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ABSTRACT

Convolutional networks are successful, but they have recently been outperformed
by new neural networks that are equivariant under rotations and translations.
These new networks work better because they do not struggle with learning each
possible orientation of each image feature separately. So far, they have been pro-
posed for 2D and 3D data. Here we generalize them to 6D diffusion MRI data,
ensuring joint equivariance under 3D roto-translations in image space and the
matching 3D rotations in q-space, as dictated by the image formation. Such equiv-
ariant deep learning is appropriate for diffusion MRI, because microstructural and
macrostructural features such as neural fibers can appear at many different orienta-
tions, and because even non-rotation-equivariant deep learning has so far been the
best method for many diffusion MRI tasks. We validate our equivariant method on
multiple-sclerosis lesion segmentation. Our proposed neural networks yield better
results and require fewer scans for training compared to non-rotation-equivariant
deep learning. They also inherit all the advantages of deep learning over classical
diffusion MRI methods. Our implementation is available at https://github.
com/philip-mueller/equivariant-deep-dmri and can be used off
the shelf without understanding the mathematical background.

1 INTRODUCTION AND MOTIVATION

Diffusion MRI (dMRI) (Basser & Özarslan, 2009; Beaulieu, 2009) is an imaging technique capable
of inferring properties of biological-tissue microstructure non-invasively. Each dMRI scan consists
of multiple images taken with different diffusion gradients. It can be interpreted as 6D data where
a coordinate (i.e. voxel location) in the 3D space of physical positions (called p-space in our work;
sometimes also called x-space or (x, y, z)-space) and a coordinate in 3D diffusion-encoding space
(q-space) are mapped to a signal intensity measured for that 6D coordinate. Note that while p-space
is discretized to a finite Cartesian 3D grid described by the voxels of the scan, the q-space sampling
scheme is typically not a regular grid.

Deep learning (Georgevici & Terblanche, 2019; LeCun et al., 2015; Goodfellow et al., 2016) proved
highly beneficial for dMRI (Golkov et al., 2016a). It is a machine-learning technique to map input
features to outputs. This mapping is done in several steps called layers. Each layer can separate
or recombine low-level features to produce more abstract high-level features. Layers may contain
learnable parameters. All layers are optimized jointly using a training dataset. Thus, unlike non-
learnable processing pipelines, where useful information may be discarded partially in intermediate
steps, deep learning can be trained in an end-to-end manner such that all processing steps are opti-
mized to work well together and to serve the final goal.

Convolutional neural networks (CNNs) (LeCun et al., 2015; Goodfellow et al., 2016) restrict the
learned mappings to be translation-equivariant and respect locality, meaning that features are de-
tected equally well regardless of their translation (position) and regardless of what features are
present far away in the image. These guaranteed properties of feature extraction are appropriate
for many applications, including medical imaging, and improve the quality of results. This explains
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the success of CNNs in these applications. If rotation-equivariance (i.e. detecting features well, re-
gardless of their rotational orientation) is appropriate as well, restricting the mappings further to be
translation- and rotation-equivariant improves the quality of results even more, as was shown for
2D (Cohen & Welling, 2016; Worrall et al., 2016; Cohen & Welling, 2017; Weiler et al., 2018a)
and 3D (Winkels & Cohen, 2018; Weiler et al., 2018b; Thomas et al., 2018; Worrall & Brostow,
2018; Esteves et al., 2018; Cohen et al., 2018; Anderson et al., 2019) data. Equivariance is formally
defined in Appendix A.1.

In dMRI, rotation- and translation-equivariant deep learning is appropriate because features in the
image (for example properties of neural fibers) should be detected equally well regardless of their
position and orientation. A rotation and translation of an object or its parts/features in the scan-
ner affects the image via the corresponding joint rotation in p- and q-space and the corresponding
translation in p-space (see e.g. Definition 2 by Duits & Franken (2011)). Therefore, deep learning
for dMRI should be equivariant under joint rotations in p- and q-space, and under translations in
p-space. This guarantees that the position and orientation of the object and its parts in the scanner
accordingly affects the position and orientation of the neural network output (if it has spatial dimen-
sions), but does not affect other properties of the output, i.e. does not make the network output less
correct.

Our contributions are the following:

• proposal of a neural network layer for 6D dMRI data respecting the equivariance properties
of p- and q-space (i.e. adaptation of Thomas et al. (2018) and Weiler et al. (2018b) from
3D data to 6D dMRI data), including proofs of equivariance,

• efficient implementation of the proposed layer respecting the sampling properties of p- and
q-space,

• experiments using our equivariant neural networks on a dMRI dataset for segmentation of
multiple sclerosis lesions, demonstrating that our methods outperform existing methods
and require less training data.

2 RELATED WORK

Equivariant Deep Learning In the last few years there has been much effort on developing
neural networks that are equivariant under the group SO(3) of rotations or the group SE(3) of
roto-translations. Several approaches use so-called irreducible representations of SO(3) and spher-
ical harmonics to achieve full SO(3)- or SE(3)-equivariance for voxel data (Weiler et al., 2018b),
for point clouds (Kondor, 2018; Thomas et al., 2018; Anderson et al., 2019), or for spherical sig-
nals (Cohen et al., 2017; Esteves et al., 2018; Cohen et al., 2018; Kondor et al., 2018). While these
approaches use the same mathematical framework for achieving equivariance as used in the present
work, they all only consider a single 3D space, whereas the present work extends these approaches
to consider two linked 3D spaces at the same time, namely physical space and q-space. Methods
using so-called regular representations (Winkels & Cohen, 2018; Worrall & Brostow, 2018) instead
of irreducible representations are only suitable for discrete groups (Weiler et al., 2018b), so SO(3)-
or SE(3)-equivariance can only be achieved approximately, by using discrete subgroups of SO(3)
or SE(3).

For the 2D case, there are also prior works using irreducible representations like Worrall et al. (2016)
(the 2D-equivalent to Weiler et al. (2018b)), Cohen & Welling (2017), or Weiler et al. (2018a).

In Weiler & Cesa (2019) a comparison of methods for the Euclidean group E(2) and its subgroups
(including SE(2) and SO(2)) is presented, and Della Libera et al. (2019) provide a comprehensive
overview of approaches for SE(2), SO(2), SE(3), and SO(3).

Besides these approaches considering rotations, there are also more general methods for homoge-
neous spaces (Kondor & Trivedi, 2018; Cohen et al., 2019a), general manifolds (Cohen et al., 2019b;
Bekkers, 2019), and for discrete groups (Cohen & Welling, 2016; Ravanbakhsh et al., 2017).

Deep Learning for Diffusion MRI Deep learning is highly beneficial for dMRI. By avoiding
suboptimal processing steps, it improves the results and allows to reduce the scan time by a factor
of twelve (Ye et al., 2019). So far, it has used translation-equivariance (by using CNNs), but no
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rotation-equivariance. CNNs rely on the network learning rotation-equivariance during training,
e.g. by assuming that the training dataset already demonstrates that different orientations of features
have the same meaning or using data augmentation. However, it was shown for 2D (Cohen &
Welling, 2016; Worrall et al., 2016; Cohen & Welling, 2017) and 3D (Weiler et al., 2018b; Thomas
et al., 2018; Winkels & Cohen, 2018; Anderson et al., 2019; Worrall & Brostow, 2018; Cohen et al.,
2018) data (and here we show for 6D dMRI data) that neural networks that guarantee rotation-
equivariance yield better results than neural networks that need to go through a difficult learning
process to achieve imperfect equivariance.

Machine learning for dMRI has also been successfully used beyond the usual supervised setting,
namely for weakly-supervised localization (Golkov et al., 2018a), novelty detection (Golkov et al.,
2016b; 2018b; Vasilev et al., 2020), and similar scenarios (Swazinna et al., 2019), i.e. detecting
diseased voxels without the need for voxel-level training labels.

Apart from the named end-to-end approaches, there are also works that only replace parts of the
classical processing pipeline for dMRI by deep learning. Some methods replace the computation of
diffusion tensor images (Tian et al., 2020; Li et al., 2020) or neural fibers (Nath et al., 2019b) from
dMRI scans, while others use classically computed diffusion tensor images (Marzban et al., 2020)
or neural fibers (Prieto et al., 2018) as inputs. These methods only replace parts of the processing
pipeline for dMRI data, whereas the present work replaces the whole pipeline end-to-end, which
proves more optimal for dMRI (Golkov et al., 2016a) and is the reason for the success of deep
learning in general.

There are also methods that improve image resolution in p-space (Albay et al., 2018; Hong et al.,
2019) or q-space (Golkov et al., 2016a; Koppers et al., 2017), and methods for harmonizing scans
taken with different gradient strengths (Nath et al., 2019a).

Our proposed layers can be used with all of the aforementioned tasks, with the additional advantage
of offering rotation-equivariance.

3 METHODS: ROTO-TRANSLATIONALLY EQUIVARIANT LAYERS USING
IRREDUCIBLE REPRESENTATIONS

This section describes roto-translationally equivariant linear layers based on irreducible representa-
tions (irreps). First, in Section 3.1, an existing SE(3)-equivariant layer for 3D data is described. In
Section 3.2, we use a similar mathematical framework to propose a novel SE(3)-equivariant layer
for 6D dMRI data. Appendix B.2 provides some notes about the use of nonlinearities in combination
with the proposed layer.

3.1 ROTO-TRANSLATIONALLY EQUIVARIANT LAYER FOR 3D DATA

In Thomas et al. (2018) and Weiler et al. (2018b), an SE(3)-equivariant linear layer for 3D data,
e.g. non-diffusion-weighted MRI scans, has been proposed. While in Thomas et al. (2018) the layer
is defined for general point clouds and in Weiler et al. (2018b) it is defined for 3D images (sam-
pled on a regular grid), the layers defined in both papers follow the same principles and theoretical
derivation. In this section, we define the layer in a general way covering both variants, but follow
the notation from Thomas et al. (2018) more closely as it is more general. Appendix A provides
some mathematical background on the building blocks of the layer, namely on groups and tensors
including spherical tensors, the spherical harmonics, and the Clebsch–Gordan (CG) coefficients, and
describes their properties from which the layer derives its equivariance.

This layer can be interpreted as an SE(3)-equivariant analog of the well-known convolutional
layer: A convolutional layer performs a so-called (multi-channel) group convolution (Cohen &
Welling, 2016) for the group of translations and thus is translation-equivariant, whereas the layer
from Thomas et al. (2018) and Weiler et al. (2018b) is a group convolution for SE(3) and thus is
SE(3)-equivariant. An approach based on the spherical harmonics basis and the irreps of SO(3)
is chosen, which achieves equivariance under SE(3) (not just under a discrete subgroup, as would
be the case with regular representations, where the elements of the subgroup form a finite basis).
Thus, a feature map, i.e. the input (or output) of such a layer, is a multi-channel spherical-tensor
field (see Appendix A.2.3). The layer uses a rotation-equivariant filter, which is also a multi-channel
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spherical-tensor field, and applies it position-wise (i.e. for each position independently) to the input
feature map using the tensor product (which for spherical tensors includes the CG coefficients, see
Appendix A.2.2). It is built as a weighted sum, using learned weights, from predefined basis filters.
Each of these basis filters can be decomposed multiplicatively into an angular part and a radial part.
The angular part, which depends only on directions, is given by the spherical harmonics and thus
has spherical tensors as values. The radial part, which depends only on lengths, is some set of radial
basis functions and is scalar-valued. We will call the set of basis filters the filter basis, and the sets
of angular parts and radial parts angular (filter) basis and radial (filter) basis, respectively.

The spherical harmonics together with the CG coefficients used in the tensor product form an angular
basis of rotation-equivariant filters mapping between spherical tensors. Together with some radial
basis, they form a complete basis for the space of rotation-equivariant linear mappings, built by
multiplying each angular basis filter with each radial basis filter (Weiler et al., 2018b). Therefore, we
can use them in basis filters to build equivariant linear mappings between multi-channel spherical-
tensor fields. Note that the CG coefficients are required to decompose the outputs of the mapping
into spherical tensors. The complete filter basis is finite if the number of different orders in the input
and output fields is finite.

A mapping from an input channel of given order lin (see Appendix A.2.3) to an output channel
of given order lout contains angular basis filters of different angular filter orders lfilter (where the
orders lfilter dictate the orders of the used spherical harmonics). The orders lfilter can be freely
chosen respecting the following condition:

|lout − lin| ≤ lfilter ≤ (lout + lin), (1)

where for the angular basis to be complete, all possible orders lfilter have to be included. This condi-
tion follows from the properties of the CG coefficients as defined in Eq. (34). The filter order lfilter

can be interpreted as the frequency index, so larger lfilter relate to filters of higher spatial frequen-
cies. In addition to the filter order lfilter used for the angular part, the filter basis is indexed by the
radial basis index k, which is the enumeration from 1 to some K of arbitrary, linearly independent,
concentric radial basis functions. For each path of information flow from each input channel cin
to each output channel cout, there may exist several basis filters with all pairwise combinations of
the possible lfilter and k values. Note that in practice a truncated angular basis may also be used.
Thus, the used filter orders lfilter for the paths of information from an input channel cin to an output
channel cout are hyperparameters.

Following the described intuition and the definitions in Thomas et al. (2018), the layer, denoted
by L, can be defined as follows:

L(cout)
mout

[I](pout) :=
∑

cin,lfilter,k

W
(lfilter)
cin,cout,k

∑
mfilter∈{−lfilter,...,lfilter},

min∈{−lin,...,lin}

C
(lout,mout)
(lfilter,mfilter)(lin,min)

×
∑
pin∈R3

F (lfilter,k)
mfilter

(pout − pin)I(cin)
min

(pin),

(2)

where I denotes the input feature map, pout and pin are the positions in the output and input feature
map, respectively, cout is the index of one of the output channels, lout is shorthand for lout(cout),
i.e. the order of the output channel cout, mout is the index of the components of the output spherical
tensors (see Appendix A.2.1) for the given output channel number cout, with −lout ≤ mout ≤ lout,
the index cin goes over all input channels, lin is shorthand for l(cin), i.e. the order of the input channel
given by cin, lfilter is the filter order (frequency index) used to index the angular filter basis, mfilter

is the index of the tensor components (as the filter is a spherical-tensor field) of the filter of order
lfilter, with −lfilter ≤ mfilter ≤ lfilter, and k is the radial basis index used to index the radial basis
functions, W are learned weights, C are the CG coefficients (see Appendix A.2.2), and F (lfilter,k)

are the basis filters. The number of output channels and their orders lout(cout) are hyperparameters.
Note that using the definition of the tensor product from Eq. (33), the layer could be rewritten using
the tensor product explicitly:

L(cout)
mout

[I](pout) :=
∑

cin,lfilter,k

W
(lfilter)
cin,cout,k

∑
pin∈R3

(
F (lfilter,k)(pout − pin)⊗ I(cin)(pin)

)lout
mout

. (3)
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Following Thomas et al. (2018) and Weiler et al. (2018b), a basis filter F (lfilter,k) can be defined as
follows:

F (lfilter,k)
mfilter

(∆p) := ϕ(k) (‖∆p‖2)Y (lfilter)
mfilter

(
∆p

‖∆p‖2

)
, (4)

where ∆p = pout − pin, ϕ(k) : R≥0 → R is a radial basis function, Y (lfilter) are the spherical har-
monics of order lfilter, and ‖·‖2 denoting the Euclidean norm. Note that ϕ(k) may contain learnable
parameters, which means that the only learnable parameters of the layer are W and the parameters
in ϕ(k).

The layer derives its rotational equivariance from the equivariance of the spherical harmonics and
the tensor product (Thomas et al., 2018; Weiler et al., 2018b) and is also translationally equivariant
as it only uses differences of positions rather than absolute positions (Thomas et al., 2018).

3.2 ROTO-TRANSLATIONALLY EQUIVARIANT LAYER FOR DIFFUSION MRI DATA

We will now develop a novel linear layer with special equivariance properties for use with dMRI
data. To this end, we generalize the layer described in Section 3.1 and proposed in Thomas et al.
(2018) and Weiler et al. (2018b) from acting on some 3D space to acting on the 6D space of dMRI
scans. Therefore, the feature maps, i.e. the inputs and outputs of the layer, are generalized from
multi-channel spherical-tensor fields over a single 3D space (e.g. only p-space of MRI scans) to
fields over two coupled 3D spaces, i.e. p- and q-space of dMRI scans, which together (by taking the
direct sum of both spaces) form a 6D space. As described in Section 1, the layer should be equiv-
ariant under joint rotations in p- and q-space and under translations in p-space. This equivariance
ensures that properties of each neural fiber such as orientation, anisotropy, orientational distribution,
axon diameter, local arrangement across several centimeters, neuroplasticity, (de)myelination, or
inflammation are learned and detected equally precisely, regardless of the orientation of the fiber.

When generalizing the layer, one important aspect is how the filter can be generalized to act on two
3D spaces instead of just one. As the approach described in Section 3.1 proved quite successful for
3D data (Thomas et al., 2018; Weiler et al., 2018b), we decided to modify it as little as possible.
Therefore, as in Thomas et al. (2018); Weiler et al. (2018b), the filters in our proposed layer are built
from a radial and an angular part, where the radial part is based on some radial basis function and the
angular part is based on the spherical harmonics. In order for the radial part to depend on both p- and
q-space coordinates, the radial basis function is applied to p- and q-space coordinates independently
and the results, which do not yet depend on the image data, are combined multiplicatively. For the
angular part, we developed two approaches: i) applying the spherical harmonics to the difference
of p- and q-space coordinate offsets (where offset refers to the difference between input and output
coordinates), and ii) applying the spherical harmonics to p- and q-space coordinate offsets indepen-
dently and combining both results, which do not yet depend on the image data, using the tensor
product. In the following sections the layer and the proposed filter bases are defined mathematically.
All proofs of equivariance are postponed to Appendix D.

3.2.1 LAYER PROPERTIES AND DEFINITION

Formally, we define a feature map I over p- and q-space as a function I : R3⊕R3 → Sτ , which is an
extended variant of the multi-channel spherical-tensor field described in Appendix A.2.3, where Sτ
is the vector space of multi-channel spherical tensors of type τ . An example is a usual scalar-valued
6D dMRI image (the input to the first layer). Based on the properties of dMRI scans (Section 1),
a roto-translation (g, Tt) ∈ SE(3) with g ∈ SO(3) and t ∈ R3 acts on such a feature map I as
follows:

(g, Tt)[I](p, q) = Dτ
g I(Rg−1(p− t),Rg−1q), (5)

for p ∈ R3 and q ∈ R3. This means that the rotation is applied to p- and q-space while the translation
is only applied to the p-space, which is because only p-space is equivariant under translations while
q-space is not. In other words, a roto-translation of an object in the scanner rotates and translates the
image in p-space and rotates the image in q-space. We describe the proposed layer L as a map from
the input to the output feature map:

L : (R3 ⊕ R3 → Sτin)→ (R3 ⊕ R3 → Sτout), (6)
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cin
min min min min

lin=0 lin=1 lin=2

mout

mout

mout

mout

lout=0

lout=1

cfilter

k

cout

cfilter

cin
min min min min

lin=0 lin=1 lin=2

cin=1

min=0

cin=2

min=0

cin=3

min=-1

cin=3

min=0

cin=3

min=1

cin=4

min=0

cin=4

min=-2

cin=4

min=-1

cin=4

min=1

cin=4

min=2

Figure 1: Example structure of the elements used in Eq. (8) when using two scalar (lin = 0),
one vector (lin = 1), and one lin = 2 input channels and three scalar (lout = 0) and one vector
(lout = 1) output channels. The input features I(pin, qin) at point (pin, qin) are a multi-channel
spherical tensor consisting of multiple concatenated spherical tensors, the channels, indexed by
cin, where the components of each channel are indexed by min. A spherical tensor of order l has
2l + 1 components (see Appendix A.2.1), so I(pin, qin) in this example has

∑
cin

2l(cin) + 1 =

2 · 1 + 1 · 3 + 1 · 5 = 10 entries. The notation CF (pout − pin, qout, qin) is shorthand for the
set

{∑
mfilter∈{−lfilter,...,lfilter} C

(·,·)
(lfilter,mfilter)(·,·)F

(cfilter,k)
mfilter (pout − pin, qout, qin)

}
cfilter,k

over the

indices cfilter, k, which is the filter F at position (pout − pin, qout, qin) combined with the CG
coefficients C. Each of the elements in this set is a matrix with the same number of columns as
I(pin, qin) and the same number of rows as the resulting output spherical tensor L[I](pout, qout).
Thus, C is applied linearly to the filter F and transforms it into a set of linear mappings from the
input to the output multi-channel spherical tensors, where there is a linear mapping for each angular
filter channel cfilter and radial basis index k. The linear mapping for each pair cfilter, k contributes
to the output by filtering the input with specific angular resolutions and radii.

where τin is the type (describing how many channels of which tensor orders it contains) of the input
feature map and τout is a hyperparameter (per layer) defining the type of the output feature map.
The layer L should be equivariant under roto-translations (g, Tt) ∈ SE(3) applied using Eq. (5):

(L ◦ (g, Tt)) [I] (p, q) = ((g, Tt) ◦ L) [I] (p, q) . (7)

In other words, applying a roto-translation (g, Tt) to the input feature map should have the same
result as applying it to the output feature map.

In order to define the proposed layer, for which Eq. (7) holds, Eq. (2) is generalized by adding
dependence on q-space coordinates and replacing the angular filter order lfilter by the more general

6



= ⊕

lfilter = 0 lfilter = 1

lfilter = 2 lfilter = 3

⊕ ⊕

Figure 2: Structure of the angular filter basis combined with C. For a given radial basis index k,
the filter F at position (pout − pin, qout, qin) combined with C (see Figure 1) can be decomposed
into groups of angular filter channels cfilter of same order lfilter, where ⊕ denotes the direct sum
(concatenation). Note that the number of filter channels, i.e. possible values of cfilter, for each order
lfilter depends on the used angular basis. Thus, the shown stacked filter channels are meant to show
that there might be multiple channels and should not be interpreted as the exact number of channels.
If the angular basis filters are the spherical harmonics, then there is only one cfilter for each lfilter.
For each lfilter, only specific elements can be non-zero (highlighted in grey), which follows from
the properties of the CG coefficients. For lfilter = 0, the sections for lout = 0, lin = 0 represent
the scalar-scalar product and the section for lout = 1, lin = 1 represents the vector-scalar product
(each output component is based on the same input component) of input and filter. In lfilter = 1,
the lout = 0, lin = 1 sections represent the dot product (the output is based on all components of
the input), the lout = 1, lin = 0 sections represent the scalar-vector product (the input influences
all output components), and the lout = 1, lin = 1 section represents the cross product (each input
component influences all other output components but not the one at the same index). Figure 4
explains how the exact values in the red squares are obtained from the values (pout−pin, qout, qin)
if the used angular basis are the spherical harmonics applied to one 3D space, e.g. p-space offsets as
in Eq. (18), q-space offsets as in Eq. (19), or the space of differences between p- and q-space offsets
in Eq. (20).

angular filter channel cfilter:

L(cout)
mout

[I](pout, qout) :=
∑

cin,cfilter,k

W
(cfilter)
cin,cout,k

∑
mfilter∈{−lfilter,...,lfilter},

min∈{−lin,...,lin}

C
(lout,mout)
(lfilter,mfilter)(lin,min)

×
∑

pin∈R3,
qin∈R3

F (cfilter,k)
mfilter

(pout − pin, qout, qin)I(cin)
min

(pin, qin),
(8)

where qout and qin are q-space coordinates in the output and input feature map, respectively, cfilter is
the angular filter channel index used to index the angular filter basis, lfilter is shorthand for l(cfilter),
i.e. the filter order of the angular filter channel given by cfilter, F (cfilter,k) are the basis filters, and
the other variables and symbols are as in Eq. (2). We introduced the angular filter channel cfilter in
order to allow generalization of the basis filters. While the filter basis defined in Eq. (4) contains
only a single basis filter for given k and lfilter, we allow it to contain multiple of them so that there
may be multiple angular filter channels cfilter for a given lfilter, which is important for supporting
filters built using the tensor product as we propose it. Like in Eq. (2), the decision which lfilter

values to use for each path of information from a cin to a cout is a hyperparameter that can be freely
chosen respecting Eq. (1). The number of angular filter channels cfilter for each lfilter then depends
on the chosen angular basis and its hyperparameters. Note that following Thomas et al. (2018) the
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W= ⊙

Figure 3: Interpretation of Eq. (8). At point pout, qout and for each possible pin, qin, first
CF (pout − pin, qout, qin) is built (see Figure 1). Then it is multiplied element-wise, denoted by
�, with the trainable weights array W . The result is matrix-multiplied (for each cfilter, k indepen-
dently) with I(pin, qin). Finally, we sum over all pin, qin, cfilter, k.

basis filters only depend on position differences as this is sufficient for translational equivariance in
p-space, but we allow them to treat qout and qin independently as no translational equivariance is
required in q-space. Figure 1 shows the intuitive structure of important elements of Eq. (8) for the
example hyperparameters τin = (2, 1, 1), τout = (3, 1, 0), cfilter ∈ {1, 2, 3, 4}, k ∈ {1, 2}. Figure 2
shows some details of the angular basis combined withC. Figure 3 gives an interpretation of Eq. (8)
using the elements shown in Figure 1. Eq. (8) uses the definition of the tensor product from Eq. (33)
and, analogously to Eq. (3), the layer could instead be defined using the tensor product explicitly:

L(cout)
mout

[I](pout, qout)

:=
∑

cin,cfilter,k

W
(cfilter)
cin,cout,k

∑
pin∈R3,
qin∈R3

(
F (cfilter,k)(pout − pin, qout, qin)⊗ I(cin)(pin, qin)

)lout
mout

.

(9)

We require that all basis filters F (cfilter,k) are equivariant under joint rotations:

F (cfilter,k)(Rg∆p,Rgqout,Rgqin) = D(lfilter)
g F (cfilter,k)(∆p, qout, qin), (10)

which is an extension of the SO(3)-equivariance required for Eq. (4), and implies the required
equivariance of the layer, as proved in Appendix D.1.

3.2.2 GENERAL FILTER BASIS

Each basis filter F (cfilter,k) :
(
R3
)3 → Slfilter maps the tuple (∆p, qout, qin) ∈

(
R3
)3

(the position
difference ∆p = pout − pin and the two q-space coordinates qout and qin) to a spherical tensor of
order lfilter. This filter tensor will later be applied (using the tensor product) to the input feature map.
As in Eq. (4), the basis filter consists of a radial basis and an angular basis, which we generalize to
functions R(k) :

(
R3
)3 → R and A(cfilter) :

(
R3
)3 → Slfilter , respectively. Thus, F (cfilter,k) is

defined as

F (cfilter,k)(∆p, qout, qin) := R(k)(∆p, qout, qin)A(cfilter)(∆p, qout, qin). (11)

We require R to be invariant under rotations:

R(k)(Rg∆p,Rgqout,Rgqin) = R(k)(∆p, qout, qin) ∀g ∈ SO(3), (12)

andA to be equivariant under rotations:

A(cfilter)(Rg∆p,Rgqout,Rgqin) = D(lfilter)
g A(cfilter)(∆p, qout, qin) ∀g ∈ SO(3), (13)

as this is sufficient for F (11) to satisfy Eq. (10) as is proven in Appendix D.2. Various options
for R and A are described in Section 3.2.3 and Section 3.2.4, respectively, and in Section 3.2.5 we
propose basis filters built using these options.
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3.2.3 RADIAL FILTER BASIS

We use the following simple forms for the radial basis:

• a radial basis using only ∆p, as in Eq. (4):

R
(k)
p-diff(∆p, qout, qin) := ϕ(k) (‖∆p‖2) , (14)

• a radial basis using only q-space coordinates of the input feature map, a proposed adaption
of Eq. (14):

R
(k)
q-in(∆p, qout, qin) := ϕ(k) (‖qin‖2) , (15)

• and a radial basis using only q-space coordinates of the output feature map, a proposed
adaption of Eq. (14):

R
(k)
q-out(∆p, qout, qin) := ϕ(k) (‖qout‖2) , (16)

where ϕ(k) : R≥0 → R is a set of radial basis functions, e.g. Gaussian radial basis functions (Weiler
et al., 2018b), cosine radial basis functions (Geiger et al., 2020), or a fully connected network applied
to a set of basis functions (Thomas et al., 2018; Geiger et al., 2020). For details on the radial basis
functions, see Appendix B.1.

We propose to combine multiple radial bases multiplicatively:

R
(k)
prod(∆p, qout, qin) = R

(k1,k2)
prod (∆p, qout, qin) := R

(k1)
1 (∆p, qout, qin)R

(k2)
2 (∆p, qout, qin),

(17)

where R(k1)
1 and R

(k2)
2 are the two radial bases being combined and each value assumed by k

represents one of the possible combinations of the radial basis indices k1 and k2 of the two combined
radial bases. This means that the radial basis size K is the product of the sizes K1,K2 of the two
combined radial bases: K = K1K2.

3.2.4 ANGULAR FILTER BASIS

We use the following angular bases, all based on the (real) spherical harmonics Y (see Ap-
pendix A.2.1):

• an angular basis using only ∆p, as in Eq. (4):

A
(cfilter)
p-diff (∆p, qout, qin) := Y (lfilter)

(
∆p

‖∆p‖2

)
= Y (lfilter)

mfilter

(
pout − pin

‖pout − pin‖2

)
, (18)

• an angular basis using only the q-difference, i.e. the offset between input and output q-space
coordinates, a proposed adaption of Eq. (18):

A
(cfilter)
q-diff (∆p, qout, qin) := Y (lfilter)

(
qout − qin

‖qout − qin‖2

)
, (19)

• and an angular basis using the pq-difference, i.e. the difference between the input/output
offsets of p- and q-space coordinates, which is the same as the input/output offsets of the
differences between p- and q-space coordinates, a proposed adaption of Eq. (18):

A
(cfilter)
pq-diff (∆p, qout, qin) := Y (lfilter)

(
∆p− (qout − qin)

‖∆p− (qout − qin)‖2

)
= Y (lfilter)

(
(pout − qout)− (pin − qin)

‖(pout − qout)− (pin − qin)‖2

)
,

(20)

where lfilter is shorthand for l(cfilter), i.e. the filter order of the angular filter channel given by
cfilter. The intuition of Apq-diff is that the spherical harmonics expect a 3D unit vector as input and
we want it to depend on p- and q-space coordinates, so both coordinates need to be combined to
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Figure 4: Visualization of the spherical harmonics and their combination with the CG coefficients.
As the domain of the spherical harmonics is the sphere, they can be represented using a colored
sphere for each lfilter,mfilter, where the point on the sphere represents the direction of the vector
given to the spherical harmonic, i.e. the direction of pout − pin in Ap-diff, of qout − qin in Aq-diff,
and of (pout − qout) − (pin − qin) in Apq-diff, respectively. In the upper part of the figure, the
spherical harmonics Y lfiltermfilter

of orders lfilter = 0, 1, 2 are shown. When used as angular filters for
vector input and output (lin = lout = 1), they can be combined with the CG coefficientsC1

0,1,C1
1,1,

and C1
2,1, respectively. The results of this combination are shown in the lower part of the figure. By

applying these angular basis functions to the aforementioned direction vector, we obtain the three
3× 3 matrices in the (lin = lout = 1) section of the filter, shown as red squares in Figure 2.

another 3D unit vector in an equivariant way. We choose the difference operation as it is a very
simple linear operation. Figure 4 visualizes the spherical harmonics and their combination with the
CG coefficients. As the introduced angular bases Ap-diff, Aq-diff, and Apq-diff are all based on the
spherical harmonics, this figure also provides some intuition about these bases.

Instead of combining the p- and q-space coordinates before applying the spherical harmonics, we
also propose to combine two angular bases (A1)

(c1) and (A2)
(c2), which may depend on p- and

q-space coordinates, respectively, using the tensor product (as defined in Eq. (33)):

(ATP)
(cfilter)
mfilter

(∆p, qout, qin) = (ATP)
(lfilter,c1,c2)
mfilter

(∆p, qout, qin)

:=
∑

m1∈{−l1,...,l1},
m2∈{−l2,...,l2}

C
(lfilter,mfilter)
(l1,m1)(l2,m2)

× (A1)
(c1)
m1

(∆p, qout, qin) (A2)
(c2)
m2

(∆p, qout, qin),

(21)

where each value assumed by cfilter represents one combination of filter order lfilter and angular
basis channels c1, c2 of the angular bases A1,A2 that are being combined, l1, l2 denote the orders
these channels, and mfilter is the index of the components of the spherical tensors produced by the
filter for given cfilter, with −lfilter ≤ mfilter ≤ lfilter. When building filter channels of a given filter
order lfilter, the orders l1, l2 can be freely chosen as long as they satisfy the following constraint,
which follows from the properties of the Clebsch–Gordan coefficients as defined in Eq. (34):

|l1 − l2| ≤ lfilter ≤ (l1 + l2). (22)
Table 1 visualizes the angular basisATP and provides some intuition.

3.2.5 PROPOSED FILTER BASES

Using the angular and radial parts discussed in Section 3.2.3 and Section 3.2.4, various variants of
filter bases can be built. As proven in Appendix D.2, the equivariance of these filter bases follows
from the invariance of their radial parts, proven in Appendix D.3, and the equivariance of their
angular parts, proven in Appendix D.4. In this work, the following filter bases are proposed:
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Table 1: Visualization of the angular basis ATP, Eq. (21), for the filter order lfilter = 0, 1, and the
orders l1 = 0, 1 and l2 = 0, 1 of the angular bases A1 and A2 being combined. As the bases
A1 and A2 are not defined specifically, i.e. they may be any function with specific properties, ATP
cannot be visualized in general. Therefore, we visualize a specific variant ofATP whereA1 andA2

are the spherical harmonics applied to p- and q-space coordinate offsets, respectively, i.e. l1 = lp,

l2 = lq , (A1)
(l1)

= Y (lp)
(

∆p
‖∆p‖2

)
, (A2)

(l2)
= Y (lq)

(
qout−qin
‖qout−qin‖2

)
. With this definition, ATP

corresponds to the angular part of FTP as defined in Eq. (26). The domain of A1, A2, and ATP
consists of 6D directions, i.e. the directions of the two 3D vectors ∆p and (qout − qin). We project
it to 3D for visualization purposes by plotting the azimuthal angle from the first 3D space (∆p)
and the polar angle from the second 3D space (qout − qin) and fixing the other angles to constant
values. Thus, even if plotted spheres are equal, the non-projected values may not be. In the rows
with lfilter = 1 and l1 = 0 or l2 = 0 it can be seen that the resulting ATP only depends on A2

(i.e. the content of the blue rectangles is identical) or A1 (i.e. the content of the orange rectangles
is identical), respectively. This is because (A1)

(0) and (A2)
(0) are scalars and thus independent of

directions.

lfilter
l1 l2 (A1)

(l1)
(A2)

(l2)
(A)

(lfilter,l1,l2)
TP

lp lq Y (lp)
(

∆p
‖∆p‖2

)
Y (lq)

(
qout−qin
‖qout−qin‖2

)
F

(lfilter,lp,lq)
TP

m1 = −1 0 + 1 m2 = −1 0 + 1
mfilter =

−1 0 + 1

0 0 0

0 1 1

1 0 1

1 1 0

1 1 1

p-Space Filter The following filter basis depends only on p-space coordinates and is built using
the p-difference radial basis (14) and the p-difference angular basis (18):

F (cfilter,k)
p-space,mfilter

(∆p, qout, qin) = F (lfilter,k)
p-space,mfilter

(∆p, qout, qin)

:= ϕ(k)(‖∆p‖2)Y (lfilter)
mfilter

(
∆p

‖∆p‖2

)
.

(23)

q-Space Filter The following filter basis depends only on q-space coordinates and is built using
the multiplicative combination (17) of the q-in (15) and q-out (16) radial bases, and using the q-
difference angular basis (19):

F (cfilter,k)
q-space,mfilter

(∆p, qout, qin) = F (lfilter,k1,k2)
q-space,mfilter

(∆p, qout, qin)

:= ϕ(k1)(‖qout‖2)ϕ(k2)(‖qin‖2)Y (lfilter)
mfilter

(
qout − qin

‖qout − qin‖2

)
.

(24)

pq-difference Filter The following filter basis depends on p- and q-space coordinates and is built
using the multiplicative combination (17) of the p-difference (14), q-in (15), and q-out (16) radial
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bases, and using the pq-difference angular basis (20):

F
(cfilter,k)
pq-diff,mfilter

(∆p, qout, qin) = F
(lfilter,k1,k2,k3)
pq-diff,mfilter

(∆p, qout, qin)

:= ϕ(k1)(‖∆p‖2)ϕ(k2)(‖qout‖2)ϕ(k3)(‖qin‖2)

× Y (lfilter)
mfilter

(
∆p− (qout − qin)

‖∆p− (qout − qin)‖2

)
.

(25)

Tensor Product of p- and q-Space Filters The following filter basis depends on p- and q-space
coordinates and is built using the multiplicative combination (17) of the p-difference (14), q-in (15),
and q-out (16) radial bases, and using the tensor product combination (21) of the p-difference (18)
and q-difference (19) angular bases:

F
(cfilter,k)
TP,mfilter

(∆p, qout, qin) = F
(lfilter,lp,lq ,k1,k2,k3)
TP,mfilter

(∆p, qout, qin)

:= ϕ(k1)(‖∆p‖2)ϕ(k2)(‖qout‖2)ϕ(k3)(‖qin‖2)

×
∑

mp∈{−lp,...,lp},
mq∈{−lq ,...,lq}

C
(lfilter,mfilter)
(lp,mp)(lq ,mq)

× Y (lp)
mp

(
∆p

‖∆p‖2

)
Y (lq)
mq

(
qout − qin

‖qout − qin‖2

)
,

(26)

where lp, lq (inserted for l1, l2 in Eq. (21)) are the orders of the p- and q-space filters, i.e. the orders
of the spherical harmonics applied to p- and q-space, respectively, and given the filter order lfilter,
may be selected freely respecting Eq. (22) (with lp, lq inserted for l1, l2).

Thus, given an input of type τin (the numbers of input channels of each order lin), the hyperparameter
selection process is as follows: 1. select output type τout (the numbers of output channels of each
order lout), 2. for each pair (cin, cout), choose what lfilter values to use (respecting Eq. (1)), 3. in the
case of the TP filter, choose what (lp, lq) tuples to use for each lfilter (respecting Eq. (22) with lp, lq
inserted for l1, l2).

Each tuple (lfilter, lp, lq) represents a specific operation (as per Eq. 33) used to combine the p- and
q-space filters, e.g. the cross product in the case of (1, 1, 1) or the dot product for (0, 1, 1). As for
a given lfilter there may be multiple possible options for lp and lq , the angular basis may contain
several basis filters for each lfilter.

There may be many different strategies to choose the set of (lfilter, lp, lq). We focus on analyzing the
effect of the angular basis size and thus choose two strategies, one with a small set of (lfilter, lp, lq),
which thus has very few angular basis filters, and the other with a larger set and thus more basis
filters.

In the first strategy we focus on operations on vectors, as vectors are the lowest-order tensors that
can represent directions and as such enable us to consider directions with minimum possible effort.
Thus, we use the cross product and scalar products, represented by tuples (lfilter, lp, lq) with values
(1, 1, 1), (1, 0, 1), and (1, 1, 0). To also support basis filters of order lfilter = 0 and lfilter = 2,
respectively, which are the neighboring filter orders of lfilter = 1, the tuples (0, 0, 0) and (2, 2, 2) are
included. Note that this hyperparameter choice is free and we might have also chosen to not include
them or to use different lp, lq . The filter basis using FTP (26) with the described strategy will be
called FTP-vec.

In the other strategy used to create a larger angular basis, certain rules are defined regarding which
(lfilter, lp, lq) to select. Besides constraint (22), we choose (lfilter, lp, lq) such that lp and lq do not
deviate from the given lfilter more than by an integer hyperparameter d, meaning that |lfilter−lp| ≤ d
and |lfilter − lq| ≤ d. While this rule is arbitrary to create filter bases much larger than FTP-vec while
still restricting the number of basis filters to a finite number, which is not restricted by constraint (22),
the intuition behind this rule is to create filters from p- and q-space filters of orders lp, lq close to
the resulting filter order lfilter. We call the filter basis based on FTP (26) with this strategy applied
FTP±d, e.g. FTP±1 for d = 1.
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3.2.6 COMPARISON AND COMBINATIONS OF THE PROPOSED FILTER BASES

The filter bases Fp-space (23) and Fq-space (24) each only depend on coordinates of one space, p-
and q-space, respectively, thus they are invariant under rotations and translations in the other space.
While some invariances might be wanted for the whole network, it may lead to drawbacks if early
layers are invariant. Later layers extract higher-level features and if early layers are invariant then
some information required for the higher-level features might be lost.

The Fpq-diff basis (25) depends on coordinates from both spaces. But it discards parts of the structural
information of the input (not the image values), as its angular part only depends on the difference of
coordinate offsets of the two spaces, which means that the structural information from coordinates
in both 3D spaces is represented by only a single 3D vector.

To solve this problem, the Fpq-diff basis may be combined with the Fp-space or the Fq-space basis by
filtering the feature maps with both filters independently and then combining the results by sum-
ming. (Summing is like using more filter channels.) These filter bases will be called Fpq-diff+p and
Fpq-diff+q . As Fpq-diff and Fp-space depend on different 3D vectors which together contain all relevant
structural information, Fpq-diff+p does not discard parts of the structural information of the input.
The same is true for the combination of Fpq-diff and Fq-space to Fpq-diff+q .

The filter basis FTP (26), and its variants FTP-vec and FTP±d, use structural information from both p-
and q-space by combining angular basis filters of these two spaces using multiple operations, defined
by the tensor product, and thus may access more aspects of the structural dependencies between both
spaces than filters using Fpq-diff, which only uses as single operation, the difference. As the angular
part of FTP (26), in contrast to all other bases like Fpq-diff+p, may contain several basis filters for
each lfilter, it has the largest number of parameters (as the W is larger if the basis contains more
basis filters), most computational effort, and highest memory requirements for the same number and
orders of input and output channels.

3.2.7 IMPLEMENTATION OF THE LAYER

Details on the implementation of the layer are given in Appendix B. Our code is available at
https://github.com/philip-mueller/equivariant-deep-dmri#. In order to
use the layer with dMRI scans, i.e. with finite Cartesian p-space and finite sampling schemes in
q-space, Eq. (8) needs to be discretized as explained in Appendix B.3. We follow Weiler et al.
(2018b), where the precomputation of parts of the filter is proposed for a computationally efficient
and hardware-optimized implementation on voxel grids, and implement Eq. (8) using 3D convolu-
tional layers as explained in Appendix B.4.

4 EXPERIMENTAL SETUP

The effectivity of the proposed layer was studied by doing segmentation (i.e. voxel-wise classifica-
tion) of multiple sclerosis (MS) lesions using a dataset (Lipp et al., 2017; 2020) containing dMRI
brain scans with ground-truth annotations of MS lesions.

4.1 DATASET AND PREPROCESSING

The dMRI scans are sampled at 46 q-space points: six times at q = 0, and at 40 uniformly distributed
diffusion directions (b = 1200s/mm

2, SE-EPI, voxel size 1.8mm × 1.8mm × 2.4mm, matrix
128 × 128, 57 slices, TE=94.5ms, TR=16s, motion/distortion-corrected with elastix (Klein et al.,
2010) with upsampling to 256 × 256 × 172). For well-behaved neural network training, so-called
feature scaling was performed by dividing each channel by the corresponding channel mean taken
over all scans. To prevent overfitting on intensity values, each scan was additionally divided by its
mean intensity. The ground truth of each sample describes for each voxel whether it contains any
MS lesion or not, so it has the same resolution as the scan but does not contain different q-space
points.

Due to the long training times, no cross-validation was performed. Instead, the dataset (94 MS
patients) was split only once into training and validation set at an 80/20 ratio.
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As the directed q-vectors slightly differ between the scans (due to motion correction), the mean
of each of these q-vectors over all training samples was used as the input q-sampling scheme of
the network (exact q-vectors could be considered, but would require precomputing more filters or
recomputing larger parts of the filters in each iteration).

4.2 NETWORK ARCHITECTURE

A simple architecture is chosen that first combines all q = 0 channels by computing their mean,
then applies multiple of the proposed equivariant layers on p- and q-space (they will be referred to
as pq-layers), followed by a global reduction operation (called q-reduction) that “collapses” q-space
and only leaves p-space, and then applies multiple of the proposed equivariant layers on p-space
(called p-layers).

pq-layers In this work the following filter bases for the pq-layers are investigated (see Section 3.2.6
for details): Fpq-diff+p, Fpq-diff+q , FTP-vec, and FTP±1.

q-reduction There are several options how the q-space can be “collapsed” but in this work the
comparison is focused on the following two configurations:

• late: In all pq-layers the same q-sampling scheme as in the input data is used. The q-
space is then “collapsed” using a q-length weighted average layer, which applies
radial basis functions on the lengths of the q-vectors in the sampling scheme and weights
the results using learned weights.

• gradual: Each pq-layer uses a different output q-sampling scheme Qout that consists of
less q-vectors than in the layer before. The final q-reduction is done using the same filtering
as in the pq-layers but with Qout = {(0, 0, 0)}.

p-layers As in the p-layers no q-space is present anymore, only the Fp-space (23) filter basis is used.
Note that this is equivalent to the layer defined in Eq. (2).

Further Configuration Various channel configurations used in this work are defined in Ap-
pendix E.1. Swish (Ramachandran et al., 2017) is used as acitvation function for scalar channels
and the gated nonlinearity (Weiler et al., 2018b) is used for l > 0 channels (see Appendix B.2). In
q-space we use Gaussian radial basis functions (37) and in p-space we either use cosine radial basis
functions (38) or Gaussian radial basis functions and either apply three fully connected (FC) layers,
having 50 neurons each, to them (cosine+fc/Gaussian+fc) or use them alone (cosine/Gaussian). In
the kernels, all possible orders lfilter (see Eq. (1)) of angular basis filters are used and the kernel size
in p-space is set to 5.

4.3 TRAINING

Binary cross-entropy is used as loss and the sigmoid function is used as activation function in the
final layer. Using the brain masks of each sample, all voxels outside of the brain are ignored when
computing the loss and the quality metrics. To counteract class imbalance, positive and negative
voxels were weighted in the loss according to the ratio between positive and negative voxels in the
whole training set.

Due to the large feature maps, much GPU memory was required during training. To reduce the
required memory to a minimum, only a batch size of one was used and each sample was cropped
to the bounding box defined by its brain mask. Additionally, checkpointing was applied, where
only some feature maps at defined checkpoints are stored in each forward pass and the other ones
are recomputed during the backward pass. This further reduces the GPU memory consumption but
increases the training time.

4.4 EXPERIMENTS

The following research questions should be answered in this work: i) How do the equivariant models
perform compared to similar non-rotation-equivariant reference models? ii) How do equivariant and
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non-equivariant models behave when the training dataset is reduced? iii) What are the effects of filter
types, q-reduction, and channel setups? iv) How do the training times and memory requirements of
the equivariant models compare to the non-equivariant models?

To answer these questions, models with different q-reduction strategies (late, gradual), pq-
filter bases (pq-diff+p, pq-diff+q, TP-vec, TP±1), layer and channel confiurations, and
radial basis functions (cosine or Gaussian with or without fully connected layers) were trained.
Furthermore, various non-rotation-equivariant reference architectures with normal 3D convolutional
layers and ReLU activation functions were trained using the same training setup and kernel sizes to
be as comparable as possible. The channel settings of these architectures are shown in Appendix E.2.
We will refer to these models as the non-equivariant models.

In order to answer question ii), the best equivariant and non-equivariant models were additionally
trained on subsets of different sizes of the training set but validated against the full validation set.

5 RESULTS AND DISCUSSION

Comparison with Non-Rotation-Equivariant Reference Models Table 2 shows the results of
equivariant models with different hyperparameters and the trained non-rotation-equivariant mod-
els. It can be seen that all shown equivariant models outperform the reference models in the re-
ceiver operating characteristic (ROC), measured by the area under the curve (AUC) of the ROC,
the precision-recall curve, measured by the average precision (AvgPrec) score, and the Dice score.
Our best equivariant model outperforms the best non-rotation-equivariant model by 2.9% in AUC,
by 38.7% in AvgPrec, and by 22.1% in Dice score.

Figure 5 shows the segmentation of six validation samples by presenting one example slice per scan
with its ground truth and the predictions from two equivariant models, the best using late and the
best using gradual q-reduction, and from the best non-rotation-equivariant model. Additionally,
it shows the ROC and precision-recall curves of the models. While all models roughly predict the
ground truth, the equivariant models predict it more accurately. It can especially be seen that while
the equivariant models predict the MS lesions with high confidence and have very small values
outside the areas around the lesions, the non-rotation-equivariant model is very uncertain at many
positions. This also explains the low AvgPrec scores of the non-rotation-equivariant models.

Figure 6 compares the performance (AvgPrec) of the equivariant models and the non-rotation-
equivariant models in relation to their number of parameters. The non-rotation-equivariant models
with fewer parameters perform much better than the non-rotation-equivariant models with more pa-
rameters but similar feature map sizes as the equivariant models. But as many equivariant models,
including the best ones, have more parameters than the best non-rotation-equivariant models, the
superiority of the equivariant models cannot (only) be explained by a reduction of the number of pa-
rameters. The absolute and relative differences between the training and validation results of most
equivariant models are much larger than for the non-rotation-equivariant models, indicating that the
proposed equivariant layer introduces some regularization. But there are also effects beside regu-
larization that enable the equivariant models to achieve better results, as most equivariant models,
including the best ones, outperform the non-rotation-equivariant models in the training metrics as
well.

Behaviour on Reduced Training Dataset In order to analyze their generalization capabilities,
we trained our best (measured in AvgPrec and Dice score) equivariant model and the best non-
rotation-equivariant model on reduced subsets of the training set and found that the equivariant
model outperforms the non-rotation-equivariant model in almost all subset sizes. Figure 7 shows
the AUC, AvgPrec, and Dice scores of both models on different subset sizes. Our model trained on
only 26% of the training scans achieves 100.1% of the AUC score, 97.6% of the AvgPrec score, and
97.0% of the Dice score of the non-rotation-equivariant model trained on the full training dataset.
When trained on 66% of the training scans, our equivariant model outperforms the non-rotation-
equivariant model trained on the full training set by 1.9% in AUC score, by 24.7% in AvgPrec
score, and by 15.0% in Dice score. This enables to use smaller datasets while achieving the same or
better performance. Moreover, when matching the training set size for both methods, the equivariant
method performs better in almost all cases, and never considerably worse. Figure 8 confirms these
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Table 2: Comparison of network architectures. Numbers of layers of equivariant networks are
a sum of pq-layers, q-reduction layer (always one), and p-layers. Abbreviations are explained in
Section 4.2 and exact hyperparameter values for channels and layers are given in Appendix E. All
equivariant models outperform all non-rotation-equivariant models (non-eq). We experimented
with different numbers of channels but found that often small changes in the number of channels
did not affect the quality much. For each layer configuration we only show the best models we
found by hyperparameter tuning of channels and learning rates. We thus assume that they are very
near the optimum for the given training setup. This is also true for the non-eq models (where we
additionally show multiple of the best channels configurations for each number of layers).

ID q- Filter Layers p Radial #params AUC Avg- Dice
Reduction basis basis Prec score

l TP1 1+2 late TP±1 1+1+2 cosine+fc 461344 0.9787 0.6088 0.5783
l TP1 1+3 late TP±1 1+1+3 cosine+fc 585114 0.9820 0.6198 0.5889
l TP1 1+4 late TP±1 1+1+4 cosine+fc 662398 0.9817 0.6299 0.5918
l TP1 1+4(l2) late TP±1 1+1+4(l2) cosine+fc 671887 0.9794 0.6033 0.5840
l TP1 1+4(l3) late TP±1 1+1+4(l2/l3) cosine+fc 674795 0.9757 0.6171 0.5890
l TP1 1(l2)+4(l2) late TP±1 1(l2)+1+4(l2) cosine+fc 655748 0.9792 0.6044 0.5781
l TP1 1(l3)+4(l3) late TP±1 1(l2/l3)+1+4(l2/l3) cosine+fc 802396 0.9753 0.5898 0.5666
l TPvec 1+4 late TP-vec 1+1+4 cosine+fc 367998 0.9775 0.6072 0.5777
l pq-diff-p 1+4 late pq-diff+p 1+1+4 cosine+fc 271509 0.9781 0.5980 0.5722
l pq-diff-q 1+4 late pq-diff+q 1+1+4 cosine+fc 269449 0.9798 0.6150 0.5832
l TP1 1+4 Gfc late TP±1 1+1+4 Gaussian+fc 662398 0.9794 0.5949 0.5657
l TP1 1+4 c late TP±1 1+1+4 cosine 39184 0.9739 0.5816 0.5656
l TP1 1+4 G late TP±1 1+1+4 Gaussian 39184 0.9702 0.5369 0.5327
l TP1 1+5 late TP±1 1+1+5 cosine+fc 510594 0.9807 0.6184 0.5882
g TP1 0+3 gradual TP±1 0+1+3 Gaussian 54951 0.9637 0.4661 0.4794
g TP1 1+2 gradual TP±1 1+1+2 cosine+fc 329640 0.9761 0.5701 0.5552
g TP1 1+3 gradual TP±1 1+1+3 cosine+fc 355968 0.9666 0.5301 0.5203
g TP1 2+1 gradual TP±1 2+1+1 cosine+fc 133579 0.9742 0.5933 0.5713

n 3 few - non-eq 3 (few channels) - 31009 0.9094 0.1433 0.2310
n 3 many - non-eq 3 (many channels) - 64391 0.9556 0.4429 0.4745
n 4 few - non-eq 4 (few channels) - 97899 0.9536 0.4540 0.4846
n 4 many - non-eq 4 (many channels) - 216921 0.9532 0.4532 0.4765
n 5 few - non-eq 5 (few channels) - 49779 0.9442 0.3964 0.4409
n 5 many - non-eq 5 (many channels) - 622820 0.9371 0.3319 0.3907
n 6 few - non-eq 6 (few channels) - 52909 0.9470 0.3699 0.4159
n 6 many - non-eq 6 (many channels) - 116936 0.9238 0.2691 0.3265
n 6 fm small - non-eq 6 (matched fm small) - 12720208 0.8554 0.0554 0.0517
n 6 fm large - non-eq 6 (matched fm large) - 19590724 0.8671 0.0709 0.0837

results by comparing the segmentation of one example slice using the equivariant and the non-
rotation-equivariant models trained on different subset sizes.

Comparison of q-Reduction Strategies, Basis Filters, Layers, Channel Setups, and Radial Basis
Functions Models using late q-reduction perform much better than models using gradual q-
reduction. The TP±1 basis outperforms all other proposed filter bases. For late q-reduction
models, the best results are achieved using one pq-layer and three or four p-layers. For gradual
q-reduction models, one pq-layer with either one or two p-layers works best. Small changes to the
number of channels do not influence the results much. Also using order l = 2 and l = 3 channels
neither leads to much better nor much worse performance. The best results could be achieved with a
radial basis that consists of a FC network applied to cosine radial basis functions (cosine+fc). While
using Gaussian+fc also works quite well, models using no FC network in the radial basis (cosine,
Gaussian) perform much worse.

Training Times and Memory Consumption The equivariant models trained about 0.5−2.5 days
until convergence and required about 12−24 GB of GPU RAM while most non-rotation-equivariant
models trained only a few hours until convergence and only required < 2 GB of GPU memory.

The long training times of the equivariant models are caused by i) more epochs until convergence,
ii) computation of the kernel after each weight update, and iii) longer backpropagation chains to the
kernel parameters (because the kernel does not consist of the parameters but is computed based on
functions of the parameters). The first reason seems to have less relevance, as models with smaller
feature maps but more epochs until convergence were faster than models with larger feature maps
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Figure 5: Segmentation of multiple-sclerosis lesions in five scans from the validation set. (a) Ground
truth of one example slice per scan, (b) predictions for that slice using l TP1 1+4 (the best equiv-
ariant model in terms of Avg-Prec and Dice score on the entire validation set), (c) predictions for
that slice using l TP1 1+3 (the best equivariant model in terms of AUC on the entire validation set),
(d) predictions for that slice using the best non-rotation-equivariant model (n 4), (e) ROC curves of
all models on the full scans, (f) precision-recall curves of all models on the full scans. While the
equivariant models are very certain (yellow areas) at most positions, the non-rotation-equivariant
model has large areas of high uncertainty (purple areas).

but fewer epochs. As the kernels in the pq-layers are much larger than in the p-layers, the training
times mostly depend on the number of pq-layers and their number of channels.

The GPU RAM consumption was mainly caused by the feature maps stored during the forward pass
and their gradients computed during the backward pass, which is why the models with late q-
reduction required much more memory (up to 24 GB) than the models with gradual q-reduction
(up to 16 GB). The difference in memory consumption between the equivariant and the reference
models is caused by i) the precomputed parts of the kernels, ii) the intermediate values stored during
kernel computation to be used in the backward pass, and iii) the gated nonlinearities requiring to
store more intermediate feature maps.
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Figure 6: Comparison of average precision (AvgPrec) scores of equivariant models (blue) and
non-rotation-equivariant models (red) in relation to their number of parameters. The two non-
rotation-equivariant models with more parameters (but similar feature map sizes) as the equivariant
models perform much worse than the non-rotation-equivariant models with much fewer parame-
ters. All shown equivariant models generalize better than the non-rotation-equivariant models. As
many equivariant models, including the best ones, have more parameters than the best non-rotation-
equivariant models, the equivariance introduces a quality improvement that cannot only be explained
by a reduction of the number of parameters. Instead, the equivariance allows the use of many param-
eters that can effectively capture the essence of the dataset so that the model does not underfit while
still restricting it so that overfitting is effectively reduced without using additional regularization.

0% 20% 40% 60% 80% 100%
0.7

0.8

0.9

1

Relative training set size

R
O

C
AU

C

Equivariant
Non-equivariant

0% 20% 40% 60% 80% 100%
0

0.2

0.4

0.6

Relative training set size

A
vg

P
re

c

Equivariant
Non-equivariant

0% 20% 40% 60% 80% 100%
0

0.2

0.4

0.6

Relative training set size

D
ic

e

Equivariant
Non-equivariant

Figure 7: Comparison of the best equivariant model with the best non-rotation-equivariant model
both trained on reduced subsets of the training set. The plots show the AUC scores (left), AvgPrec
scores (middle), and Dice scores (right) of our best equivariant model, l TP1 1+4,, (blue) and the
best non-rotation-equivariant model, n 4, (red) trained on reduced subsets where the subset size (x-
axis) is described relative to the full training set size. The scores are measured on the full validation
set. Our equivariant model trained on only 26% of the training scans achieves more than 100% of the
AUC score, 97.6% of the AvgPrec score, and 97.0% of the Dice score of the non-rotation-equivariant
model trained on the full dataset. When trained on 66% of the training scans, our equivariant model
outperforms the non-rotation-equivariant model trained on the full training set by 1.9% in AUC
score, by 24.7% in AvgPrec score, and by 15.0% in Dice score. Therefore, equivariant methods
generalize better and thus require smaller training sets, as expected. Moreover, when matching the
training set size for both methods, the equivariant method performs better in almost all cases, and
never considerably worse.
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Figure 8: Segmentation of multiple-sclerosis lesions in one scan from the validation set using an
equivariant and a non-rotation-equivariant model both trained on reduced subsets of the training set.
From left to right, we show the ground truth segmentation and predictions using our best equivariant
model, l TP1 1+4, (top) and the best non-rotation-equivariant model, n 4, (bottom) trained on 6.6%,
13.2%, 26.3%, 65.8%, and 100% of the training scans. While the equivariant model already achieves
quite accurate segmentations with 26.3% of the training samples, the segmentations of the non-
rotation-equivariant model only start getting accurate with 65.8% of the training samples, which
also indicates that our equivariant model generalizes faster.
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6 CONCLUSIONS

In this work, we proposed SE(3)-equivariant deep learning for diffusion MRI data and showed that
it yields better results and decreases the required number of training samples.

The superiority of the equivariant approach over non-rotation-equivariant models may be explained
by the restrictions it imposes on the filters. As the non-rotation-equivariant models use unrestricted
convolutional kernels, they need to learn the rotational equivariance from data. This means that
their parameters need to capture the equivariance and all other information contained in the dataset,
whereas the parameters of the equivariant models do not need to capture the equivariance as it is
already imposed by the model itself. Thus the parameters of equivariant models can be used more
effectively for capturing all other aspects of the data. This prevents underfitting and simplifies train-
ing. Another drawback of the non-rotation-equivariant models is that they may overfit on specific
orientations in the training set, while the rotational equivariance of the proposed models prevents
this. In the validation set, the non-rotation-equivariant models cannot recognize orientations of pat-
terns not seen during training, while the equivariant models recognize these patterns and thus achieve
better results.

This can also explain why the equivariant models require a smaller number of training samples.
When trained on only very few samples, this benefit might become less relevant compared to over-
fitting on other properties of the patterns not related to rotational equivariance, explaining why then
the equivaviant and non-rotation-equivariant models perform similarly on tiny training sets, e.g. the
patterns in different scans may also differ in scale or brightness, they may be deformed or some
types of patterns may only be present in some samples.

There may be several reasons why the late q-reduction strategy outperforms the gradual one:
Using a different q-sampling scheme in the output of a layer than in the input may require interpola-
tions that may be hard to learn for the layer. Additionally, the late q-reduction layer, q-length
weighted average, operates point-wise in p-space, whereas in gradual q-reduction, a filter-
ing layer with a p-space kernel size greater than one is used, which may be harder to train. In order
to achieve the same total receptive field, gradual q-reduction requires less layers than late q-
reduction, because of the larger kernel size of its q-reduction layer compared to the point-wise late
q-reduction layer. This can explain why the best late q-reduction models have more p-layers than
the best gradual models.

The reason for the TP±1 filter basis performing best may be that it can access more aspects of
the structural dependencies between p- and q-space than the other proposed bases, as explained in
Section 3.2.6. Another reason of its success may be that it has more capacity, noticeable by the
larger number of parameters. From the results it may also be concluded that fine angular details
detected by higher-order filters do not seem to have much relevance, as using higher-order filters
does not lead to better performance. The benefit of using fully connected (FC) networks with the
radial basis functions may be explained by their larger capacity, which allows them to better detect
radial patterns.

In general, the equivariance of the proposed layer allows the use of many parameters that can effec-
tively capture the essence of the dataset, so that the model does not underfit while still restricting it so
that overfitting is effectively reduced without using additional regularization like data augmentation.
Our results show that using the proposed equivariant layer can help increasing the performance of
predictions on dMRI scans, thus future research in this direction seems promising. Besides applying
the proposed equivariant network architecture to different datasets and tasks, also different archi-
tectures including the proposed layer may be developed, e.g. architectures with equivariant p-space
pooling. As the proposed layer supports vector and tensor inputs and outputs, also architectures
predicting vectors, e.g. for fiber detection, or with diffusion tensors as input or outputs may be built
(see Appendix C).

While the derivation of the layers is mathematically involved, our public implementation can be
easily used out of the box without understanding the mathematical background, and gives immediate
access to the benefits of equivariant deep learning for diffusion MRI. Merely general practices are
advisable such as tuning the learning rate.
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(eds.), Advances in Neural Information Processing Systems 32 (NIPS 2019), pp. 9145–9156, Red
Hook, 2019a. Curran Associates, Inc.

T. S. Cohen and M. Welling. Group equivariant convolutional networks. In Proceedings of the
33rd International Conference on Machine Learning (ICML 2016), pp. 2990—-2999. JMLR.org,
2016.

T. S. Cohen and M. Welling. Steerable CNNs. In 5th International Conference on Learning Repre-
sentations (ICLR 2017). OpenReview.net, 2017.
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A THEORETICAL BACKGROUND

A.1 GROUPS, GROUP REPRESENTATIONS, AND EQUIVARIANCE

Intuitively, a group G may be seen as a finite or infinite set of invertible and composable operations
acting on some set X . Examples of groups are the translations in 3D, the rotations in 3D, denoted
by SO(3), and the roto-translations in 3D, denoted by SE(3). For a detailed formal introduction to
groups, see for example Shapira (2019); Löh (2017); Rotman (1995).

If X is a vector space, then a group G can act on X through a (group) representation DX , which
is defined as a function from G to the set of invertible linear transformations (or invertible square
matrices) on X with the following property (Hall, 2015; Procesi, 2007; Thomas et al., 2018):

DXg ◦DXh = DXg·h ∀g,h ∈ G, (27)

where DXg denotes the representation DX applied to g ∈ G and is called a representation of the
group element g on X , the operator “◦” denotes function composition, and “·” denotes composition
of group elements (group multiplication).

Now consider a function f : X → Y mapping between the vector spaces X and Y . Given a group
G and two representations DX , DY of G acting on X and Y , respectively, the function f is called
equivariant under G if the following holds (Hall, 2015; Procesi, 2007; Thomas et al., 2018):

f
(
DXg [x]

)
= DYg [f(x)] ∀g ∈ G ∀x ∈ X . (28)

Intuitively, equivariance means that if the input of f is transformed by some group element g then
this leads to the same results as applying f to the non-transformed input and transforming the output
of f by g. Thus, rotation-equivariant neural networks produce the same segmentation results (up to
rotation) regardless of how the input image is rotated.

If f is equivariant and DYg is the identity for all g ∈ G, then f is said to be invariant under
G (Procesi, 2007; Thomas et al., 2018). Invariance means that the output of f does not change if its
input is transformed by some g ∈ G. Thus, rotation-equivariant neural networks produce the same
image-classification results (not rotatable) regardless of how the input image is rotated.

For a group G there may be multiple different representations on the same vector space X (Procesi,
2007; Beveren, 2012). A representation DX of G on X is called reducible if there exists a basis
transformation in X , described by the invertible square-matrixQ, such that the representation in the
new basis,Q−1DXg Q, is a block-diagonal matrix, i.e. whose blocksDXi

g act on subspaces Xi, with
the conditions that X is the direct sum of all Xi and that each Xi is closed under the corresponding
representation DXi

g , i.e. DXi
g xi ∈ Xi ∀g ∈ G ∀xi ∈ Xi. The intuition behind Q−1DXg Q is that

the linear operator DXg is applied in a different basis, i.e. Q−1DXg Qy means: map y to basis of
DXg using Q, apply DXg , map it back to basis of y using Q−1. A representation that cannot be
decomposed in such a way is called an irreducible representation or irrep.

A.2 SPHERICAL TENSORS AND RELATED CONCEPTS

Tensors are quantities transforming under rotations in a very specific way depending on their order
l ∈ N0, and which in 3D can be described using 3l components, which in the case of real tensors are
real numbers. For the purposes of this work (i.e. considering only contravariant, real 3D tensors), a
tensor T of order l transforms under the rotation g ∈ SO(3) into the tensor T ′ (of same order l) as
follows (Hess, 2015; Dubbers & Stöckmann, 2013):

T ′µ1,µ2...µl
=

∑
ν1,ν2...νl

(Rg)µ1,ν1(Rg)µ2,ν2 . . . (Rg)µl,νlTν1,ν2...νl , (29)

where µ1,µ2 . . . µl, ν1, ν2 . . . νl are indices with values 1, 2, 3 used to access the components of the
tensors and Rg is the rotation matrix of g. Scalars are tensors of order l = 0 and do not transform
under rotations, whereas vectors are tensors of order l = 1.
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A.2.1 SPHERICAL TENSORS, SPHERICAL HARMONICS, AND WIGNER D-MATRICES

The tensors described so far are called Cartesian tensors. Although these tensors obey the simple
transformation rule of Eq. (29), they may be reducible w.r.t. rotations, meaning that they can be
decomposed into other possibly lower-order tensors, whose components can be computed as linear
combinations of the original tensor components, and the resulting tensors can be rotated indepen-
dently (Brouder et al., 2008; Man, 2013). Tensors can instead be represented in a different basis, the
spherical basis, in which they are always irreducible. Such tensors are called spherical tensors and
their components are called spherical components (Hess, 2015; Brouder et al., 2008; Man, 2013;
Reisert & Burkhardt, 2009; Biedenharn & Louck, 1984). Under the rotation g ∈ SO(3), a spher-
ical tensor T (l) of order l transforms into T ′(l) using the irreducible representations of SO(3) as
follows (Blanco et al., 1997):

T ′(l) = D
(l)
g−1T (l), (30)

whereD(l)
g−1, called (real) Wigner D-matrix of order l, is an irreducible representation of g−1 and is

orthogonal.

Spherical tensors of order l can be described using 2l + 1 either complex or real components.
Describing them using the same number of either complex or real components is possible due to
symmetries of spherical tensors (Man, 2013; Reisert & Burkhardt, 2009; Blanco et al., 1997). As
real numbers require less memory for storage and are more efficient from a computational point of
view (Reisert & Burkhardt, 2009), we prefer to use real components and denote the vector space of
(the real-valued description of) order l spherical tensors by S(l).

For the cases of l = 0 (scalars) and l = 1 (vectors), the (real) Wigner D-matrices are (up to a
reordering of its components in the case of l = 1) given byD(0)

g = 1 andD(1)
g = Rg (Blanco et al.,

1997; Reisert & Burkhardt, 2009; Biedenharn & Louck, 1984; Thomas et al., 2018).

There is a special set of functions mapping points on the sphere S2 to spherical tensors, the (real)
spherical harmonics Y (l), where l denotes the order of the spherical harmonics and is equal to the
order of its outputs.

Under a rotation g ∈ SO(3), the (real) spherical harmonics transform like spherical tensors using
the (real) Wigner D-matrices (Blanco et al., 1997; Biedenharn & Louck, 1984; Thomas et al., 2018):

(
gY (l)

)
(n) = Y (l)

(
Rg−1n

)
= D

(l)
g−1

[
Y (l)(n)

]
, (31)

where n is a unit vector in R3 representing a point on the sphere, meaning n ∈ S2.

For the case l = 0 it holds that Y (0)(n) = const., while for l = 1 it holds (up to a reordering of
the components of n) that Y (1)(n) = cn with some constant factor c ∈ R (Blanco et al., 1997;
Thomas et al., 2018).

A.2.2 TENSOR PRODUCT AND CLEBSCH–GORDAN COEFFICIENTS

Two spherical tensors T (l1), U (l2) of orders l1, l2 can be coupled using the tensor product, denoted
by⊗, which for spherical tensors results in the following direct sum (concatenation) of spherical ten-
sors (Dubbers & Stöckmann, 2013; Brouder et al., 2008; Man, 2013; Devanathan, 2002; Biedenharn
& Louck, 1984; Thomas et al., 2018; Kondor, 2018):

T (l1) ⊗ U (l2) :=

l1+l2⊕
l=|l1−l2|

(
T (l1) ⊗ U (l2)

)(l)

, (32)

where
⊕

denotes the direct sum, and with(
T (l1) ⊗ U (l2)

)(l)

m
=

l1∑
m1=−l1

l2∑
m2=−l2

C
(l,m)
(l1,m1)(l2,m2)T

(l1)
m1
U (l2)
m2

, (33)
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where C(l,m)
(l1,m1)(l2,m2) are predefined scalars, the so-called (real) Clebsch–Gordan coefficients, l is

the order of the resulting tensor, andmwith−l ≤ m ≤ l is used to index its components. The mean-
ingful orders l of tensors resulting from the tensor product follow from the fact that the Clebsch–
Gordan coefficients are only non-zero if the following holds:

|l1 − l2| ≤ l ≤ l1 + l2, (34)

and as such the tensors of other orders are zero. Additionally, it needs to hold that m = m1 + m2

for the Clebsch–Gordan coefficients to be non-zero. As the values of the spherical harmonics are
spherical tensors, spherical harmonics can be coupled with spherical tensors via a tensor product in
the same way.

An important property of the tensor product between two spherical tensors is that it is equivariant
under rotations, meaning that the resulting spherical tensors, as defined in Eq. (33), transform as
follows (Reisert & Burkhardt, 2009; Thomas et al., 2018):(

D(l1)
g P(l1) ⊗D(l2)

g Q(l2)
)(l)

= D(l)
g

(
P(l1) ⊗Q(l2)

)(l)

∀g ∈ SO(3), (35)

where D are the Wigner D-matrices. For some special values of (l1, l2, l), the tensor product of
spherical tensors is related to some well-known operations: The case of (0, 0, 0) is equal to normal
multiplication of two scalars, (0, 1, 1) and (1, 0, 1) are equal to scalar multiplication of a vector,
while the cases (1, 1, 0) and (1, 1, 1) are proportional to the dot product and the cross product of
two vectors, respectively (Dubbers & Stöckmann, 2013; Devanathan, 2002; Abramowitz & Stegun,
1972; Thomas et al., 2018).

A.2.3 MULTI-CHANNEL SPHERICAL TENSORS AND SPHERICAL-TENSOR FIELDS

So far spherical tensors have been defined with a single order l. Following Kondor (2018), multiple
such spherical tensors can be combined using the direct sum (concatenation), denoted by

⊕
. We

will call such objects multi-channel spherical tensors and call the spherical tensors comprising it
channels. This is related to the channels in convolutional neural networks, where every pixel/voxel
has scalar channels, but the concept of channels is generalized from scalars to other tensors as e.g.
done in Thomas et al. (2018); Kondor (2018). The type of the multi-channel spherical tensor is
defined by the tuple τ = (τ0, τ1, . . . ) where each τl ∈ N0 defines the number of channels of order l.
The space of multi-channel spherical tensors of type τ thus is defined as Sτ :=

⊕∞
l=0

⊕τl
c(l)=1 S

(l),
where c(l) is used to index the channels of order l, and S(l) is the vector space of spherical tensors of
order l. The total number C of channels is C =

∑∞
l=0 τl. In this work, the channel is often directly

indexed using c ∈ {1, . . . ,C} and the order of this channel may be denoted by l(c).

A 3D (multi-channel) spherical-tensor field I of type τ assigns a type-τ spherical tensor to every
position in space, i.e. I : R3 → Sτ . Such a tensor field has special transformation properties under
rotations and translations (Hess, 2015; Reisert & Burkhardt, 2009; Weiler et al., 2018b):

(g, Tt)[I](x) = Dτ
g I
(
Rg−1(x− t)

)
∀x ∈ R3, (36)

where (g, Tt) ∈ SE(3) is a roto-translation with rotation g ∈ SO(3) followed by translation t ∈ R3,
with the multi-channel Wigner D-matrix Dτ

g of type τ , and with the rotation matrix Rg−1 of the
inverse rotation g−1. This means that the value for position x of the transformed tensor field is
read from the original position (before the transformation) given by Rg−1(x − t). Additionally,
the resulting spherical tensor is transformed according to the rotation g using Dτ

g . Note that the
latter transformation does not depend on the translation. The matrix Dτ

g can be built as direct

sum of Wigner D-matrices D(l)
g , i.e. Dτ

g :=
⊕∞

l=0

⊕τl
c(l)=1D

(l)
g . This means that each channel

transforms independently but the tensor components within each channel influence each other during
transformation. If for example the tensor field represents a 3D MR image with three contrasts (T1,
T2, proton density), then it would contain three scalar channels (the contrasts) but no vector channels,
as each of the channels transforms independently whereas the three parts of a vector channel would
influence each other during transformation because they jointly express directions in the 3D image
space (Weiler et al., 2018b; Kondor, 2018).
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B IMPLEMENTATION DETAILS

B.1 RADIAL BASIS FUNCTIONS

B.1.1 GAUSSIAN RADIAL BASIS FUNCTIONS AS USED IN WEILER ET AL. (2018B)

A set of Gaussian radial basis functions can be defined as

ϕ
(k)
Gaussian(x) := exp

(
− (x− µk)2

2σ2

)
(37)

with (predefined or learned) means µk and (predefined or learned) variance σ2, where k identifies
each function in the set and has values from 1 to the radial basis size K.

B.1.2 COSINE RADIAL BASIS FUNCTIONS AS USED IN GEIGER ET AL. (2020)

A set of cosine radial basis functions can be defined as

ϕ(k)
cos (x) :=

{
cos2(γ(x− µk)π2 ) 1 ≥ γ(x− µk) ≥ −1

0 otherwise
(38)

with (predefined or learned) reference points µk and (predefined) normalization factor γ, where k
identifies each function in the set and has values from 1 to the radial basis size K.

B.1.3 FULLY CONNECTED NEURAL NETWORK APPLIED TO RADIAL BASIS FUNCTIONS AS
USED IN THOMAS ET AL. (2018); GEIGER ET AL. (2020)

First some set of radial basis functions ϕ′(i) is applied to the input x. The the output of each radial
basis function in this set is then treated as input neuron to a fully connected neural network. The
radial basis size K defines the number of neurons of the output layer of that network, while the
number of hidden layers and neurons in these layers are hyperparameters. In the case of a two-layer
network, the radial basis function is defined as:

ϕ
(k)
NN(x) := b

(2)
k +

∑
j

W
(2)
k,j ReLU

(
b
(1)
j +

∑
i

W
(1)
j,i ϕ

′(i)(x)

)
, (39)

where W (2), W (1), b(2), and b(1) are learned parameters, j and i are indices of the hidden respec-
tively input layer, and ϕ′(i) is some set of radial basis functions.

B.2 EQUIVARIANT NONLINEARITIES

When using spherical-tensor fields (see Appendix A.2.3) as feature maps like used in the layer
proposed in Eq. (8), elementwise nonlinearities like ReLU are in general not equivariant under rota-
tions (Weiler et al., 2018b). Instead special nonlinearities like tensor product nonlinearities (Kondor,
2018), norm-nonlinearities (Worrall et al., 2016), squashing nonlinearities (Sabour et al., 2017), or
gated nonlinearities (Weiler et al., 2018b) are required.

Note that as scalars are invariant under rotations, elementwise nonlinearities (like ReLU) can be
used for l = 0 channels (Weiler et al., 2018b).

B.3 DISCRETIZATION

Discretized Feature Maps The layer definition (8) assumes feature maps over the space R3⊕R3

and these feature maps would require infinite memory. Thus, in practice, feature maps are discretized
using sampling schemes. In this work, the sampling schemes used in dMRI scans are also used for
the feature maps, so the p-space is sampled on a finite Cartesian 3D grid, while the q-space uses a
predefined, not necessarrily regular, finite sampling scheme.

This means that the discretized p-space has the form:

P := Px × Py × Pz ⊂ Z3 ⊂ R3, (40)
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with Px = {1, . . . ,Px}, Py = {1, . . . ,Py}, and Pz = {1, . . . ,Pz}, where Px,Py,Pz are the sizes
of the p-space voxel grid of the feature map.

The discretized q-space is the finite set

Q := {qn}Qn=1 ⊂ R3, (41)

consisting of the Q predefined q-vectors qn ∈ R3 where Q and the qn may be different for feature
maps of different layers. While Q for the input, denoted by Qin, is dictated by the input data struc-
ture, e.g. the output of the previous layer or the input to the network, Q for the output, denoted by
Qout, is a freely choosable hyperparameter. This means that we can choose Qout = 1 to “collapse”
q-space in some layer. This may for example be used for image segmentation (one prediction for
each p-space coordinate) or image classification (where p-space gets “collapsed” as well, namely
through pooling). Note that Qout = (0, 0, 0) is required to achieve equivariance under rotations
in q-space, as the q-space coordinate offsets used in the angular and radial basis are not rotation
equviariant for other Qout. For invariance under rotations in q-space, only scalar (lout = 0) output
channels must be used, at least in the final layer.

Using these definitions, a discretized feature map Î of type τ can be defined as

Î : P ⊕Q → Sτ , (42)

which can be represented using an array of size

dim (Sτ )× Pz × Py × Px ×Q. (43)

Discretized Convolutional Layer A layer L̂ working on these discretized feature maps is a func-
tion of the form

L̂ : (Pin ⊕Qin → Sτin)→ (Pout ⊕Qout → Sτout), (44)

where Pin, Qin, and Sτin are the p-space, q-space, and spherical tensor space of the input feature
map, respectively, and Pout, Qout, and Sτout those of the output feature map.

This layer L̂ can be defined analogously to L (8) by replacing the sum of pin and qin over R3 by
sums over Pin, the discretized input p-space, and Qin, the discretized input q-space:

L̂(cout)
mout

[Î](pout, qnout) :=
∑

cin,cfilter,k

Wcin,cfilter,cout,k

∑
mfilter∈{−lfilter,...,lfilter},

min∈{−lin,...,lin}

C
(lout,mout)
(lfilter,mfilter)(lin,min)

×
∑

pin∈Pin,
qnin
∈Qin

F (cfilter,k)
mfilter

(pout − pin, qnout , qnin)Î(cin)
min

(pin, qnin).

(45)

Eq. (45) can be rewritten as follows:

L̂(cout)
mout

[Î](pout, qnout
) =

∑
cin,cfilter,k

Wcin,cfilter,cout,k

∑
mfilter∈{−lfilter,...,lfilter},

min∈{−lin,...,lin}

C
(lout,mout)
(lfilter,mfilter)(lin,min)

×
∑

pfilter∈Pfilter,
qnin
∈Qin

F (cfilter,k)
mfilter

(−pfilter, qnout
, qnin

)

× Î(cin)
min

(pfilter + pout, qnb
),

(46)

where the p-space filter coordinate pfilter = −∆p = pin − pout is introduced, with values in the
filter space Pfilter = {−Pfilter, . . . , 0, . . . ,Pfilter}3 ⊂ Z3, and the p-space filter radius Pfilter ∈ N0

leading to a p-space filter size of 2Pfilter +1. The feature map Î is assumed to be zero for arguments
outside its domain. This corresponds to defining an appropriate zero padding in a convolutional
layer. Note that for Eq. (46) to hold, the radial basis filters need to be defined to be zero for (pin −
pout) /∈ Pfilter.
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By rearranging the sums and introducing the kernel K, containing all parameters and basis filters,
which we propose to define as

K(cout,cin)
mout,min

(pfilter, qnout
, qnin

) :=
∑

cfilter,k

Wcin,cfilter,cout,k

×
∑

mfilter∈{−lfilter,...,lfilter}

C
(lout,mout)
(lfilter,mfilter)(lin,min)

× F (cfilter,k)
mfilter

(−pfilter, qnout
, qnin

),

(47)

Eq. (46) can be further rewritten:

L̂(cout)
mout

[Î](pout, qnout
) =

∑
qnin
∈Qin,
cin,

min∈{−lin,...,lin}

∑
pfilter∈Pfilter

∑
cfilter,k

Wcin,cfilter,cout,k

×
∑

mfilter∈{−lfilter,...,lfilter}

C
(lout,mout)
(lfilter,mfilter)(lin,min)

× F (cfilter,k)
mfilter

(−pfilter, qnout
, qnin

)Î(cin)
min

(pfilter + pout, qnin
)

=
∑

qnin
∈Qin,
cin,

min∈{−lin,...,lin}

∑
pfilter∈Pfilter

K(cout,mout),(cin,min)(pfilter, qnout
, qnin

)

× Î(cin)
min

(pfilter + pout, qnin
).

(48)

The kernelK can be represented using an array of size

dim (Sτout)× dim (Sτin)× Pfilter × Pfilter × Pfilter ×Qout ×Qin. (49)

Equivariance of Discretized Layer For discrete feature maps, property (5) needs to be adapted
as follows:

(g, Tt)[Î](p, q) = Dτ
g Φ
(
Î
(
Rg−1(p− t),Rg−1q

))
, (50)

where (g, Tt) ∈ SE(3) with g ∈ SO(3) and t ∈ R3, p ∈ P , q ∈ Q, and Φ: (R3 ⊕ R3 → Sτ ) →
(P ⊕Q → Sτ ) is an interpolation.

Note that with Eq. (50) the equivariance property (7) is not guaranteed for L̂ if the interpolation is
not trivial, i.e. if Rg−1(p− t) 6∈ P or Rg−1q 6∈ Q. So equivariance may only hold approximately.

Also, because of discretization, aliasing artifacts may occur when using high angular filter orders
lfilter. This means that high-order angular basis filters should not be used in filters. The maximum
order depends on the filter size Pf (see Weiler et al. (2018b)).

B.4 EFFICIENT IMPLEMENTATION USING 3D CONVOLUTIONAL LAYER

The layer defined in Eq. (48) can be implemented using 3D convolutional layers (with computed
kernels, see below), of which deep learning frameworks like PyTorch (Paszke et al., 2019) support
efficient implementations. We will denote such a 3D convolutional layer as conv3D.

In order to be used in a conv3D layer, the indices c′out and c′in are introduced which allow indexing
the kernel and the feature maps for all possible values of (nout, cout,mout) and (nin, cin,min),
respectively, using just single indices. Also, the feature maps are reshaped to size

(dim (Sτ ) ·Q)× Pz × Py × Px, (51)

and the kernel is reshaped to size

(Qout · dim (Sτout))× (Qin · dim (Sτin))× Pfilter × Pfilter × Pfilter. (52)
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Using the reshaped feature map and kernel, the new indices c′out, c
′
in, and replacing qnout

, qnin
by

their indices nout,nin, Eq. (48) can be rewritten to use the conv3D layer:

L̂c′out(nout,cout,mout)[Î](pout) =
∑
c′in

∑
pfilter∈Pfilter

Kc′out(nout,cout,mout),c′in(nin,cin,min)(pfilter)

× Îc′in(nin,cin,min)(pfilter + pout)

=

∑
c′in

Kc′out,c
′
in
? Îc′in

 (pout)

= conv3D(K, Î)c′out(pout),

(53)

where ? denotes cross-correlation.

Kernel Computation The computation ofK can be split into multiple steps:

1. Precomputation of Clebsch–Gordan coefficients C

2. Precomputation of angular basis A(cfilter) for all pfilter ∈ Pfilter, qnin ∈ Qin, and qnout ∈
Qout

3. (Pre)computation of radial basis R(k) for all pfilter ∈ Pfilter, qnin
∈ Qin, and qnout

∈ Qout

4. Multiplication of radial and angular basis as per Eq. (11) and computation of K using
learned weightsW as per Eq. (47)

As the angular basis does not contain any learned parameters, steps 1 and 2 can be computed before
training. Depending on the choice of radial basis function, the radial basis may or may not contain
learned parameters. If it does, only the inputs to the radial basis functions can be precomputed but
the radial basis is computed during training. If it does not contain learned parameters, then the whole
radial basis can be precomputed. Step 4 is always computed during training.

The number of radial basis functions used in the p-difference radial basis (Eq. (14)) is chosen to be
equal to Pfilter. For the q-in (Eq. (15)) and q-out (Eq. (16)) radial bases, it is equal to the number of
different lengths of q-vectors in Qin and Qout, respectively.

Our implementation can be found at https://github.com/philip-mueller/
equivariant-deep-dmri

C VECTORS AND HIGHER-ORDER TENSORS AS INPUTS OR OUTPUTS

As our proposed layer supports higher-order tensor inputs and outputs (e.g. vectors or order-2 ten-
sors), it can be used to build neural networks with such inputs or outputs, e.g. networks for predicting
diffusion tensors or using diffusion tensors as inputs.

For supporting vector (l = 1) outputs, the output feature map of the output layer needs to be con-
figured to contain a single l = 1 channel. No further changes are required. Analogously the first
layer can be configured to support vector inputs. For supporting order-2 tensor (l = 2) outputs an
additional step is required after the output layer. The layer uses spherical tensors in its feature maps,
which for l ≤ 1 (scalars and vectors) are (up to reordering) equal to Cartesian tensors but for l > 1
are not.

In the case of l > 1 a single Cartesian tensor can be decomposed into multiple spherical tensors.
For example, an order l = 2 Cartesian tensors can be decomposed into one l = 0, one l = 1, and
one l = 2 spherical tensors, corresponding to its isotropic, antisymmetric, and symmetric traceless
parts, respectively (Hess, 2015; Man, 2013). From this follows that in order to predict order-2
Cartesian tensors, the output feature map of the output layer needs to contain one l = 0, l = 1,
and l = 2 channel each. These spherical tensors are then combined into an order-2 Cartesian tensor
(independently for each position). If the predicted Cartesian tensor is known to be symmetric, then
the l = 1 spherical tensor is not required, as it represents the antisymmetric part and is zero for
symmetric tensors. Analogously, for using an order-2 Cartesian tensor as input, the tensor is first
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decomposed into one l = 0, one l = 1, and one l = 2 spherical tensors, and these are then given to
the first layer.

Note that it is also possible to predict (or use as input) multiple scalars, vectors, or order-2 tensors
or even a mix of different-order tensors (for each position).

D PROOFS

D.1 PROOF OF EQUIVARIANCE PROPERTY (7) FOR LAYER DEFINITION (8)

As each roto-translation can be built from a rotation followed by a translation (Ivancevic & Ivance-
vic, 2011) it is enough to prove equivariance under rotations and translations (of positions) indepen-
dently.

Proof of Equivariance to Joint Rotations in p- and q-space To be proven is the following prop-
erty on Eq. (8):

(L ◦ g)[I](p, q) = (g ◦ L)[I](p, q) (54)
for g ∈ SO(3), where g is applied as:

g[I](p, q) := Dτ
g I
(
Rg−1p,Rg−1q

)
. (55)

Eq. (54) is proven for each output channel cout and output spherical tensor component mout inde-
pendently. For the proof, first definition (8) is inserted into the left-hand side of Eq. (54) (for a single
cout,mout) and then g is applied using Eq. (55). In the next step, we substitute pout 7→ Rgp

′
out,

pin 7→Rgp
′
in, qout 7→Rgq

′
out, and qin 7→Rgq

′
in and then rewrite to sum over p′in and q′in. After

that, the equivariance property (10) of F is used. Then the equivariance property (35) of the tensor
product is applied. Finally, Eq. (8) is used again and pout, qout are back-substituted resulting in the
right-hand side of Eq. (54) (for a single cout,mout). In detail:

(L ◦ g)[I](cout)
mout

(pout, qout)

=
∑

cin,cfilter,k

W
(cfilter)
cin,cout,k

∑
mfilter∈{−lfilter,...,lfilter},

min∈{−lin,...,lin}

C
(lout,mout)
(lfilter,mfilter)(lin,min)

×
∑

pin∈R3,
qin∈R3

F (cfilter,k)
mfilter

(pout − pin, qout, qin)g[I](cin)
min

(pin, qin)

=
∑

cin,cfilter,k

W
(cfilter)
cin,cout,k

∑
mfilter∈{−lfilter,...,lfilter},

min∈{−lin,...,lin}

C
(lout,mout)
(lfilter,mfilter)(lin,min)

×
∑

pin∈R3,
qin∈R3

F (cfilter,k)
mfilter

(pout − pin, qout, qin)

×
∑

m′in∈{−lin,...,lin}

(
D(lin)
g

)
min,m′in

I
(cin)
m′in

(
Rg−1pin,Rg−1qin

)
=

∑
cin,cfilter,k

W
(cfilter)
cin,cout,k

∑
mfilter∈{−lfilter,...,lfilter},

min∈{−lin,...,lin}

C
(lout,mout)
(lfilter,mfilter)(lin,min)

×
∑

Rgp
′
in∈R

3,

Rgq
′
in∈R

3

F (cfilter,k)
mfilter

(Rgp
′
out −Rgp

′
in,Rgq

′
out,Rgq

′
in)

×
∑

m′in∈{−lin,...,lin}

(
D(lin)
g

)
min,m′in

I
(cin)
m′in

(p′in, q′in)

=
∑

cin,cfilter,k

W
(cfilter)
cin,cout,k

∑
mfilter∈{−lfilter,...,lfilter},

min∈{−lin,...,lin}

C
(lout,mout)
(lfilter,mfilter)(lin,min)
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×
∑

p′in∈R
3,

q′in∈R
3

F (cfilter,k)
mfilter

(Rg(p
′
out − p′in),Rgq

′
out,Rgq

′
in)

×
∑

m′in∈{−lin,...,lin}

(
D(lin)
g

)
min,m′in

I
(cin)
m′in

(p′in, q′in)

=
∑

cin,cfilter,k

W
(cfilter)
cin,cout,k

∑
mfilter∈{−lfilter,...,lfilter},

min∈{−lin,...,lin}

C
(lout,mout)
(lfilter,mfilter)(lin,min)

×
∑

p′in∈R
3,

q′in∈R
3

( ∑
m′filter∈{−lfilter,...,lfilter}

(
D(lfilter)
g

)
mfilter,m′filter

× F (cfilter,k)
m′filter

(p′out − p′in, q′out, q
′
in)

)

×

( ∑
m′in∈{−lin,...,lin}

(
D(lin)
g

)
min,m′in

I
(cin)
m′in

(p′in, q′in)

)

=
∑

cin,cfilter,k

W
(cfilter)
cin,cout,k

∑
m′out∈{−lout,...,lout}

(
D(lout)
g

)
mout,m′out

×
∑

mfilter∈{−lfilter,...,lfilter},
min∈{−lin,...,lin}

C
(lout,m

′
out)

(lfilter,mfilter)(lin,min)

×
∑

p′in∈R
3,

q′in∈R
3

F (cfilter,k)
mfilter

(p′out − p′in, q′out, q
′
in)I(cin)

min
(p′in, q′in)

=
∑

m′out∈{−lout,...,lout}

(
D(lout)
g

)
mout,m′out

L[I]
(cout)
m′out

(p′out, q
′
out)

=
∑

m′out∈{−lout,...,lout}

(
D(lout)
g

)
mout,m′out

× L[I]
(cout)
m′out

(
Rg−1pout,Rg−1qout

)
= (g ◦ L)[I](cout)

mout
(pout, qout).

Proof of Equivariance to Translations in p-space To be proven is the following property on
Eq. (8):

(L ◦ Tt)[I](p, q) = (Tt ◦ L)[I](p, q) (56)

for t ∈ R3, where Tt is applied as:

Tt[I](p, q) := I(p− t, q). (57)

Eq. (56) is proven for each output channel cout and output spherical tensor componentmout indepen-
dently. For the proof, first the definition (8) is inserted into the left-hand side of Eq. (56) (for a single
cout,mout) and then Tt is applied using Eq. (57). In the next step, we substitute pout 7→ p′out +t and
pin 7→ p′in + t. Then Eq. (8) is used again and pout is back-substituted resulting in the right-hand
side of Eq. (56) (for a single cout,mout). In detail:

(L ◦ Tt)[I](cout)
mout

(pout, qout)

=
∑

cin,cfilter,k

W
(cfilter)
cin,cout,k

∑
mfilter∈{−lfilter,...,lfilter},

min∈{−lin,...,lin}

C
(lout,mout)
(lfilter,mfilter)(lin,min)
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×
∑

pin∈R3,
qin∈R3

F (cfilter,k)
mfilter

(pout − pin, qout, qin)Tt[I](cin)
min

(pin, qin)

=
∑

cin,cfilter,k

W
(cfilter)
cin,cout,k

∑
mfilter∈{−lfilter,...,lfilter},

min∈{−lin,...,lin}

C
(lout,mout)
(lfilter,mfilter)(lin,min)

×
∑

pin∈R3,
qin∈R3

F (cfilter,k)
mfilter

(pout − pin, qout, qin)I(cin)
min

(pin − t, qin)

=
∑

cin,cfilter,k

W
(cfilter)
cin,cout,k

∑
mfilter∈{−lfilter,...,lfilter},

min∈{−lin,...,lin}

C
(lout,mout)
(lfilter,mfilter)(lin,min)

×
∑

p′in∈R
3,

qin∈R3

F (cfilter,k)
mfilter

(p′out − p′in, qout, qin)I(cin)
min

(p′in, qin)

= L[I](cout)
mout

(p′out, qout)

= L[I](cout)
mout

(pout − t, qout)

= (Tt ◦ L)[I](cout)
mout

(pout, qout).

D.2 PROOF OF EQUIVARIANCE PROPERTY (10) FOR FILTER BASIS DEFINED IN EQ. (11)

For the proof, first definition (11) is inserted into the left-hand side of Eq. (10). After that, the
invariance property (12) of R(k) and the equivariance property (13) of A(cfilter) are used. Then we
make use of the commutativity of scalar multiplication (as R(k) is scalar-valued) and finally the
definition (11) is used again resulting in the right-hand side of Eq. (10). In detail:

F (cfilter,k)(Rg∆p,Rgqout,Rgqin) = R(k)(Rg∆p,Rgqout,Rgqin)

×A(cfilter)(Rg∆p,Rgqout,Rgqin)

= R(k)(∆p, qout, qin)

×A(cfilter)(Rg∆p,Rgqout,Rgqin)

= R(k)(∆p, qout, qin)D(lfilter)
g A(cfilter)(∆p, qout, qin)

= D(lfilter)
g R(k)(∆p, qout, qin)A(cfilter)(∆p, qout, qin)

= D(lfilter)
g F (cfilter,k)(∆p, qout, qin)

D.3 PROOF OF INVARIANCE PROPERTY (12) FOR RADIAL BASES DEFINED IN EQ. (14),
EQ. (15), EQ. (16), AND EQ. (17)

The invariances, as defined in Eq. (12), for the p-difference (Eq. (14)), q-in (Eq. (15)), and q-out
(Eq. (16)) radial bases follow from the invariance of the L2 norm.

So it is left to prove Eq. (12) for the product of radial bases as defined in Eq. (17):

R
(k1,k2)
prod (Rg∆p,Rgqout,Rgqin) = R

(k1)
1 (Rg∆p,Rgqout,Rgqin)

×R(k2)
2 (Rg∆p,Rgqout,Rgqin)

= R
(k1)
1 (∆p, qout, qin)R

(k2)
2 (∆p, qout, qin)

= R
(k1,k2)
prod (∆p, qout, qin),

where the invariance property (12) of the radial bases R(k1)
1 and R(k2)

2 being combined is used.
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D.4 PROOF OF EQUIVARIANCE PROPERTY (13) FOR ANGULAR BASES DEFINED IN EQ. (18),
EQ. (19), EQ. (20), AND EQ. (21)

For the proof of property (13) for Eq. (18), first the definition ofA(cfilter)
p-diff (18) is inserted forA(cfilter)

into the left-hand side of Eq. (13), then the invariance of the L2 norm is used. Finally, the equiv-
ariance (31) of the spherical harmonics is applied and definition (18) is used again for A(cfilter)

resulting in the right-hand side of Eq. (13). In detail:

A
(cfilter)
p-diff (Rg∆p,Rgqout,Rgqin) = Y (lfilter)

(
Rg∆p

‖Rg∆p‖2

)
= Y (lfilter)

(
Rg

∆p

‖∆p‖2

)
= D(lfilter)

g Y (lfilter)

(
∆p

‖∆p‖2

)
= D(lfilter)

g A
(cfilter)
p-diff (∆p, qout, qin),

The proofs for Eq. (19) and Eq. (20) are analog but additionally the distributive law of matrix mul-
tiplication and vector addition is used, i.e.

Rgqout −Rgqin = Rg(qout − qin),

and

Rg∆p− (Rgqout −Rgqin) = Rg∆p−Rg(qout − qin)

= Rg(∆p− (qout − qin)),

respectively.

For the proof of property (13) for the combined angular basis defined in Eq. (21), first the definition
of A(cfilter)

TP (21) is inserted for A(cfilter) into the left-hand side of Eq. (13) for each angular filter
channel cfilter and spherical tensor component mfilter independently. Then the equivariance prop-
erty (13) of the angular bases (A1) and (A2) is used. Finally, the equivariance (35) of the tensor
product is applied and definition (21) is used again for A(cfilter) resulting in the right-hand side of
Eq. (13). In detail:

(ATP)
(cfilter)
mfilter

(Rg∆p,Rgqout,Rgqin)

=
∑

m1∈{−l1,...,l1},
m2∈{−l2,...,l2}

C
(lfilter,mfilter)
(l1,m1)(l2,m2)

× (A1)
(c1)
m1

(Rg∆p,Rgqout,Rgqin) (A2)
(c2)
m2

(Rg∆p,Rgqout,Rgqin)

=
∑

m1∈{−l1,...,l1},
m2∈{−l2,...,l2}

C
(lfilter,mfilter)
(l1,m1)(l2,m2)

×

[ ∑
m′1∈{−l1,...,l1}

D
(l1)
m1,m′1

(A1)
(c1)
m′1

(∆p, qout, qin)

]

×

[ ∑
m′2∈{−l2,...,l2}

D
(l2)
m2,m′2

(A2)
(c2)
m′2

(∆p, qout, qin)

]

=
∑

m′filter∈{−lfilter,...,lfilter}

D
(lfilter)
mfilter,m′filter

∑
m1∈{−l1,...,l1},
m2∈{−l2,...,l2}

C
(lfilter,m

′
filter)

(l1,m1)(l2,m2)

× (A1)
(c1)
m1

(∆p, qout, qin) (A2)
(c2)
m2

(∆p, qout, qin)

=
∑

m′filter∈{−lfilter,...,lfilter}

D
(lfilter)
mfilter,m′filter

(ATP)
(cfilter)
mfilter

(∆p, qout, qin).

35



E LAYER AND CHANNEL CONFIGURATIONS

E.1 EQUIVARIANT MODELS

Table 3: Channel configurations of our equivariant models with late q-reduction. The tuples
(a, b, c, d) are the τout of each layer, i.e. they describe the output channels of a layer, where a, b, c, d
are the numbers of channels of outputs orders (lout) 0, 1, 2, and 3, respectively, e.g. (4, 3, 2, 1) means
that a layers has four order 0 (scalar), three order 1 (vector), two order 2, and one order 3 output
channels. The column “in” describes the input feature map of the first layer, while the subsequent
columns describe the output feature maps of the layers: one pq-layer, one q-reduction layer, and up
to five p-layers. The “Layers” column describes the number of pq-layers, q-reduction layers (always
1), and p-layers, where the notation (l2) is used for layers with additional lout = 2 channels, and
(l2/l3) for layers with additional lout = 2 and lout = 3 channels. The row “Q” describes the
number of sampled q-space coordinates in the respective feature maps. Note that there is no q-space
in the output of the q-reduction layer and the p-layers. The shown channel configurations are the
results of hyperparameter tuning for each given layer configuration (some confgurations with many
channels had to be excluded from hyperparameter tuning, as they did not fit into GPU memory).
Note that the channel configurations do not differ for different filter bases or p radial bases.

Layers in pq-1 q-reduction p-1 p-2 p-3 p-4 p-5

1+1+2 (1, 0, 0, 0) (5, 3, 0, 0) (5, 3, 0, 0) (10, 5, 0, 0) (1, 0, 0, 0) - - -
1+1+3 (1, 0, 0, 0) (5, 3, 0, 0) (5, 3, 0, 0) (50, 10, 0, 0) (20, 5, 0, 0) (1, 0, 0, 0) - -
1+1+4 (1, 0, 0, 0) (7, 4, 0, 0) (7, 4, 0, 0) (20, 5, 0, 0) (10, 3, 0, 0) (5, 2, 0, 0) (1, 0, 0, 0) -
1+1+4(l2) (1, 0, 0, 0) (7, 4, 0, 0) (7, 4, 0, 0) (20, 5, 2, 0) (10, 3, 1, 0) (5, 2, 0, 0) (1, 0, 0, 0) -
1+1+4(l2/l3) (1, 0, 0, 0) (7, 4, 0, 0) (7, 4, 0, 0) (20, 5, 2, 1) (10, 3, 1, 0) (5, 2, 0, 0) (1, 0, 0, 0) -
1(l2)+1+4(l2) (1, 0, 0, 0) (5, 3, 1, 0) (5, 3, 1, 0) (20, 5, 2, 0) (10, 3, 1, 0) (5, 2, 0, 0) (1, 0, 0, 0) -
1(l2/l3)+1+4(l2/l3) (1, 0, 0, 0) (5, 3, 1, 1) (5, 3, 1, 1) (20, 5, 2, 1) (10, 3, 1, 0) (5, 2, 0, 0) (1, 0, 0, 0) -
1+1+5 (1, 0, 0, 0) (5, 3, 0, 0) (5, 3, 0, 0) (20, 5, 0, 0) (10, 3, 0, 0) (5, 2, 0, 0) (3, 1, 0, 0) (1, 0, 0, 0)

Q 42 42 - - - - -

Table 4: Like Table 3, but for gradual q-reduction.
Layers in pq-1 pq-2 q-reduction p-1 p-2 p-3

0+1+3 (1, 0, 0, 0) - - (100, 20, 0, 0) (50, 10, 0, 0) (10, 5, 0, 0) (1, 0, 0, 0)

1+1+2 (1, 0, 0, 0) - (15, 7, 0, 0) (70, 10, 0, 0) (20, 5, 0, 0) (1, 0, 0, 0) -
1+1+3 (1, 0, 0, 0) - (15, 7, 0, 0) (70, 10, 0, 0) (20, 5, 0, 0) (10, 3, 0, 0) (1, 0, 0, 0)

2+1+1 (1, 0, 0, 0) (3, 2, 0, 0) (5, 3, 0, 0) (70, 10, 0, 0) (1, 0, 0, 0) - -

Q 42 27 7 - - - -
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E.2 NON-ROTATION-EQUIVARIANT MODELS

Table 5: Channel configurations of non-rotation-equivariant models used as reference. We experi-
mented with different numbers of channels but found that small changes in the number of channels
did not affect the quality much. The shown channel configurations are the best we found for each
number of layers and we assume that they are very near the optimum for the given training setup.
Also note that using similar feature map sizes as used in the equivariant models (and thus having
much more channels and parameters) leads to much worse results.

Layers in layer-1 layer-2 layer-3 layer-4 layer-5 layer-6

3 (few channels) 46 5 3 1 - - -
3 (many channels) 46 10 5 1 - - -
4 (few channels) 46 15 5 3 1 - -
4 (many channels) 46 30 10 5 1 - -
5 (few channels) 46 5 15 5 3 1 -
5 (many channels) 46 10 30 10 5 1 -
6 (few channels) 46 5 5 15 5 3 1
6 (many channels) 46 5 10 30 10 5 1
6 (matched feature maps (fm) small) 46 378 119 95 160 80 1
6 (matched feature maps (fm) large) 46 378 175 180 160 80 1

37


	1 Introduction and Motivation
	2 Related Work
	3 Methods: Roto-Translationally Equivariant Layers using Irreducible Representations
	3.1 Roto-Translationally Equivariant Layer for 3D Data
	3.2 Roto-Translationally Equivariant Layer for Diffusion MRI Data
	3.2.1 Layer Properties and Definition
	3.2.2 General Filter Basis
	3.2.3 Radial Filter Basis
	3.2.4 Angular Filter Basis
	3.2.5 Proposed Filter Bases
	3.2.6 Comparison and Combinations of the Proposed Filter Bases
	3.2.7 Implementation of the Layer


	4 Experimental Setup
	4.1 Dataset and Preprocessing
	4.2 Network Architecture
	4.3 Training
	4.4 Experiments

	5 Results and Discussion
	6 Conclusions
	A Theoretical Background
	A.1 Groups, Group Representations, and Equivariance
	A.2 Spherical Tensors and Related Concepts
	A.2.1 Spherical Tensors, Spherical Harmonics, and Wigner D-Matrices
	A.2.2 Tensor Product and Clebsch–Gordan Coefficients
	A.2.3 Multi-Channel Spherical Tensors and Spherical-Tensor Fields


	B Implementation Details
	B.1 Radial Basis Functions
	B.1.1 Gaussian Radial Basis Functions as used in 3dSteerableCNNs
	B.1.2 Cosine Radial Basis Functions as used in e3nn
	B.1.3 Fully Connected Neural Network applied to Radial Basis Functions as used in TFN,e3nn

	B.2 Equivariant Nonlinearities
	B.3 Discretization
	B.4 Efficient Implementation using 3D Convolutional Layer

	C Vectors and Higher-Order Tensors as Inputs or Outputs
	D Proofs
	D.1 Proof of Equivariance Property (7) for Layer Definition (8)
	D.2 Proof of Equivariance Property (10) for Filter Basis defined in Eq. (11)
	D.3 Proof of Invariance Property (12) for Radial Bases defined in Eq. (14), Eq. (15), Eq. (16), and Eq. (17)
	D.4 Proof of Equivariance Property (13) for Angular Bases defined in Eq. (18), Eq. (19), Eq. (20), and Eq. (21)

	E Layer and Channel Configurations
	E.1 Equivariant Models
	E.2 Non-Rotation-Equivariant Models


