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Abstract Image Denoising is among the most fundamental problems in image pro-
cessing, not only for the sake of improving the image quality, but also as the first
proof-of-concept for the development of virtually any new regularization term for
inverse problems in imaging. While variational methods have represented the state-
of-the-art for several decades, they are recently being challenged by (deep) learning
based approaches. In this chapter, we review some of the most successful variational
approaches for image reconstruction and discuss their structural advantages and dis-
advantages in comparison to learning based approaches. Furthermore, we present a
framework to incorporate deep learning approaches in inverse problem formula-
tions so as to leverage the descriptive power of deep learning with the flexibility
of inverse problems’ solvers. Different algorithmic schemes are derived from re-
placing the regularizing subproblem of common optimization algorithms by neural
networks trained on image denoising. We conclude from several experiments that
such techniques are very promising but further studies are needed to understand to
what extent and in which settings the power of the data-driven network transfers to
a better overall performance.

1 Introduction

Fired by the continuously growing popularity of social media and communication
applications the number of digital photos that is taken every day is rapidly increas-
ing. While the hardware and with it the quality of the photographs is improving
constantly, the demand for small imaging devices such as smartphones makes it
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challenging to acquire high quality images in low light conditions. Thus, there is an
urgent need to digitally remove the noise from such images while keeping the main
characteristics of a realistic photograph.

Among the most powerful and well-studied methods for image denoising are en-
ergy minimization methods. One defines an energy or cost function E that depends
on the noisy image f , and maps from a suitable space of candidate images to the
real numbers in such a way, that a low number corresponds to an image with desir-
able properties, i.e. to a realistic and (ideally) noise-free image. Subsequently, one
determines a denoised image û as the argument that minimizes E, i.e.,

û ∈ argmin
u

E(u). (1)

In Section 2, we will provide a more systematic derivation of such variational
approaches from the perspective of Bayesian inference. In Section 3, we will then
summarize some of the most influential variational denoising methods, along with
their underlying assumptions, advantages, and drawbacks.

An entirely different line of research that has become hugely popular and that
has shown impressive performance over the last five years are data-driven learning-
based methods: Whenever a sufficient amount of training data pairs of noisy and
noise-free images ( f i,ui) are available or can be simulated faithfully, one designs
a parameterized function G( f ;θ) and learns the parameters θ that lead to the best
coincidence of G( f i;θ) with ui with respect to some predefined loss L . To prevent
overfitting, one often defines a regularization R on the weights θ and solves the
energy minimization problem

θ̂ ≈ argmin
θ

∑
i

L (G( f i;θ),ui)+α R(θ). (2)

Once the above (generally nonconvex) problem has been solved approximately (ei-
ther by finding a critical point or by stopping early as an additional “regularization”),
the inference simply passes new incoming noisy images f through the network, i.e.
computes G( f ; θ̂). We summarize some influential learning-based approaches to
image denoising in Section 4.

Learning based strategies are a strong trend in the current literature and they have
also been shown to compare favorably in several denoising works. Nevertheless, we
are convinced that learning based strategies alone are not addressing the problem
of image denoising exhaustively: Firstly, recent studies question the generalizabil-
ity of learning based approaches to realistic types of noise [52]. More importantly,
networks are very difficult to train. Solving (2) for a highly nested function G (often
consisting of more than 20 layers) requires huge amounts of training data, sophisti-
cated engineering and good initializations of the parameters θ as well as a consider-
able amount of manual fine tuning. Since the network architecture and weights may
remain fixed during inference, it only works in the specific setting that it has been
trained for. Finally, networks do not provide much control and guarantees about the
output of the network. Although the training often leads to good results during in-
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ference, test images with characteristics different from the training data can easily
lead to unpredictable behavior.

In Section 5 we will analyze these drawbacks in more detail. Moreover, we will
analyze whether there is some potential in fusing concepts from energy minimiza-
tion approaches with concepts from data-driven methods so as to combine the best
of both worlds. To this end, we will present a framework for combining learning
based approaches with variational methods. Indeed, preliminary numerical results
indicate that the latter holds great promise in addressing some of the aforementioned
challenges.

2 Denoising as Statistical Inference and MAP Estimation

A frequent motivation for energy based denoising methods of the form (1) are max-
imum a-posteriori probability (MAP) estimates: One aims at maximizing the con-
ditional probability p(u| f ) of u being the true noise-free image, if one observed
the noisy version f . According to the Bayesian formula, the posterior probability
density can be written as

p(u| f ) = p( f |u)p(u)
p( f )

.

Instead of looking for the argument u that maximizes the above expression, by con-
vention one equivalently minimizes its negative logarithm to obtain

û ∈ argmin
u
−log(p( f |u))− log(p(u)). (3)

The first term contains the probability of observing f given a true noise-free image
u, and is referred to as the data fidelity term. For example, under the assumption
of independent zero-mean Gaussian noise with standard deviation σ a spatially dis-
crete formulation gives rise to

p( f |u) = Πpixel i
1√

2πσ2
exp
(
− (ui− fi)

2

2σ2

)
,

leading to the most commonly used `2-squared term for measuring data fidelity.1

Many works have investigated the data fidelity terms arising from different distribu-
tions of the noise, see [66] for an example considering Poisson noise.

The quest for the right type of data fidelity term for denoising real photographs
is, however, quite difficult and camera dependent: The raw sensor data undergoes
several processing steps, such as white balancing, demosaicking, color correction
/ color space transformation, tonemapping, and possibly even compression. De-
pending on where in this processing chain the denoising is applied, different noise
distributions have to be expected. In particular, color space transformations couple

1 For a more detailed spatially continuous formulation, we refer to [21].
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the noise over the color channels and demosaicking introduces a spatial correlation
[60, 51]. The raw sensor data itself seems to follow a Poisson distribution and (for a
reasonably high photon count) is well approximated by a Gaussian distribution with
intensity dependent standard deviation – see e.g. [60].

3 Variational Image Denoising Methods

As suggested by the MAP estimate (3), typical energy minimization based tech-
niques can be written as

E(u) = H f (u) + R(u), (4)

where the data fidelity term H f corresponds to −log(p( f |u)) in the MAP sense and
measures how well the current estimate u fits to its noisy version f . The regulariza-
tion R on the other hand corresponds to−log(p(u)) in the MAP sense and penalizes
oscillatory behavior of the noise. While the data fidelity term H f can be motivated
from the expected distribution of the noise in the data and can often be precalibrated
by studying the sensor noise characteristics, the quest for a reasonable prior prob-
ability distribution p of natural images is significantly more challenging. In fact,
the modeling of prior probabilities can be expected to benefit tremendously from
suitable learning-based approaches such as deep neural networks – see Section 5.

3.1 Total Variation (TV) based Image Regularization

Even apart from the interpretation of MAP estimates, researchers have studied the
properties of penalty functions R and their respective influence on the properties of
the solution – often in a setting of ill-posed inverse problems in function spaces.
Starting with penalties based on Tikhonov regularization, the advantageous proper-
ties of non-quadratic regularizations and non-linear filtering techniques in imaging
have been studied from the 1980s on, see the references in [57] for some examples.
The total variation (TV) regularization [61, 56] arguably is the most influential work
in the field. For images u : Ω ⊂ R2→ R, it is defined as [30]

|u|TV := sup
q∈C∞

0 ,|q(x)|≤1

∫
Ω

div(q)(x) u(x) dx. (5)

It has had an immense success in image denoising, because the functional is con-
vex (enabling the efficient computation of optimal solutions), and because it applies
to discontinuous functions u (enabling the preservation of sharp edges). For con-
tinuously differentiable functions u the total variation reduces to the integral over
|∇u(x)|.
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In parallel to the development of TV-based regularization methods, a tremendous
amount of research has been conducted on image smoothing using (nonlinear) par-
tial differential equations (PDEs) many of which arise as gradient flows of suitable
regularization energies. For the sake of brevity, we will, however, not discuss these
methods here.

3.2 Generalizations: Vectorial TV, Total Generalized Variation

A particularly interesting question for TV-based methods are suitable extensions to
color images

u : Ω ⊂ R2→ Rd

with d color channels. Note that (assuming u to be differentiable) the Jacobian Ju is a
2×d matrix at each point x which raises the question in which norm Ju(x) should be
penalized for a suitable extension of the TV to color images. For non-differentiable
functions u the analogue question is the quest for the most natural norm used to
bound q(x) in (5). Studies along these directions include the seminal work of Saprio
and Ringach in [58], Blomgren and Chan [7], and a systematic study of different
penalties of the Jacobian, e.g. [26]. Instead of using a penalty that strongly couples
the color channels, some other lines of research consider∫

Ω

‖∇C(u)(x)‖ dx

for a suitable norm ‖ · ‖ and a linear operator C that changes the color space, e.g.
[20], and possibly maps from three to more than three color-related channels, e.g.
[2]. All studies agree that the alignment of edges of the RGB channels is of utmost
importance to avoid visually disturbing color artifacts.

The success of total variation as a convex regularizer which can preserve dis-
continuities induced a quest for suitable higher order variants of the TV. To avoid
the staircasing effect inherent to TV-based models, a second order derivative of the
input image has to be considered in such a way, that the ability to reconstruct sharp
edges is not lost. Higher-order TV models include the infimal-convolution regulari-
ation [12] as well as the total generalized variation (TGV) [8]. The latter generalizes
the total variation in (5) as follows:

TGVk
α(u)= sup

{∫
Ω

udivkq dx
∣∣∣v ∈Ck

c(Ω ,Symk(Rd)),‖divlq‖∞ ≤ αl , l=0, ..,k−1
}
,

where Symk(Rd) denotes the space of symmetric tensors of order k with arguments
in Rd . Clearly through integration by parts the higher powers of the divergence
operator correspond to higher order derivatives of the function u being penalized.
Whereas the kernel of total variation merely contains the constant functions, the
kernel of total generalized variation contains more interesting functions. Second
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order TGV, for example, contains the set of affine functions. Combined with the
applicability to non-differentiable and discontinuous functions, this makes it well
suited for denoising piecewise affine signals.

Similar to the extension of the total variation to color images, extensions of the
total generalized variation to color images have been investigated e.g. in [47]. Note
that in its discrete form, the second order TGV of a color image u ∈ Rnx×ny×d can
be written as

T GV (u) = inf
w
‖D1(u)−w‖∗+‖D2(w)‖+

where D1 and D2 are linear operators approximating suitable derivatives such that
D1(u) ∈ Rnx×ny×d×2, and D2(w) ∈ Rnx×ny×d×2×2. Thus, the TGV offers even more
freedom in choosing different types of (tensor-based) norms ‖ · ‖∗ and ‖ · ‖+ for
different extensions to color images.

3.3 Nonconvex Regularizers

Given the success of total variation type regularizers in preserving sharp disconti-
nuities, one may wonder if respective nonconvex generalizations may be even more
suitable in preserving or even enhancing discontinuities.

More specifically, for a one-dimensional function which transitions monotonously
between two values a < b, its total variation is exactly b− a, independent of how
sharp this transition is. Discontinuities are hence associated with a finite penalty
corresponding to the size of the step. An often undesired side effect of this property
is the tendendcy of total variation to induce contrast loss.

In order to reduce this contrast loss, iterative techniques such as the Bregman
iteration [50] can be considered. Similar ideas have also been investigated in [5], in
which it was shown that an image’s curvature is easier to reconstruct than the image
itself, thus suggesting to use a two-step reconstruction procedure.

A different class of approaches, which can not only preserve but possibly even
enhance discontinuities, penalize the gradient in a sublinear and therefore noncon-
vex manner. In the literature there exist numerous variants of this idea. Some of the
most popular choices can be summarized in a regularization of the form

R(u) =
∫

Ω

ψ(|∇u(x)|) dx (6)

where typical choices of ψ include the linear one (absolute norm, i.e. total vari-
ation), the truncated linear, the truncated quadratic and (as the limiting case of the
previous two) the Potts model (which penalizes any nonzero gradient with a constant
value). See Figure 1 for a visualization. The truncated quadratic regularizer essen-
tially corresponds to the Mumford-Shah model [48]. Such truncated regularizers are
likely to preserve contrast because discontinuities are penalized with a constant cost
ν independent of their size. This is indeed confirmed in the example in Figure 2.



Image Denoising – Old and New 7

Fig. 1 Unified representation of various regularizers in the form (6) including the convex total
variation (left) and the nonconvex truncated quadratic and (as its limiting case) the Potts model.
The latter two regularizers essentially correspond to the weak membrane [6] or Mumford-Shah
model [48].

Noisy image TV denoised Mumford-Shah denoised

Fig. 2 While total variation regularization (center) induces a contrast loss, truncated regularizers
like the Mumford-Shah model (right) better preserve discontinuities and contrast. The right image
was computed using a convex relaxation of the vectorial Mumford-Shah model proposed in [64].

The Mumford-Shah model has been studied intensively in the applied mathemat-
ics literature because it is an interesting hybrid between a denoising and a segmen-
tation approach. It is defined as follows:

E(u) =
∫

Ω

(
f (x)−u(x)

)2dx+λ

∫
Ω\Su

|∇u|2dx+νH 1(Su). (7)

The aim is to approximate the input image f : Ω ⊂ R2 → R in terms of a piece-
wise smooth function u : Ω → R. The functional contains a data fidelity term and
two regularity terms imposing smoothness of u in areas separated by the disconti-
nuity set Su and regularity of Su in terms of its one-dimensional Hausdorff measure
H 1(Su). Related approaches were proposed in a spatially discrete setting by Geman
and Geman [28] and by Blake and Zisserman [6]. The two regularizers in (7) clearly
correspond to the truncated quadratic penalty above in the sense that energetically
image locations where λ |∇u|2 > ν will be associated with the discontinuity set Su
and hence are assigned a cost ν .
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Sublinear penalties of the gradient norm are also more consistent with the statis-
tics of natural images. Based on the observation that the regularizer is nothing but
the negative logarithm of the prior – see Section 2 – one can study the statistics of
gradient filter responses on natural images [35]. These statistics show heavy-tailed
distributions which correspond to sublinear regularizers. An alternative representa-
tion of sublinear regularizers are the so-called TV-q models defined as:

TVq(u) :=
∫

Ω

|∇u(x)|q dx, (8)

where for q < 1 the gradient is penalized sublinearly.
A challenging problem for the actual implementation of the aforementioned non-

convex variants of the total variation regularization is their optimization, in which
one can only hope to determine local minimizers. While provably convergent meth-
ods typically have to rely on smoothing the nondifferentiable, nonconvex part, sev-
eral works have shown very promising behavior of splitting techniques such as the
alternating directions method of multipliers (ADMM), e.g. [16, 17, 27], or primal
versions of primal-dual algorithms, e.g. [67, 65, 46]. We refer the interested reader
to [71] to a recent summary on the convergence of the ADMM algorithm in a non-
convex setting.

3.4 Non-local Regularization

The most notable improvement – particularly for the problem of image denoising –
was the development of non-local smoothing methods, starting with the non-local
means (NLM) algorithm [10, 3]: Based on the idea that natural images are often
self-similar one denoises images by first computing the similarity of pixels in a ro-
bust way, e.g. by comparing image patches, and subsequently determines the value
of each denoised pixel by a weighted average based on pixel similarities. By con-
sidering the first step, i.e., the estimation of pixel similarities, as the formation of
an image-dependent graph, regularization methods based on (different variants of)
graph Laplacians were developed, see e.g. [39] for details. The extension of non-
local methods to TV regularization was proposed in [29].

One of the most popular and powerful denoising algorithms is the block match-
ing 3D (BM3D) algorithm [22], which is based on very similar assumptions as the
above self-similarity methods, but sacrifices the interpretability in terms of a reg-
ularization function for a more sophisticated filtering strategy of patches that are
considered to be similar. In particular, it estimates a first denoised version of an
image to then recompute the similarity between pixels/patches, and denoises again.
An interpretation in terms of a frame based regularization in a variational framework
was given later in [24]. Further prominent extensions and improvements are based
on learning the likelihood of natural image patches [76], and exploiting the low rank
structure of similar image patches using weighted nuclear norm minimization [31].



Image Denoising – Old and New 9

(a) True image (b) Noisy image (c) NLM denoising (d) TV denoising

Fig. 3 Illustrating a failure of the self-similarity based NLM algorithm in a case where a faithful
estimate of pixel correspondences is impossible: The NLM denoised image (c) contains strong
artificial structures. While TV denoising is also unable to reconstruct the grass, it erases all high
frequencies instead of hallucinating structures.

While the above methods are based on the assumption that every patch in an im-
age has multiple similarly looking variants, the idea of sparse representations and
dictionary learning relaxes this constraint. It merely demands that each patch can
be represented as a linear combination of a few suitable patches from an overcom-
plete dictionary. The latter can not only be learned from a representative dataset, but
even on the image to be reconstructed itself, with the K-SVD algorithm [1] being
one of the most popular and powerful numerical methods for tackling the underly-
ing nonconvex energy minimization problem. Hybrid self-similarity and dictionary
learning techniques have been developed in [43], and a focus on dictionary learning
for color image reconstruction has been set in [44].

3.5 A Discussion within Classical Denoising Methods

Before we discuss the extension of the partially data-driven model of dictionary
learning to the mostly data-driven methods, let us compare the denoising methods
we have recalled so far.

TV-type regularization methods are based on rather weak regularity assumptions
and can therefore be applied to a wide range of different applications and types of
images. Second order extensions such as TGV often improve upon TV while still
depending on (weak) regularity assumptions only. The price for such improvements
are an additional hyperparameter as well as a more complex minimization problem.
Non-local methods such as NLM and BM3D rely on the reconstructed images to be
self similar. While they often improve the results of local methods significantly, a
faithful estimate of pixel/patch similarity is required. In settings of inverse problems
where such an estimate is difficult to obtain, or in cases of strong noise in which sim-
ilarity estimates become unreliable, such methods come at the risk of hallucinating
self-similar structures as illustrated in Figure 3 – also see [9, Fig. 6].

Nonconvex variants of the above, e.g. TVq or TGVq models, can improve the
results of their convex relatives – particularly in the presence of strong edges – but
do come with the usual drawbacks of nonconvex optimization: No algorithm can
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guarantee not to get stuck in a bad local minimum. Similiarly, dictionary learning
approaches such as the KSVD algorithm are based on nonconvex optimization prob-
lems and exploit a particular structure of the data, i.e. the ability to respresent each
patch as a sparse linear combination of a few (learned) dictionary atoms.

In general the regularizing quality of the above approaches greatly improves with
the strength of the assumptions that are made. This leads to self-similarity and dic-
tionary learning based techniques clearly being the more powerful choice in usual
practical settings of small or moderate noise and natural images. Strong assumptions
can, however, influence the result in a very undesirable way if they do not hold, as
we have illustrated in Figure 3. This makes the simpler (local) models possibly more
attractive in applications where a structurally systematic error in the reconstruction
can have dramatic consequences, e.g. in the field of medical imaging.

4 Learning Based Denoising Methods

In recent years researchers have had great success in replacing the implicit char-
acterization of solutions as arguments that minimize a suitable energy function by
explicit functions that directly map the input data to the desired solution. In the case
of image denoising, such functions typically take the form

G : Rn×m×c×Rk→ Rn×m×c

( f ,θ) 7→ G( f ,θ)
(9)

where f ∈ Rn×m×c is the noisy input image, G( f ,θ) is the denoising result and
θ ∈ Rk are weights that parametrize the function G. The latter are determined dur-
ing training, which is the approximate solution of problem (2) for a suitable loss
function L , e.g. the `2-squared loss when optimizing for high peak signal-to-noise
ratios (PSNRs). The pairs ( f i,ui) of noisy and clean images used during training
have to be representative for the setting the network is used in during inference, i.e.,
the types of images and the type of noise used for the training should originate from
the same distribution as the test images.

The typical architecture of a network G is a nested function

G( f ,θ) = gL(gL−1(. . .g2(g1( f ,θ 1),θ 2) . . . ,θ L−1),θ L), (10)

where each function gi is referred to as a layer. The most common layers in basic
architectures are parameterized affine transfer functions followed by a nonlinearity
called activation function.

The specific architecture of G and its individual layers has evolved over the last
years. The first networks to challenge the previous dominance of BM3D and KSVD
type algorithms were fully connected using tangens hyperbolici as activation func-
tions [11], e.g.,
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gi(x,θ i) = tanh(θ i[x;1]), ∀i ∈ {1, . . . ,L−1},
gL(x,θ L) = θ

L[x;1].

Small vectorized image patches of a noisy image are fed into the network. In each
layer a 1 is attached to the input vector to allow for an offset, typically called bias. A
crucial aspect of these powerful learning-based denoising approaches was a compa-
rably large number of layers, relating to the overall trend of developing deep neural
networks.

The work [73] proposed a sparse autoencoder architecture, also using fully con-
nected layers and sigmoid activation functions. While [11] and [73] performed on
par with BM3D and KSVD on removing Gaussian noise respectively, architectures
based on convolutions, e.g. [37], or more recently convolutions with rectified linear
units as activations, i.e.,

gi(x,θ i) = max(θ i
k ∗ x+θ

i
b,0), ∀i ∈ {1, . . . ,L−1},

have shown promising results, e.g. in [74, 42]. Moreover, [74] proposed the idea of
deep residual learning to the field of image denoising, i.e., the strategy of learning
to output the estimated noise instead of the noise-free image itself.

Recent learning techniques such as [70, 41, 4] furthermore exploit the idea to
filter image patches in (non-local) groups to mimic and improve upon the behavior
of their designed relatives such as BM3D.

Besides a focus on more realistic types of noise (as pointed out in [52]), a promis-
ing direction for future denoising networks is to move from the (PSNR-optimizing)
`2-squared loss function to perceptual [38], or GAN-based [40] loss functions that
are able to reflect the subjective quality perception of the human visual system much
more accurately.

Beyond the specific architecture and training of networks, further improvements
can be made by tailoring denoising networks to specific classes of images deter-
mined by a prior classification network, see [53].

A drawback of most learning based approaches is that they are trained on a spe-
cific type of data, as well as a specific type and strength of noise. Thus, whenever one
of these quantities changes, an expensive retraining is required. Although promis-
ing approaches for a more generic use of neural networks for varying strengths of
Gaussian noise exist, see e.g. [72, 74], retaining a high quality solution over varying
types of noise remains challenging.

In the next section we will discuss hybrid learning and energy minimization
based approaches which represent a promising class of methods to not only adapt to
different types of noise but even to different types of restoration problems easily.
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5 Combining Learning and Variational Methods

5.1 Lacking Flexibility

Deep neural networks have proven to be extraordinary effective for a wide range
of high and low level computer vision problems. Their effectiveness does, however,
come at the costs of a complicated and expensive training procedure in which many
different aspects such as different training algorithms, hyperparameters, initializa-
tions (e.g. [32]), dropout [63], dropconnect [69], batch-normalization [36], or the
introduction of short cuts such as in ResNet [33], have to be considered to achieve
good results. Moreover, networks often do not generalize well beyond the specific
type of data they have been trained on: In the case of image denoising, for example,
the authors of [52] showed that the classical BM3D algorithm yields better denois-
ing results on real photograph than state-of-the-art deep learning techniques that
were all trained on Gaussian noise.

While one might argue that the dominance of learning based approaches can be
reestablished by training on more realistic datasets, several drawbacks remain:

1. Neural networks often do not generalize well beyond the specific setting they
have been trained on. While approaches for training on a variety of different
noise levels exist (e.g. in [72, 74]), networks typically cannot address arbitrary
image restoration problem of reconstructing an image u from noisy data f ≈ Ku
for a linear operator K, if the operator K was not already known during training
time. Typically, every time the type of noise, the strength of noise, or the linear
operator K changes, neural networks require additional training.

2. The separability of the data formation process from the regularization, and hence
the negative log likelihood of the distribution of ’natural images’, is lost in usual
deep learning strategies despite the fact that learning-from-data seems to be the
only way to realistically give a meaning to the term ’natural images’ in the first
place.

3. Even though a network might be trained on returning ui for a given measurement
f i =Kui+ni for noise ni drawn from a suitable distribution, there is no guarantee
for the networks output G( f , θ̂) to follow the data formation KG( f , θ̂)≈ f during
inference, i.e., there is no guarantee for the output to be a reasonable explanation
of the data.

On the other hand, one can constitute that

1. Variational methods have a plug-and-play nature in which one merely needs to
adapt the data fidelity term H f as the strength or type of noise or the linear oper-
ator K changes.

2. They clearly separate the data fidelity term from the regularization with each of
the two being exchangeable.

3. The proximity to a given forward model can easily be guaranteed in variational
methods by using suitable indicator functions for H f .
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4. Despite the above advantages, the expressive power of regularizations terms to
measure how “natural” or “realistic” a given image is, is very limited. In partic-
ular, local (e.g. total variation based) or non-local smoothness properties do not
capture the full complexity of textures and structures present in natural images.
In fact, exploiting large data bases seems to be the most promising way for even
defining what “natural images” are.

The complementary advantages of each method make possible ways to combine
variational and learning based techniques an attractive field of research.

Considering the derivation of energy minimization methods from MAP esti-
mates in Section 2, it seems natural to estimate p(u) in (3) from training images.
This, however, means estimating a probability distribution of natural images in a
number-of-pixel dimensional space, which seems to be extremely ambitious even
for moderately-sized images. In fact, the knowledge of such a distribution would
allow to sample natural images – a task researchers currently try to tackle with gen-
erative adversarial networks (GANs), but still face many difficulties, e.g. for gener-
ating high resolution images. We refer the reader to [25, 49] for recent approaches
that tackle inverse problems by estimating the distribution of natural images.

5.2 Learning the Regularizer

Researchers have already considered the general idea to learn the probabilty dis-
tribution of natural images more than a decade ago by settling for the probability
distribution of separate patches, assuming a particular form of the underlying prob-
ability distribution, see the field of experts model by Roth and Black [55] for an
example. While the latter actually tries to approximate the probability distribution
of training data by combining a gradient ascent on the log-likelihood with a Monte
Carlo simulation, the work [18] by Chen et al. proposes a different strategy: They
show that an analysis-based sparsity regularization of the form

R(u,A) = ∑
patches up

∑
filters Ai

Φ(Ai ∗up) (11)

is equivalent to the negative log-likelihood in the field of experts model. In the
above, Φ denotes a robust penalty function such as log(1+ z2) and Ai ∗ up is the
convolution of a filter Ai with the image patch up. For finding suitable filters A the
authors, however, propose a bi-level optimization framework, which – in the case of
image denoising – takes the form

min
A

 ∑
training examples (û j , f j)

‖u j(A)− û j‖2
2

 ,

subject to u j(A) ∈ argmin
u

λ ‖u− f j‖2
2 +R(u,A),

(12)
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for pairs (û j, f j) of noise-free and noisy training images û j and f j, respectively.
Although the problem (12) is difficult to solve, the results in [18] are promising,

the approach retains the interpretation of an energy minimization method, and the
regularization can potentially generalize to arbitrary image restoration problems. Its
limitation is, however, given by the manual choice and specific parametrization of
R in (11).

5.3 Developing Network Architectures from Optimization Methods

For the sake of more freedom, the authors of [19] considered the minimization of
energies like (4) for a parameterized regularization R with learnable weights. By
using a gradient descent iteration, a discretization of a reaction-diffusion type of
equation is obtained in which the authors, however, allow the parameterized regu-
larization to change at each iteration of their scheme. Note that although this does
not allow the interpretation as an energy minimization method anymore, it led to
improved denoising performances.

Similarly, in [59] Schmidt and Roth construct a method based minimizing

1
2
‖Ku− f‖2

2 + ∑
filters Ai

∑
patches up

ρi(Ai ∗up),

where ρi are suitable penalty functions to be learned. By considering a half-
quadratic splitting that minimizes

E(u,z) =
1
2
‖Ku− f‖2

2 + ∑
filters Ai

∑
patches up

ρi(zi,p)+
β

2
(zi,p−Ai ∗up)

2, (13)

for u and z in an alternating fashion, the update for u becomes a simple linear equa-
tion. The update for z reduces to what the authors call shrinkage function in [59],
and which is called proximal operators in the optimization community. The proxi-
mal operator of a (typically proper, closed, convex) function R : Rn → R∪{∞} is
defined as

proxR(h) = argmin
v

1
2
‖v−h‖2 +R(v). (14)

In the case of minimizing for z in (13), all ρi are functions from R to R, and so are
proxρi

. At this point, the idea of Schmidt and Roth is twofold:

1. They propose to parameterize and learn the proximal operators proxρi
instead

of the functions ρi, and even intentionally drop the constraint that the learned
operators ri must correspond to proximal operators. In fact, it is shown in [59]
that the final ri provably cannot be proximal operators anymore.

2. They allow the learned operators ri to change in each iteration of the half-
quadratic minimization.
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By changing the operator in each step, the resulting algorithmic scheme does not
resemble the structure of a minimization algorithm anymore. By omitting the mono-
tonicity contraint which is necessary to even be able to identify an operator as the
proximal operator of a function, not even a single iteration of the respective scheme
can be interpreted as an energy minimization step. Nevertheless, as the training ba-
sically ’roles out’ the algorithm for a fixed number of iterations, the paper natu-
rally resemble a (deep) neural network whose architecture is motivated by the half-
quadratic minimization method.

The methods from [59, 19] yield a nice motivation for the (otherwise somewhat
handcrafted) architecture of a neural network, and both allow the extension from
image denoising to more general linear inverse problems. Because both works, [59]
and [19], do, however, have changing operators in each iterations and ’roll out’ the
iterations during training, they cannot be interpreted as an iteration yielding a (hope-
fully convergent) sequence of iterates as usual minimization algorithms. Moreover,
the end-to-end training of the resulting algorithmic schemes still tailors the param-
eters to the specific setting (i.e. the specific operator K, type and strength of noise)
they have been trained on.

5.4 Algorithmic Schemes based on Learned Proximal Operators

To avoid the aforementioned drawbacks recent research [75, 54, 15, 45] has consid-
ered fully decoupling the data formation process from learning a function that in-
troduces the required regularity. All these approaches develop algorithmic schemes
based on classical optimization methods and replace the proximal operator of the
regularization by a neural network. The general idea originates from previous pub-
lications [23, 76, 68, 34] in which general algorithmic schemes were developed by
replacing the proximal operator of the regularization by denoising algorithms such
as BM3D or NLM. The premise that learning based approaches have the power
to learn even more complex smoothness properties than the nonlocal similarities
captured by NLM and BM3D subsequently motivated the introduction of neural
networks. Let us review some of these ideas in more detail.

5.4.1 Deriving different schemes

As a motivation consider the problem of minimizing (4), i.e.

min
u

H f (u) + R(u), (15)

where the data term shall remain flexible as in usual variational methods, but the
regularization shall be replaced by a data driven approach in order to benefit from
the power of learning based strategies.
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Following the idea of half-quadratic splitting we have already seen in (13), we
could replace (15) by

min
u,z

H f (u) + R(z) +
β

2
‖z−u‖2, (16)

which – under mild conditions – yields a minimizer of (15) for β → ∞.
By applying alternating minimization to (16) one has to solve

uk+1 = prox 1
β

H f
(zk), (17)

zk+1 = prox 1
β

R(u
k+1). (18)

As such an algorithm decouples the regularization from the data fidelity term, it is
natural to replace the proximal operator of the regularization by a neural network.
Based on the fact that the proximal operator of a regularization represents a denois-
ing proceedure, or – in the extreme case – the projection onto a natural feasible set
of natural images, researchers have trained respective networks to perform exactly
these tasks, see [75, 15, 45]. In the above example of half quadratic splitting, the
resulting algorithmic scheme becomes

uk+1 = prox 1
β

H f
(zk), (19)

zk+1 = G(uk+1; θ̂), (20)

for a network G that has been trained on denoising or, more generally, on “making
the image more realistic”.

The above idea and derivation of the algorithmic scheme is of course not lim-
ited to the method of half-quadratic splitting, but actually applies to almost any
minimization method for (16). Due to its flexibility in handling multiple terms the
alternating direction method of multipliers (ADMM) and preconditioned variants
thereof have mostly been used in this context, see [23, 76, 68, 34, 75, 54, 15, 45].
Since ADMM is known to not necessarily converge on nonconvex problems, this
choice does not seem to be natural considering that approaches that replace a prox-
imal operator by an arbitrary function are even beyond the setting of nonconvex
minimization.

In Table 1 we provide an overview of a wide variety of different optimization
methods and their corresponding algorithmic schemes that could be used in the very
same fashion. Note that we not only considered replacing the proximal operator
of the regularization with a neural network, but also its explicit counterpart – the
explicit gradient descent step on R,

u− τ∇R(u) → G(u, θ̂).

This, for instance, leads to the algorithmic schemes of proximal gradient 2 and
HQ splitting to coincide despite originating from different optimization algorithms
which do not even converge to the same minimizer in a suitable convex setting.
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Method Iteration Algorithmic scheme

Gradient
descent

z1 = uk−2τ∇H f (uk),

z2 = uk−2τ∇R(uk),

uk+1 =
1
2
(z1 + z2).

z1 = uk−2τ∇H f (uk),

z2 = G(uk; θ̂),

uk+1 =
1
2
(z1 + z2).

Proximal
Gradient 1

zk = uk− τ∇H f (uk),

uk+1 = proxτR(z
k).

zk = uk− τ∇H f (uk),

uk+1 = G(zk; θ̂).

Proximal
Gradient 2

zk = uk− τ∇R(uk),

uk+1 = proxτH f
(zk),

zk = G(uk; θ̂),

uk+1 = proxτH f
(uk).

HQ split-
ting

uk+1 = prox 1
β

H f
(zk),

zk+1 = prox 1
β

R(u
k+1).

ADMM

uk+1 = prox 1
β

H f
(zk− pk),

zk+1 = prox 1
β

R(u
k+1 + pk),

pk+1 = pk +uk+1− zk+1.

uk+1 = prox 1
β

H f
(zk− pk),

zk+1 = G(uk+1 + pk; θ̂),

pk+1 = pk +uk+1− zk+1.

Primal-
dual 1

pk+1 = pk +β ūk

−βprox 1
β

R

(
pk

β
+ ūk

)
,

uk+1 = proxτH f
(uk− τ pk+1),

ūk+1 = uk+1 +(uk+1−uk).

pk+1 = pk +β ūk

−βG(
pk

β
+ ūk; θ̂),

uk+1 = proxτH f
(uk− τ pk+1),

ūk+1 = uk+1 +(uk+1−uk).

Primal-
dual 2

zk+1 = zk +βKūk

−βprox 1
β

Tf

(
zk

β
+Kūk

)
,

pk+1 = pk +β ūk,

−βprox 1
β

R

(
pk

β
+ ūk

)
,

uk+1 = uk− τKT zk+1− τ pk+1,

ūk+1 = uk+1 +(uk+1−uk).

zk+1 = zk +βKūk

−βprox 1
β

Tf

(
zk

β
+Kūk

)
,

pk+1 = pk +β ūk,

−βG(
pk

β
+ ūk; θ̂),

uk+1 = uk− τK∗zk+1− τ pk+1,

ūk+1 = uk+1 +(uk+1−uk).

Table 1 Different algorithms for minimizing H f (u) + R(u) and the corresponding algorithmic
schemes that replace explicit or implicit (proximal) gradient steps on the regularization by a neural
network G. For the Primal-dual 2 algorithm we assumed that H f = Tf ◦K for a linear operator K.
Note that – even in a convex setting with some additional assumptions – the HQ splitting algorithm
does not converge to a minimizer of H f (u)+R(u) but rather replaces R or H f by the (smoother)
Moreau envelope. The choice β → ∞ can usually reestablish the convergence.
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While the HQ splitting algorithm is unconditionally stable it converges to a mini-
mizer of a smoothed version of the original energy (replacing R, respectively H f , by
its Moreau envelope). The proximal gradient 2 algorithm on the other hand requires
a step size 0 < τ < 2

L with L being the Lipschitz constant of ∇R to converge to a
minimizer of H f +R. This along with the long list of possible algorithmic schemes
in Table 1, which could further be extended by the corresponding methods with in-
ertia/momentum, raises the question which method should be used in practice. An
exhaustive answer to this question (if it can be provided at all) requires a tremen-
dous number of experiments involving different problems, different networks, data
terms, parameters, and initializations, and goes beyond the scope of this paper. We
do, however, provide some first experiments involving all algorithms in Section 6.

5.4.2 Hyperparameters of the algorithmic schemes

When comparing algorithmic schemes like Proximal gradient 1 with their optimiza-
tion algorithm counterpart, one observes that replacing the proximity operator with
a neural network eliminates the step size parameter τ . The missing dependence of
the ’regularization-step’ on τ in the Proximal gradient 1 scheme means that the step
size τ merely rescales the data fidelity term: The resulting algorithmic scheme may
always pick τ = 1, i.e., eliminate the step size completely, and interpret any τ 6= 1 as
a part of H f , see [45] for details. Interestingly, even simple choices like the function
G being the identity may lead to divergent algorithmic schemes for large data fidelity
parameters. This may motivate training a network function G on a rather small noise
level such that even moderate data fidelity parameters can lead to a large emphasis
on data fidelity over the course of the iteration. Note that - at least in the context of
optimization - the aforementioned difficulties can be avoided by an implicit treat-
ment of the data fidelity term as arising in the Proximal Gradient 2 or HQ splitting
algorithms.

The elimination of hyperparameters in the algorithmic schemes becomes even
more interesting for the more sophisticated primal-dual and ADMM based schemes.
Note that the parameter 1/β in the ADMM scheme also merely rescales the data
fidelity term. As shown in [45], in the primal-dual 1 scheme, we can define p̃ = p/β

to arive at the update equations

p̃k+1 = p̃k + ūk−G(p̃k + ūk; θ̂), (21)

uk+1 = proxτH f
(uk− τβ p̃k+1), (22)

ūk+1 = uk+1 +(uk+1−uk). (23)

In this case the parameter τ scales the data fidelity term, but the product of τ and β

remains a factor for p̃k+1 in the update of uk+1. In the world of convex optimization,
the product τβ has to remain smaller than the operator norm of the linear operator
used in the primal-dual splitting, which – in our specific case of primal-dual 1 – is
the identity. Due to the equivalence of ADMM and the primal-dual algorithm in a
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convex setting, the largest value of the product βτ for which convergence can still be
guaranteed is 1, which is also the choice we make in all our numerical experiments
below. This allows to again eliminate τ completely as it merely rescales the data
fidelity term H f .

A similar computation allows to reduce the primal-dual 2 scheme to a rescaling
of Tf by 1/β and the product of τβ . Since this splitting involves the linear operator
of two stacked identities, the step size restriction in the convex setting would be
τβ < 1/

√
2. We chose τβ = 0.5 in all our experiments.

5.4.3 Algorithm equivalence

A particularly interesting aspect in the above discussion is the equivalence of
ADMM and primal-dual in the convex setting. Considering the ADMM scheme
from Table 1, we notice that

zk = uk− pk + pk−1

such that the update in uk+1 can equivalently be written as

uk+1 = prox 1
β

H f
(uk− (2pk− pk−1)).

By entirely eliminating the variable z from the update equations we arrive at the
equivalent form

uk+1 = prox 1
β

H f
(uk− (2pk− pk−1)), (24)

pk+1 = pk +uk+1−G(pk +uk+1; θ̂). (25)

In the convex setting, i.e., if G is the proximity operator of a proper, closed, convex
function, Moreau’s identity yields the commonly used form of the primal-dual al-
gorithm as presented in [13]. Note that the equations (21)–(23) match those of (24)
and (25) up to the extrapolation: While 2uk+1−uk appears in (21)–(23), the scheme
(24)–(25) uses 2pk+1− pk. In this sense, the primal-dual schemes of Table 1 repre-
sent algorithms arising from applying the convex ADMM optimization method to
the dual optimization problem

min
p
(H f )

∗(p)+R∗(−p),

writing the algorihm in a primal-dual form, using Moreau’s identity to obtain primal
proximity operators only, and finally replacing one of the proximity operators by a
neural network. While an algorithmic scheme motivated from a purely dual (and
therefore inherently convex) point of view does not seem to have a clear intuition,
our numerical experiments indicate that the two variants (21)–(23) and (24)–(25)
perform quite similarly.
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6 Numerical Experiments: Denoising by Denoising?

6.1 Different Noise Types and Algorithmic Schemes

So far, the literature on replacing proximal operators by neural networks, [75, 54,
15, 45], has focused on the linear inverse problems with a quadratic `2 norm as a
data fidelity term, i.e.,

H f (u) =
α

2
‖Ku− f‖2,

and ADMM or primal-dual type of algorithmic schemes. Interestingly, the behavior
of such methods for image denoising with different types of noise, i.e., K being the
identity and H f being a penalty function different from the squared `2 norm, has
received little attention despite the fact that adapting the type of penalty is known to
be extremely important, particularly in the presence of outliers.

To investigate the behavior of the different algorithmic schemes presented in
Table 1 we consider images with Gaussian and Salt-and-Pepper noise and use a
Huber Loss

Hν
f (u) = ∑

i, j
hν(ui j− fi j), hν(x) =

{
1

2ν
x2 if |x| ≤ ν ,

|x| otherwise,

as a data fideltiy term. The Huber loss has the advantage that it is differentiable with
a L-Lipschitz continuous derivative for L = 1

ν
, and, at the same time, also allows an

efficient computation of its proximal operator, which is given by

proxτh(y) =

{
y/(1+ τ

ν
) if |y| ≤ ν + τ

sign(y)(|y|− τ) otherwise.

In our experiments we evaluate the gradient descent (GD), proximal gradient 1
called forward-backward (FB) here, the half-quadratic splitting (HQ), the ADMM,
the primal-dual 1 (PD1), and primal-dual 2 (PD2) (with K being the identity)
schemes from Table 1 for denoising grayscale images using Matlabs built-in im-
plementation of the DnCNN denoising network [74] as a proximal operator. For
the sake of comparability, we also include the plain application of this denoising
network (Net), and a total variation based denoising (TV) in our comparison. To
each clean image, we add white Gaussian noise of standard deviation σ = 0.05
(for images with values in [0,1]), and additionally destroy 1% of the pixels using
Salt-and-Pepper noise. While we are aware of the fact that this does not necessar-
ily reflect a realistic data formation process for camera images, our goal here is to
study to what extend each of the algorithmic schemes from Table 1 is able to adapt
to different settings by changing the data fidelity term.

We fixed the smoothing parameter ν = 0.025 for the Huber loss and then tuned
the hyperparameters of TV and the algorithmic schemes on a validation image,
where we found a data fidelity weight of 0.02 to be a good choice for all network-
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based algorithmic schemes. Note that this means that the factor in front of the Huber
loss is smaller than 2/L, where L is the Lipschitz constant of ∇Hν

f . Clearly, the lat-
ter is important as the schemes that descent on Hν

f in an explicit fashion typically
require this condition even in a convex setting. Furthermore, we also met the require-
ments for ’convex convergence’ in the primal dual schemes by choosing βτ = 1 in
the ’primal-dual 1’ scheme, and βτ = 0.5 for ’primal-dual 2’.

We keep all parameters fixed over a run on 7 different test images and show the
resulting PSNR values for all algorithmic schemes in Table 2.

cats xmax food ball car monkey pretzel avg.

TV 27.53 24.12 29.46 24.89 27.27 28.00 30.57 27.41

Net 26.76 24.87 27.78 25.25 26.90 26.39 28.41 26.62

HQ 28.97 26.94 29.97 26.97 28.90 29.42 30.32 28.79

FB 28.86 26.73 29.84 26.81 28.97 29.29 30.79 28.76

GD 28.33 26.96 28.89 26.76 28.05 28.72 28.76 28.07

ADMM 28.86 26.73 29.84 26.81 28.97 29.29 30.79 28.76

PD1 28.86 26.73 29.84 26.81 28.97 29.29 30.79 28.76

PD2 28.85 26.76 29.83 26.81 28.99 29.30 30.79 28.76

Table 2 PSNR values for denoising images with Gaussian and Salt-and-Pepper noise obtained
by applying a neural network trained on Gaussian noise (Net), total variation denoising (TV),
and different algorithmic schemes with a neural network replacing the proximal operator of the
regularization, and a Huber loss being used as a measure for data fidelity.

As we can see, algorithmic schemes are able to improve the results of plainly
applying the network by more than 2db on average. Interestingly, the results among
different algorithmic schemes vary very little with the gradient descent based al-
gorithmic scheme being the only one that yields some deviation in terms of PSNR.
While similar behavior of different algorithms is to be expected for convex optimiza-
tion methods, it is quite remarkable that the algorithmic schemes behave similarly.

To investigate the robustness of the algorithmic schemes, we investigate their
sensitivity with respect to the starting point. While we used a constant image whose
mean coincides with the mean of the noisy image as a starting point for the results
in 2, Table 3 shows the average PSNR values over the same test images when ini-
tializing with different images. As we can see the results remain remarkably stable
with respect to different initializations.

In the above test we ran all algorithmic schemes for a fixed number of 100 itera-
tions. An interesting question is, whether the algorithmic schemes actually converge
or if they just behave somewhat nicely for a while, but do not yield any fixed points.
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TV Net HQ FB GD ADMM PD1 PD2

constant 27.41 26.62 28.79 28.76 28.07 28.76 28.76 28.76

random 27.40 26.65 28.81 28.77 28.10 28.77 28.77 28.80

noisy 27.41 26.64 28.79 28.76 28.06 28.76 28.76 28.77

different 27.40 26.68 28.79 28.75 27.98 28.76 28.76 28.70

Table 3 Average PSNR values each method achieved on the test set of 7 images used in Table 2
when initializing each method with a constant image (constant), with random numbers uniformly
sampled in [0,1] (random), with the noisy input image (noisy), or with Matlab’s cameraman image,
i.e., a different image (different). The final results of the algorithmic schemes remain remarkably
stable and do not vary significantly more than the TV result (whose variations are merely due to
different realizations of the noise).

6.1.1 Numerical convergence of algorithmic schemes

Several works in the literature investigate the question whether algorithmic schemes
arising from the ADMM algorithm converge:

• The work [62] gives sufficient conditions under which a general denoiser, e.g. a
neural network G, represents the proximal operator of some implicitly defined
function. As G is assumed to be continuously differentiable and ∇G(u) has to be
doubly stochastic for any u, the assumptions are, however, quite restrictive.

• The authors of [14] state a converge result of an ADMM based algorithmic
scheme with adaptive penalty parameter under the assumption of a bounded de-
noiser. The adaptive scheme, however, possibly allows an exponential growth of
the penalty parameter. While the latter safeguards the convergence the point it
converges to might not be a fixed-point of the algorithmic scheme anymore.

• The work by Romano, Elad and Milanfar in [54] proposes a flexible way to in-
corporate denoiser G (such as neural networks) into different algorithmic frame-
works by providing quite general conditions under which the function

R(u) =
1
2
〈u,u−G(u)〉

has a gradient ∇R(u) = u−G(u), such that it can easily be incorporated into
existing optimization algorithms. While the assumption G(αu) = αG(u) for all
α ≥ 0 made in their work does hold for several denoisers, neural networks often
have a bias in each layer which prevents the above homogeneity. We therefore
investigate the question if the algorithmic schemes converge numerically for a
state-of-the art denoising network which did not adapt its design to any particular
convergence criteria.
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Figure 4 (a) shows the decay of the root mean square error (RMSE) of successive
iterates

RMSE(uk,uk+1) =

√
1

number of pixels ∑
i, j
(uk

i j−uk+1
i j )2

for each of the algorithmic schemes from Table 2. As we can see, all algorithmic
schemes converge to a reasonably small level (considering that all computations are
done on a GPU in single precision).

We rerun the same test as above after multiplying the data fidelity term by a
factor of 10 and illustrate the results in Figure 4 (b). As we discussed in Section
5.4.2 the data fidelity weight is directly connected to a step size of the algorithmic
schemes. As expected based on the respective behavior in a convex optimization
setting, methods that take explicit steps on the data fidelity term do not exhibit con-
vergence anymore. Interestingly, the methods that evaluate the proximity operator
of the data fidelity term still converge and seem to be quite independent of the mag-
nitude of the data fidelity parameter.

While the numerical convergence behavior in our denoising test is closely related
to the convergence behavior of the respective methods in the case of convex opti-
mization, an analysis with sufficient conditions on the network to yield a provably
convergent algorithm remains an interesting question of future research.

0 500 1000 1500

Iteration

10-8

10-6

10-4

10-2

100

GD
FB
BB
ADMM
PD1
PD2

0 100 200 300 400 500

Iteration

10-8

10-6

10-4

10-2

100

GD
FB
BB
ADMM
PD1
PD2

(a) Convergence with data fidelity 0.02 (b) Convergence with data fidelity 0.2

Fig. 4 Numerical convergence test of different algorithmic schemes. The schemes seem to behave
similar to convex minimization techniques in the sense that they converge numerically if the convex
stability criteria are satisfied.

6.2 Handling Constraints

Besides the lack of versatility of learning based approaches, a significant drawback
is the lacking control over their output: For instance, once a network has been trained
there is no parameter that allows to tune the amount of denoising. Moreover, al-
though many types of constraints can be encouraged during training, there is no
guarantee for the networks output to meet such constraints during testing. This is
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of utmost importance in any application where critical decisions depend on the net-
works output.

Interestingly, the framework of algorithmic schemes based on optimization al-
gorithms allows to guarantee certain constraints by choosing the data fidelity term
H f to be the indicator function of the desired (convex) constrained set. As an ex-
ample, consider the case where want to denoise an image under the constraint that
each pixel may at most be altered by δ , i.e., we want our reconstruction u to meet
‖u− f‖∞ ≤ δ for f being the noisy input image. Note that such constraints can eas-
ily be extended to a setting of inverse problem, e.g., requiring ‖Ku− f‖2 ≤ δ . The
fact that indicator functions are not differentiable excludes the gradient descent, as
well as the proximal gradient 1 algorithms. Moreover, the primal dual 2 scheme does
not guarantee the output ukmax to meet the constraint exactly unless it converged. We
therefore return

proxH f

(
zkmax +ukmax

)
,

which satisfies the constrain and is supposed to coincide with ukmax upon conver-
gence.

We simulate images with uniform noise and set our data fidelity term to be the
indicator function of ‖u− f‖∞ ≤ δ , which has an easy-to-evaluate proximity op-
erator. We run the algorithmic schemes HQ splitting, ADMM, primal-dual 1, and
primal-dual 2, as well as TV denoising (as a baseline), and compare to the plain
application of the denoising network.

The average PSNR values are shown in Table 4. Interestingly, the PSNR values
do not differ significantly, and the algorithmic schemes may perform worse (HQ), or
slightly better (PD2) than the plain application of the network. While these results
would not justify the additional computational effort of the algorithmic schemes,
note that the Net result violated the ‖u− f‖∞ ≤ δ bound at about 25% of the pix-
els on average. Although the simple projection of the network’s result would yield
satisfactory results in this simple application, the constraint violation illustrates the
lacking control of neural networks.

Finally, comparing the results of the network and the algorithmic schemes to
plain TV denoising, we can see that TV denoising is (at least) on-par with the other
methods. This yields the interesting conclusions that the advantages certain meth-
ods have as a denoiser do not necessarily carry over to other applications via the
algorithmic schemes we presented in Table 1. In particular, an important question
for future research is how networks (or general denoisers) can be designed in such a
way that they work well in various different setting, in particular in such a way that
they perform well with additional constraints on the output.

TV Net HQ ADMM PD1 PD2

PSNR 32.77 32.66 31.99 32.54 32.67 32.80

Table 4 Average PSNR values each method achieved on the test set of 7 images with uniform
noise and a suitable bound on ‖u− f‖∞.
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7 Conclusions

We have summarized some classical denoising methods including self-similarity
based filtering and variational methods, and discussed various learning based meth-
ods that profit from a dataset of natural images. The framework of replacing proxi-
mal operators within optimization algorithms for energy minimization methods with
denoising networks holds great promise in tackling various imaging tasks, using
different data fidelities, and being able to adjust the amount of regularity without
having to retrain the underlying neural network. Interestingly, the particular choice
of algorithmic scheme had little influence on the final result in our numerical exper-
iments and the convergence behavior of all algorithms was similar. Changing the al-
gorithmic scheme from a penalty formulation to a constrained formulation changed
the results quite significantly in the sense that the advantages of the neural network
over TV regularization for image denoising did not transfer to the corresponding
algorithmic scheme. Hence, an understanding of desirable properties of denoising
algorithms for optimal results in the setting of algorithmic schemes remains an im-
portant question for future research.
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31. S. Gu, L. Zhang, W. Zuo, and X. Feng. Weighted nuclear norm minimization with applica-

tion to image denoising. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2862–2869, 2014.

32. K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level per-
formance on imagenet classification. In IEEE International Conference on Computer Vision
(ICCV), pages 1026–1034, 2015.

33. K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016.



Image Denoising – Old and New 27

34. F. Heide, M. Steinberger, Y.T. Tsai, M. Rouf, D. Pajk, D. Reddy, O. Gallo, J. Liu, W. Heidrich,
K. Egiazarian, J. Kautz, and K. Pulli. Flexisp: A flexible camera image processing framework.
ACM Special Interest Group on Computer Graphics (SIGGRAPH), 2014.

35. J. Huang and D. Mumford. Statistics of natural images and models. In Computer Vision and
Pattern Recognition, 1999. IEEE Computer Society Conference On., volume 1, pages 541–
547. IEEE, 1999.

36. S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International Conference on Machine Learning (ICML), 2015.

37. V. Jain and S. Seung. Natural image denoising with convolutional networks. In D. Koller,
D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing
Systems 21, pages 769–776. Curran Associates, Inc., 2009.

38. J. Johnson, A. Alahi, and F-F. Li. Perceptual losses for real-time style transfer and super-
resolution. In European Conference on Computer Vision (ECCV), 2016.

39. A. Kheradmand and P. Milanfar. A general framework for regularized, similarity-based image
restoration. IEEE Transactions on Image Processing, 23(12):5136–5151, 2014.

40. C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani,
J. Totz, Z. Wang, and W. Shi. Photo-realistic single image super-resolution using a generative
adversarial network, 2016. Preprint. Available online at https://arxiv.org/abs/1609.04802.

41. S. Lefkimmiatis. Non-local color image denoising with convolutional neural networks, 2017.
Preprint. Available online at https://arxiv.org/abs/1611.06757.

42. P. Liu and R. Fang. Learning pixel-distribution prior with wider convolution for image de-
noising, 2017. Preprint. Available online at https://arxiv.org/abs/1707.09135.

43. J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Non-local sparse models for image
restoration. In IEEE International Conference on Computer Vision (ICCV), pages 2272–2279,
2009.

44. J. Mairal, M. Elad, and G. Sapiro. Sparse representation for color image restoration. IEEE
Transactions on Image Processing, 17(1):53–69, 2008.

45. T. Meinhardt, M. Moeller, C. Hazirbas, and D. Cremers. Learning proximal operators: Using
denoising networks for regularizing inverse imaging problems. In IEEE International Confer-
ence on Computer Vision (ICCV), 2017.
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