58.90 35.61 0.496 58.95 36.11 0.461 30.57 28.46 0.472 31.44 27.44

Table 3. Quantitative comparison on the Vicon sequences of the EuRoC dataset [9] with SuperPoint [12] keypoints. The dataset is more
difficult than KITTI (see Tab. 2 and Tab. 1) with SuperPoint and SuperGlue [57] finding far fewer matches. As reported in [48] the least
squares implementations struggle with bad initialization under these adverse conditions with NEC-LS performing especially poor. From
all least squares optimizations, our learned covariances consistently perform the best, even outperforming the NEC most of the time.

popular 5pt algorithm [51] and the NEC [33] as imple-
mented in [32]. To investigate the benefit of our learned
covariances we include the NEC-LS implementation as well
as the symmetric PNEC with the covariances from [48] in
Tab. 2. For Tab. 1 we additionally include a weighted ver-
sion of our custom NEC-LS implementation with matching
confidence from SuperGlue as weights. All methods are
given the same feature matches and use a constant motion
model for initializing the optimizations. We evaluate on the
rotational versions of the RPE1 and RPEn and the cosine
error et for the translation as defined in [11, 48]. Tab. 1
and Tab. 2 show the average results on the test set over 5
runs for SuperPoint and KLT tracks on KITTI [21], respec-
tively. We show additional results in App. G. Our methods
consistently perform the best over all sequences, with the
self-supervised being on par with our supervised training.
Compared to its non-probabilistic counterpart NEC-LS, our
method improves the RPE1 by 7% and 13% and the RPEn
by 37% and 23% for different keypoint detectors on un-
seen data. It also improves upon weighted methods, like
weighted NEC-LS and the non-learned covariances for the
PNEC [48]. This demonstrates the importance of correctly
modeling the feature correspondence quality. We show an
example trajectory in Fig. 8.

Tab. 3 shows the results on the EuRoC dataset for Su-
perPoint. Pose estimation is significantly more difficult
compared to KITTI, often having few correspondences be-
tween images. However, our method generalizes to differ-
ent datasets, with the network trained on KITTI and our
self-supervised approach, outperforming the others most of
the time. Especially a direct comparison with NEC-LS,
the closest non-probabilistic method, shows significant im-
provements of 7% for RPE1 and 48% for the RPEn.

5. Discussion and Limitations

Our experiments demonstrate the capability of our
framework to to correctly learn positional uncertainty, lead-

ing to improved results for relative pose estimation for VO.
Our approach generalizes to different feature extractors and
to different datasets, providing a unified approach to esti-
mate the noise distribution of keypoint detectors. However,
our method requires more computational resources than the
original uncertainty estimation for the PNEC.

We evaluate our learned covariances in a visual odom-
etry setting, showing that they lead to reduced errors and
especially less drift in the trajectory. However, this does not
guarantee that the covariances are calibrated. Our frame-
work inherits the ambiguity of the PNEC with regard to the
noise scale. The true scale of the noise is not observable
from relative pose estimation alone and only the relative
scale between covariances can be learned. For the purposes
of VO, this scale ambiguity is negligible.

As our synthetic experiments show, diverse data is
needed to correctly identify the 2D noise distribution. How-
ever, obtaining the noise distribution is difficult for keypoint
detectors – hence learning it from pose regression. Further
limitations are addressed in App. B.

6. Conclusion
We present a novel DNLS framework for estimating po-

sitional uncertainty. Our framework can be combined with
any feature extraction algorithm, making it extremely versa-
tile. Regressing the noise distribution from relative pose es-
timation, ensures that learned covariance matrices are suit-
able for visual odometry tasks. In synthetic experiments,
our framework is capable to learn the correct noise distribu-
tion from noisy data. We showed the practical application of
our framework on real-world data for different feature ex-
tractors. Our learned uncertainty consistently outperforms
a variety of non-probabilistic relative pose estimation algo-
rithms as well as other uncertainty estimation methods.
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vanced Grant SIMULACRON, by the Munich Center for Machine Learn-
ing and by the EPSRC Programme Grant VisualAI EP/T028572/1.
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Figure 10. Approximation of the residual variances over different
focal lengths. The scale of the variance is correlated with the focal
length. Our approximation is better, the smaller the variance is.
For a focal length similar to the one found in the KITTI dataset,
the relative error is 0.015%.

A. Overview
This supplementary material presents additional insight into learning

positional uncertainty using DNLS. We start by addressing limitations of
our framework in App. B. App. C gives a derivation of the residual vari-
ance σ2

s for the symmetric PNEC. We investigate the unobservabilities of
the gradient in App. D. The training and evaluation details are given in
App. E. We show further quantitative evaluations in App. F and App. G.
This includes examples of how the learned covariances move the mini-
mum around the ground truth and the results on the sequences 00-07 of
the KITTI [21] dataset. We compare our learned covariances against error
estimates from reprojection using ground truth poses.

B. Limitations
In this section, we will address limitations of our method, not men-

tioned in the main paper due to constrained space. We learn to estimate
the noise distribution of keypoint detectors, using regression on the pose
error. The gradient we use for learning the distribution is restricted to
points in the image that are detected as keypoints. This restrict our method
to learn only on regions of the image with a high chance of producing
keypoints. While we don’t need uncertainty information for regions with-
out keypoints, this sparse information flow might reduce generalization
capabilities to different datasets. Sparsity if further enhanced by using
RANSAC to filter outliers, removing points that are too far off. However,
we choose to include RANSAC for our training to obtain better pose es-
timates for gradients not dominated by outliers. We tried to mitigate the
effect of overfitting on keypoint positions by cropping the images, leading
to different keypoint positions. Furthermore, our experiments showed that
generalization between KITTI and EuRoC are possible.

Fig. 11 and Fig. 12 show examples where our method performs worse
and better than the NEC-LS optimization based on the estimated covari-
ances. We investigate the keypoints with the highest and lowest reprojec-
tion error. As Fig. 11 shows, our method is not always able to compensate
keypoints on dynamic objects leading to a large rotational error. The tra-
jectories in Fig. 12 show the improvements our method is able to achieve
compared to NEC-LS.

C. Approximating σ2
s

This section show derives the residual variance from the bearing vector
covariances in both images. Given both bearing vectors f and f ′ are noisy,
we can write them as

f = µ+ η, η ∼ N (0,Σ) , (18)

f = µ′ + η′, η′ ∼ N (0,Σ′) , (19)

with a constant and a noise term. We then get the new normal vector as

ns = (µ+ η)×R(µ′ + η′) (20)

= µ̂Rµ′ + µ̂Rη′ + η̂Rµ′ + η̂Rη′ ,

with a constant termµn = µ̂Rµ′ and a noise term ηn = Rη′+η̂Rµ′+
η̂Rη′. The noise term is zero centered and has a variance of

Σn = ˆ(Rµ′i)Σi
ˆ(Rµ′i)
> + µ̂iRΣ′iR

>µ̂i
> + Σ̃ , (21)

where Σ̃ is constructed from the columns of Σ and Σ′R = RΣ′R> as

Σ̃ =

(Σ2 ×Σ′R,3 + Σ3 ×Σ′R,2)
>

(Σ3 ×Σ′R,1 + Σ1 ×Σ′R,3)
>

(Σ1 ×Σ′R,2 + Σ2 ×Σ′R,1)
>

 . (22)

As stated in the main paper, we use an approximation of the noise distribu-
tion. Since Σ̃ is order of magnitudes smaller than the other terms, we can
approximate Σn as

Σn ≈ ˆ(Rµ′i)Σi
ˆ(Rµ′i)
> + µ̂iRΣ′iR

>µ̂i
> . (23)

The final residual variance is given by

σ2
s = t>Σnt . (24)

Fig. 9 shows a comparison between our approximation and a the true
residual distribution, given noisy image points. Do to the unprojection of
the image points to bearing vectors, the trace of the bearing vector covari-
ances is small for a focal length f of ca. 720 pixels on the KITTI dataset,
since tr(Σ) ∼ 1/f2. Given the small covariances, Σ̃ is several mag-
nitudes smaller than the other terms, making the approximation accurate.
Fig. 10 shows the correlation between the variance and the focal length.

D. Gradient
In this section, we show that the gradient ∂L/∂Σ2D is restricted by the

problem geometry. We state the components needed to obtain ∂L/∂Σ2D
and show, how the geometry restricts their direction. Therefore, given a
constant geometry the overall gradient direction only moves little through-
out the training.

We start by rewriting the residual es of symmetric PNEC energy func-
tion as

es =
n

σs
=

n√
dΣ + dΣ′

, (25)

for easier differentiation, with the components

n = t>f̂ exp x̂Rf ′f ′>R> exp x̂>f̂>t , (26)

dΣ =
((
exp x̂Rf ′

)
× t
)>Σ

((
exp x̂Rf ′

)
× t
)
, (27)

dΣ′ = t>f̂ exp x̂RΣ′R> exp x̂>f̂>t . (28)
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Figure 11. Left: estimated keypoints with covariances (color-coded ellipses) for examples where our method performs worse than NEC-LS.
Good (H) and bad correspondences (N) based on the reprojection error. Right: corresponding sections of the trajectory. (a) and (c) show
examples with keypoints on dynamic objects. Although their estimated covariances is somewhat lower (especially in (c)) this is not enough
to compensate the error. (e) shows an example where points with a higher reprojection error get assigned a covariances on a similar level
or slightly better than good correspondences.

Since we are working with rotations in SO(3) we differentiate with regard
to x ∈ so(3) around the identity rotation. This gives us the following
gradients

∂n

∂x
= 2

(
(Rf ′f ′>R> exp x̂>f̂>t)× (f̂ t)

)>
, (29)

∂dΣ

∂x
= 2

(
(Rf ′)× (t̂Σt̂

>
exp x̂Rf ′)

)>
, (30)

∂dΣ′

∂x
= 2

(
(RΣ′R> exp x̂>f̂>t)× (f̂ t)

)>
, (31)

with regard to the rotation. The direction of each gradient is restricted by
the cross product. The gradient for the residual is given by

∂es

∂x
=

1

σs

∂n

∂x
− n

2σ3
s

(
∂dΣ

∂x
+
∂dΣ′

∂x

)
. (32)

The gradients with regard to the bearing vector covariances are solely de-
pendent on the geometry as they are given by

∂dΣ

∂Σ
=
(
t× (exp x̂Rf ′)

) (
t× (exp x̂Rf ′)

)>
, (33)

∂dΣ′

∂Σ′
=
(
R> exp x̂>f̂>t

)(
R> exp x̂>f̂>t

)>
. (34)

The gradients of the residual are given by

∂es

∂Σ
= − n

2σ3
s

∂dΣ

∂Σ
, (35)

∂es

∂Σ′
= − n

2σ3
s

∂dΣ′

∂Σ′
. (36)

Since all components are restricted by the geometry of the problem, the
overall gradient is somewhat restricted as well. We show this empirically
in the following.

Fig. 13 and Fig. 14 give the distribution of the gradient for the first ex-
periment on synthetic data, where all individual problems share the same
geometric setup. Fig. 14 shows the eigenvectors of ∂L/∂Σ2D for one co-
variance in the image plane. After 10 epochs of training, the eigenvectors
are mainly located at 4 distinct regions, showing the restriction of the gra-
dient direction. Even after 100 epochs of training certain regions show only
few eigenvectors. The angular distribution of the eigenvectors in Fig. 13
show 4 distinct peaks, with almost no eigenvectors in between.

Fig. 15 and Fig. 16 show the distribution of the gradient for the second
experiment on synthetic data, with more diverse data. Given the diverse
data, there are eigenvectors in all directions, even after 10 epochs. Fig. 15
still shows 4 distinct peaks, however there is no sparsity in the distribution.

The sparse distribution of the gradient direction prohibit learning the
correct noise distribution for the first experiment. Only the residual vari-
ance is correctly estimated. However, the introduction of diverse data with
different geometries removes this restriction, leading better covariance es-
timates.

E. Hyperparameters
This section details the training and evaluation parameters for our

DNLS framework for estimating noise distributions of keypoints. All mod-
els are trained on two RTX 5000 GPUs with 16GB of memory for around
3 days. We use a UNet architecture with 3 output channels for predict-
ing the uncertainty parameters. The UNet has 4 down convolutions and
4 up convolutions with 32, 64, 128, 256 and 128, 64, 32, 16 channels, re-
spectively. Tab. 5 gives the SuperPoint and SuperGlue hyperparameters
for training and evaluation. For our supervised training, we train on con-
secutive image pairs of the training sequences. For our self-supervised
training we create the training tuples from 3 consecutive images. When
training with SuperPoint, we crop the images to size (1200, 300), whereas
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Figure 12. Left: estimated keypoints with covariances (color-coded ellipses) for examples where our method performs better than NEC-LS.
Good (H) and bad correspondences (N) based on the reprojection error. Right: corresponding sections of the trajectory. Covariances for
bad correspondences are estimated to be higher in these examples. They are down-weighted in the optimization leading to better pose
estimates.

Hyperparameter KITTI EuRoC

optimizer ADAM ADAM
β1 0.9 0.9
β2 0.999 0.999
learning rate 5 · 10−4 5 · 10−4

PNEC and theseus

regularization 10−13 10−13

damping 107 107

iterations 100 100

RANSAC

iterations 5000 5000
threshold 10−6 8 · 10−7

Table 4. Parameters used for training and evaluation.

for KLT-Tracks, we crop it to (1200, 320). We found that reducing the
height too much for KLT-tracks leads to not enough tracks. For evaluat-
ing with KLT-tracks on KITTI we change the following to [48]: instead of
tracking keypoints over multiple images, we start with fresh keypoints for
each image pair. To account for the symmetric PNEC, we slightly modify
the uncertainty extraction. We use [48, suppl., Eqn. (8)] as the uncertainty
measure for the tracks in both frames. We found, that these changes al-
ready give better results than the ones stated [48]. Tab. 4 gives the training
parameter for optimizer, theseus and the PNEC energy function not stated
in the main paper.

Hyperparameter training KITTI EuRoC

max keypoints 256 2048 1024
keypoint threshold 0.005 0.005 0.0005
nms radius 3 3 3

weights outdoor outdoor indoor
sinkhorn iterations 20 20 20
match threshold 0.5 0.5 0.01

Table 5. Hyperparameters for SuperPoint and SuperGlue during
training and evaluation on the KITTI and EuRoC dataset.

F. Moving the Minimum
Fig. 18 and Fig. 17 show examples for energy functions around the

ground truth pose on the KITTI dataset. The energy functions are eval-
uated with keypoints filtered using the reprojection error also used in the
RANSAC scheme of [32] to remove outliers. We show the energy func-
tions evaluated for rotations around the ground truth for yaw and pitch.
While the overall shape of the energy function stays the same, our meth-
ods moves the minimum closer to the ground truth pose by learning the
covariances.

G. Further Results
In this section we present additional results on the KITTI dataset, not

presented in the main paper due to constrained space. We give the eval-
uation results for all sequences, training and test set. To present more
comparisons with baseline methods, we replace the Nistér-5pt [51] with
the 8pt [42] algorithm. Furthermore, we replace the weighted NEC-LS
and the KLT-PNEC. Instead, we add another PNEC method, where we ap-
proximate the error distribution using a reprojection error. Following [32],
we triangulate a 3D point using the feature correspondence pi,p

′
i and the



ground truth pose. We reproject the point into the images as p̃i, p̃
′
i and

approximate the the error distribution as scaled isotropic covariances

Σ2D,i = ‖p̃i − pi‖2I2 , (37)

Σ′2D,i = ‖p̃′i − p′i‖2I2 . (38)

We clip the scale of the covariances at 0.01 and 4.0. Tab. 7 shows the
results for the training and test set on KITTI with SuperPoint. While the
reprojection method achieves the best results for the RPE1 and et, our
methods are often not far behind. This shows, that our network is capable
and not too far off, when it comes to pose estimation. Tab. 6 shows the
results for KITTI with KLT-tracks.

We show trajectories for all sequences of the KITTI dataset in Fig. 20
and Fig. 19. Our method consistently achieves the smallest drift over all
sequences.
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Figure 13. Histogram of eigenvector angles for the gradient ∂L/∂Σ′2D after 10, 50, and 100 epochs. The histogram shows 4 distinct peaks,
with only a few points in between. This shows the limited direction that the gradients have, making it difficult to learn the true distribution
of the covariances with little diversity in the training data.
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Figure 14. Distribution of eigenvectors of the gradient ∂L/∂Σ′2D after 10, 50, and 100 epochs. Eigenvectors are color coded (green to blue
and yellow to red) depending, whether there are the 1st or 2nd eigenvector and their epoch. While after 100 epochs most of the circle is
covered, the eigenvectors aggregate at certain positions. Especially after 10 epochs, the eigenvectors are sparsely distributed. This shows a
limited range of directions for the gradient.
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Figure 15. Histogram of eigenvector angles for the gradient ∂L/∂Σ′2D after 10, 50, and 100 epochs. While it shows 4 distinct peaks, event
after only 10 epochs many points lie in between. The direction of the gradient is not limited, allowing for a better fit to the ground truth
noise distribution.
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Figure 16. Distribution of eigenvectors of the gradient ∂L/∂Σ′2D after 10, 50, and 100 epochs. Eigenvectors are color coded (green to
blue and yellow to red) depending, whether there are the 1st or 2nd eigenvector and their epoch. Even after 10 epochs, the eigenvectors are
evenly distributed. This show, that the gradient has no limit for its direction, allowing for a better fit to the noise distribution even in the
image plane.
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Figure 17. Energy functions evaluated for rotations around the ground truth pose (green). Minimum of the cost function is marked in red.
The energy function is evaluated for SuperPoint keypoint for two pose estimation problems on the KITTI dataset, filtered with RANSAC
at the ground truth pose. We compare the weighted NEC-LS energy function to the PNEC energy function with our supervised and self-
supervised covariances. While the overall shape of the energy function stays the same, our learned covariances move the minimum closer
to the ground truth.

−0.1 0.0 0.1

pitch in [deg]

−0.05

0.00

0.05

y
a
w

in
[d

eg
]

EPNEC

(a) KLT-PNEC

−0.1 0.0 0.1

pitch in [deg]

−0.05

0.00

0.05

y
a
w

in
[d

eg
]

EPNEC

(b) Ours, supervised

−0.1 0.0 0.1

pitch in [deg]

−0.05

0.00

0.05

y
a
w

in
[d

eg
]

EPNEC

(c) Ours, self-supervised

−0.1 0.0 0.1

pitch in [deg]

−0.05

0.00

0.05

y
a
w

in
[d

eg
]

EPNEC

(d) KLT-PNEC

−0.1 0.0 0.1

pitch in [deg]

−0.05

0.00

0.05

y
a
w

in
[d

eg
]

EPNEC

(e) Ours, supervised

−0.1 0.0 0.1

pitch in [deg]

−0.05

0.00

0.05

y
a
w

in
[d

eg
]

EPNEC

(f) Ours, self-supervised

Figure 18. Energy functions evaluated for rotations around the ground truth pose (green). Minimum of the cost function is marked in red.
The energy function is evaluated for KLT-tracks for two pose estimation problems on the KITTI dataset, filtered with RANSAC at the
ground truth pose. We compare the PNEC energy function using the KLT-covariances with our supervised and self-supervised covariances.
While the overall shape of the energy function stays the same, our learned covariances move the minimum closer to the ground truth.



8PT [42] NEC [33] NEC-LS OURS OURS SELF- REPROJECTION
SUPERVISED SUPERVISED

Seq. RPE1 RPEn et RPE1 RPEn et RPE1 RPEn et RPE1 RPEn et RPE1 RPEn et RPE1 RPEn et

00 0.185 7.203 2.61 0.153 5.505 9.32 0.121 2.403 1.42 0.115 2.994 1.31 0.113 3.110 1.30 0.117 3.080 1.29
01 0.253 7.162 2.89 0.659 28.523 5.24 0.270 8.991 2.20 0.294 6.433 2.23 0.349 6.042 2.27 0.363 7.712 2.20
02 0.159 7.451 1.85 0.115 6.891 7.69 0.079 3.751 1.06 0.078 3.411 0.99 0.075 3.342 0.99 0.083 4.410 0.99
03 0.131 4.822 2.47 0.089 1.889 7.45 0.051 1.493 1.17 0.058 0.602 1.01 0.049 0.444 1.00 0.047 0.608 1.00
04 0.126 1.899 1.08 0.037 0.846 6.42 0.037 0.816 0.50 0.030 0.387 0.44 0.030 0.428 0.43 0.028 0.549 0.33
05 0.148 5.563 3.35 0.155 10.630 9.75 0.089 6.352 2.40 0.046 1.285 2.23 0.046 1.235 2.23 0.056 1.644 2.17
06 0.142 3.376 1.55 0.066 1.984 7.30 0.044 1.325 0.63 0.032 1.576 0.50 0.032 1.569 0.50 0.031 1.467 0.45
07 0.170 5.347 6.41 0.258 12.558 12.51 0.120 5.371 5.58 0.094 2.731 4.97 0.098 2.500 5.15 0.073 2.132 4.18
08 0.144 8.508 3.49 0.088 3.902 8.91 0.053 2.908 2.49 0.048 2.373 2.36 0.047 1.706 2.36 0.047 2.454 2.31
09 0.151 4.546 1.71 0.054 2.027 6.76 0.052 2.307 0.74 0.043 1.244 0.64 0.042 1.141 0.64 0.044 1.385 0.64
10 0.148 6.540 2.88 0.119 8.302 8.53 0.066 4.576 1.78 0.058 3.789 1.58 0.056 3.623 1.60 0.057 2.615 1.37

train 0.168 6.407 2.69 0.173 8.301 8.59 0.103 3.955 1.73 0.094 2.782 1.60 0.096 2.737 1.61 0.100 3.193 1.52
test 0.146 7.246 2.97 0.085 4.237 8.34 0.055 3.060 1.96 0.048 2.359 1.82 0.048 1.910 1.83 0.048 2.234 1.76

Table 6. Quantitative comparison on the KITTI [21] dataset with KLT tracks [66]. We replace the Nistér-5pt [50] with the 8pt [42]
algorithm to show more results. We also show, an approximation of the true error distance using reprojected points (this is excluded from
being bold or underlined). While the reprojection approximation achieves the best results on almost all sequences, our methods are often
not far behind. This emphasises, that our method is able to effectively learn covariances.

8PT [42] NEC [33] NEC-LS OURS OURS SELF- REPROJECTION
SUPERVISED SUPERVISED

Seq. RPE1 RPEn et RPE1 RPEn et RPE1 RPEn et RPE1 RPEn et RPE1 RPEn et RPE1 RPEn et

00 0.216 11.650 3.40 0.132 12.483 3.20 0.116 8.728 1.35 0.114 2.277 1.38 0.114 2.522 1.38 0.113 2.363 1.28
01 0.246 8.080 3.83 0.539 22.857 1.55 0.082 6.378 1.00 0.060 5.811 0.99 0.057 5.770 0.94 0.054 5.997 0.81
02 0.188 12.003 2.06 0.093 7.594 1.76 0.069 4.050 1.01 0.066 2.224 0.99 0.066 2.237 1.00 0.065 2.679 0.95
03 0.167 8.308 3.42 0.090 3.863 3.31 0.055 3.754 1.12 0.059 2.239 1.13 0.057 2.051 1.12 0.054 2.394 1.07
04 0.160 2.682 1.45 0.040 0.486 0.81 0.041 0.434 0.49 0.038 1.041 0.46 0.037 0.808 0.46 0.027 0.526 0.30
05 0.198 9.236 4.56 0.119 11.779 3.65 0.062 12.437 2.50 0.055 1.931 2.37 0.055 1.949 2.40 0.053 2.123 2.02
06 0.193 5.244 2.89 0.059 6.901 1.43 0.050 6.634 0.76 0.042 1.178 0.70 0.041 1.242 0.70 0.035 0.964 0.58
07 0.231 7.086 8.86 0.185 4.402 8.67 0.112 2.341 6.69 0.103 2.772 6.54 0.109 3.715 6.63 0.120 3.434 4.82
08 0.183 10.423 4.21 0.081 8.284 3.66 0.056 7.004 2.50 0.050 4.067 2.46 0.050 4.118 2.46 0.048 3.623 2.30
09 0.185 5.485 2.29 0.053 1.646 1.43 0.052 1.553 0.71 0.049 1.317 0.71 0.049 1.278 0.70 0.048 1.160 0.69
10 0.198 8.960 4.09 0.167 9.264 4.43 0.064 4.787 1.79 0.063 3.513 1.64 0.065 3.821 1.65 0.060 2.404 1.21

train 0.203 10.051 3.54 0.141 10.127 2.97 0.082 6.910 1.72 0.077 2.378 1.69 0.077 2.505 1.69 0.076 2.606 1.44
test 0.186 9.023 3.74 0.089 6.917 3.28 0.056 5.353 1.96 0.052 3.333 1.91 0.053 3.408 1.91 0.050 2.839 1.73

Table 7. Full results on the KITTI [21] dataset with SuperPoint [12] keypoints. We replace the Nistér-5pt [50] with the 8pt [42] algorithm
to show more results. We also show, an approximation of the true error distance using reprojected points (this is excluded from being
bold or underlined). While the reprojection approximation achieves the best results on almost all sequences, our methods are often not far
behind. This emphasises, that our method is able to effectively learn covariances.
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Figure 19. Trajectory comparison for the KITTI visual odometry sequences for SuperPoint keypoints. Since we compare monocular
methods, that cannot estimate the correct scale from a pair of images, we use the scale of the ground truth translations for visualization
purposes.
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Figure 20. Trajectory comparison for the KITTI visual odometry sequences for KLT-tracks. Since we compare monocular methods, that
cannot estimate the correct scale from a pair of images, we use the scale of the ground truth translations for visualization purposes.
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[16] J. Engel, T. Schöps, and D. Cremers. LSD-SLAM: Large-
scale direct monocular SLAM. In ECCV, 2014. 2

[17] Kaveh Fathian, J Pablo Ramirez-Paredes, Emily A Doucette,
J Willard Curtis, and Nicholas R Gans. Quest: A quaternion-
based approach for camera motion estimation from minimal

feature points. IEEE Robotics and Automation Letters (RAL),
3, 2018. 3

[18] O.D. Faugeras and S. Maybank. Motion from point matches:
multiplicity of solutions. In Workshop on Visual Motion,
1989. 1

[19] Martin A Fischler and Robert C Bolles. Random sample
consensus: a paradigm for model fitting with applications to
image analysis and automated cartography. Communications
of the ACM, 24, 1981. 3

[20] Wolfgang Förstner and Eberhard Gülch. A fast operator for
detection and precise location of distinct points, corners and
centres of circular features. In ISPRS intercommission con-
ference on fast processing of photogrammetric data, 1987.
3

[21] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for Autonomous Driving? The KITTI Vision Bench-
mark Suite. In CVPR, 2012. 1, 6, 7, 8, 9, 15

[22] Hugo Germain, Guillaume Bourmaud, and Vincent Lepetit.
S2dnet: Learning accurate correspondences for sparse-to-
dense feature matching. arXiv preprint arXiv:2004.01673,
2020. 3

[23] Richard I Hartley. In defense of the eight-point algorithm.
IEEE Transactions on pattern analysis and machine intelli-
gence, 19, 1997. 1

[24] R. I. Hartley and A. Zisserman. Multiple View Geometry
in Computer Vision. Cambridge University Press, second
edition, 2004. 1, 2

[25] Ganesh Iyer, Krishna Murthy Jatavallabhula, Gunshi Gupta,
Madhava Krishna K, and Liam Paull. Geometric consistency
for self-supervised end-to-end visual odometry. In CVPR
Workshops, 2018. 3, 5

[26] Krishna Murthy Jatavallabhula, Ganesh Iyer, and Liam Paull.
∇ slam: Dense slam meets automatic differentiation. In
IEEE International Conference on Robotics and Automation
(ICRA), 2020. 3

[27] Kenichi Kanatani. For geometric inference from images,
what kind of statistical model is necessary? Systems and
Computers in Japan, 35, 2004. 3

[28] Kenichi Kanatani. Statistical optimization for geometric fit-
ting: Theoretical accuracy bound and high order error anal-
ysis. IJCV, 80, 2008. 3

[29] Y. Kanazawa and K. Kanatani. Do we really have to consider
covariance matrices for image features? In ICCV, 2001. 3

[30] Alex Kendall, Matthew Grimes, and Roberto Cipolla.
Posenet: A convolutional network for real-time 6-dof camera
relocalization. In ICCV, 2015. 3

[31] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. CoRR, 2015. 6

[32] Laurent Kneip and Paul Furgale. Opengv: A unified and gen-
eralized approach to real-time calibrated geometric vision. In
IEEE International Conference on Robotics and Automation
(ICRA), 2014. 7, 8, 11

[33] Laurent Kneip and Simon Lynen. Direct optimization of
frame-to-frame rotation. In ICCV, 2013. 1, 2, 3, 7, 8, 15

[34] Laurent Kneip, Roland Siegwart, and Marc Pollefeys. Find-
ing the exact rotation between two images independently of
the translation. In ECCV, 2012. 1, 2, 3

http://ceres-solver.org


[35] Erwin Kruppa. Zur Ermittlung eines Objektes aus zwei Per-
spektiven mit innerer Orientierung. Hölder, 1913. 2
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