
SMI 2015

Realistic photometric stereo using partial differential irradiance
equation ratios

R. Mecca a,n, E. Rodolà b,1, D. Cremers b

a Department of Mathematics, University of Bologna, Piazza di Porta San Donato 5, 40126 Bologna, Italy
b Computer Vision Group, Technische Universität München, Department of Computer Science, Boltzmannstrasse 3, 85748 Garching, Germany

a r t i c l e i n f o

Article history:
Received 10 March 2015
Received in revised form
15 May 2015
Accepted 16 May 2015
Available online 29 May 2015

Keywords:
Photometric stereo
Partial differential equations
Image ratios
Diffuse component
Specular component

a b s t r a c t

Shape from shading with multiple light sources is an active research area and a diverse range of
approaches have been proposed in the last decades. However, devising a robust reconstruction
technique still remains a challenging goal due to several highly non-linear physical factors being
involved in the image acquisition process. Recent attempts at tackling the problem via photometric
stereo rely on simplified hypotheses in order to make the problem solvable. Light propagation is still
commonly assumed to be uniformly oriented, and the BRDF assumed to be diffuse, with limited interest
for materials giving specular reflection. Taking into account realistic point light sources, in this paper we
introduce a well-posed formulation based on partial differential equations for both diffuse and specular
shading models. We base our derivation on the popular approach of image ratios, which makes the
model independent from photometric invariants. The practical effectiveness of our method is confirmed
with a wide range of experiments on both synthetic and real data, where we compare favorably to the
state of the art.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, the importance of having three-dimensional objects on
a computer directly imported from the real world is increasing due to
the fact that many applicative fields need to observe, manipulate or
reproduce reality. However, among the several existing techniques for
3D scanning, only few can be actually considered as emerging tech-
nologies in the market. Structured light [1] and multi-view stereo [2]
are gradually moving to smart devices, making them able to provide a
rough depiction of a depth field rather than an accurate 3D recon-
struction. Reconstruction accuracy depends on a number of factors
which may prevent a precise measurement of the observed scene, and
for these reasons additional constraints need to be imposed on the
acquisition environment.

Photometric stereo (PS) allows highly accurate reconstructions
under the requirement to work in a controlled setup, making it appli-
cable in limited scenarios. However, starting from the seminal work of
Woodham [3], the use of complex shading models has not evolved
much in modern PS approaches [4,5]. Indeed, the simplifying app-
roach that models the captured images as an inner product between
uniform light direction and outgoing surface normal is still commonly

found in the literature [6]. Shape reconstruction from shading infor-
mation is a difficult problem, due to the complexity of the underlying
physical process describing how a light beam bounces on the surface.
Thus, it becomes fundamental to take into account the parametriza-
tion of all elements that influence the image formation. Although the
behavior of light itself (e.g., propagation and attenuation) does require
to be carefully modeled, the bidirectional reflectance direction func-
tion (BRDF) represents the true bridge between the real world and the
depicted one. Most of the literature dealing with PS assume diffuse
reflection (i.e., uniform in all directions), reducing the mathematical
model to a linear problem where the normal field can be easily
computed [7] and finally integrated [8]. Realistically, this approach
contains too many assumptions which fail as soon as the method is
applied in many real-world applications. There are at least two reasons
why the reconstruction of specular surfaces still remains a challenging
task in the PS field. First, the BRDF for specular reflections is highly
non-linear, which means that mathematically it is difficult to have a
straightforward solvability. Second, the specular reflection has a very
susceptible signal (see Fig. 1, upper part), easily corruptible by environ-
ment and acquisition noise.

Instead of considering shape reconstruction in the wild [9,10],
in this paper we take into account a controlled lighting setup in
which point light sources are used to illuminate the observed
object. This kind of setup is commonly used in the PS field [11,12]
by virtue of its applicability in several interesting applications [13–
15]. We introduce a new differential model which allows to extract
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shape information even for specular surfaces (Fig. 1). The approach
is based on the Blinn–Phong shading model [16], which has been
shown to be a realistic BRDF [17]. The model we propose improves
upon a recent proposal [18], which only takes into account diffuse
surfaces. Similarly to this previous work, we formulate the pro-
blem using non-linear PDEs as our main mathematical tools.

1.1. Related work

As mentioned in the previous section, dealing with general BRDFs
is a challenging problem due to the non-linearities arising in the image
formation process. Previous studies consider an object of the same
material as a reference [19], or attempt to get rid of the specularity by
eliminating highlights in a pre-processing step [20,21]. Dichromatic
reflectance models have also been considered as a basis for diffuse and
specular reflection separation, in particular [22] makes use of a dark
channel prior and [23] iteratively compares the intensity logarithmic
differentiation of the input image. The dichromatic model can be
employed to perform shape reconstruction of the diffuse component
only [24,25]. Yang and Abuja [26] use both the diffuse and specular
components for the reconstruction by assuming the illumination
chromaticity to be known, and at least one of the input images to
be free of specularity.

Several works take into account general irradiance equations,
leading to difficult problems that are then solved after substantial
simplifications. For example, Ikehata et al. [4,5] use the purely
diffuse irradiance equation for general surfaces, and consider the
specular component as a sparse error. In order to provide an

accurate solution, they introduce a regression procedure which
requires tens of images. The use of such a big amount of data
partially justifies the assumption of ignoring specular reflection
(due to its sparsity). On the other hand, expensive algorithms
based on energy minimization tend to be slow and cannot provide
real-time shape recovery. Furthermore, light propagation is con-
sidered to be uniform, not allowing realistic features such as radial
propagation and attenuation of light to be taken into account.

When the linearization of real physical effects comes into play, it
induces deformations on the recovered surface. Motivated by this, we
formulate a new PS differential model for specular surfaces that takes
into account point light sources. For this purpose wemake use of non-
linear PDEs, a mathematical tool that has attracted increasing interest
in the last few years [27,28,11]. These approaches consider image ratios
in order to yield photometric invariants, and model the irradiance
equations via PDEs. Mecca et al. [27,28,18] use specific irradiance
equations for diffuse surfaces, and the uniqueness of solution is proved
by characteristic strip expansion and assuming known light informa-
tion (i.e., direction or position). Chandracker et al. [11,29] consider
more general irradiance equations with unknown light sources, and
compute the photometric invariants describing the surface through its
isocontours [30]. However, the shape reconstruction process requires
additional initial or boundary information.

All the works mentioned so far take into account uniform light
propagation, which restricts the problem to a very specific and
controlled environment. Parametrization of realistic point light
sources is not new [15,31], yet very few approaches apply this idea
to shape reconstruction. Wu et al. [13] use two point light sources

Fig. 1. Full reconstruction of the “bimba” model from 6 partial views under 5 point light sources. The images used for the reconstruction (top, one light source only) consist
solely of the specular component of the reflected light, yet our method provides a near-perfect reconstruction of the model. The artifact on top of the head is due to the
surface region not being visible in any of the partial views. See Section 4.1 for more details on the reconstruction process.
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in an endoscopic scenario. Rather than assuming two separate
irradiance equations, they couple them in such a way to lead to a
shape-from-shading problem, where the unique irradiance equa-
tion is assumed to be their sum.

With the aim to make the modeling of our PS technique as
realistic as possible, we consider the reconstruction of diffuse and
specular surfaces as separate cases. We extend the parametrization of
point light sources described in [18], and modify it so as to perfectly
fit a well-posed differential problem based on image ratios of partial
differential irradiance equations, leading to quasi-linear PDEs. Besides
tackling a more realistic scenario, our approach is computationally
efficient as it can be implemented via fast marching methods. To the
best of our knowledge, this is the first successful attempt at tackling
this more general and realistic scenario.

1.2. Contribution

In this paper we introduce a new photometric stereo technique
for 3D shape recovery. Among other advantages, our model gets
rid of many unrealistic restrictions imposed by recent parametri-
zations [18], which we extend and improve upon in several ways.
In particular, despite the non-linearities arising from the image
formation process, light parametrization and attenuation, our
model allows to successfully recover diffuse and (most notably)
specular surfaces.

The key contributions of this paper can be summarized as
follows:

� Our approach takes into account any kind of light attenuation,
including but not limited to radial and distance-based dissipa-
tion effects.

� Our parametrization allows for general light positions (Fig. 2).
By contrast, previous approaches either consider uniform light-
ing, or require the light sources to be attached to the optical
plane of the camera [18,13,11].

� We define a well-posed differential model for specular surfaces
by making use of image ratios of the Blinn–Phong shading
model [16]. We extend the differential model to pinhole
cameras, where the viewer direction changes radially.

� We provide a parametrization for realistic light attenuation and
propagation of point light sources illuminating specular surfaces.

� Our method can be implemented efficiently via fast marching,
and allows accurate recovery from few images in a matter of
seconds using 1.2 Megapixel data.

2. Mathematical model

With the aim to formulate a suitable mathematical model for
realistic scenarios, we start by following the parametrization
defined in [18], and introduce several fundamental extensions
and generalizations.

Let us briefly recall the parametrization of the surface which
takes into account the perspective deformation based on the
pinhole camera model (Fig. 2). Given a surface Σ, we consider
the depth zðx; yÞ defined in the image domain Ω ¼Ω [ ∂Ω to R,
such that

uðx; yÞ ¼ ðξðx; yÞ;ηðx; yÞ; ζðx; yÞÞ ¼ �x
zðx; yÞ

f
; �y

zðx; yÞ
f

; zðx; yÞ
� �

: ð1Þ

We indicate with f 40 the focal length of the camera, where
ζo� f o0, and the triplet ðξðx; yÞ;ηðx; yÞ; ζðx; yÞÞ ¼ ðξ;η; ζÞ repre-
sents the real world coordinates as a function of image
coordinates.

The outgoing normal vector to Σ can be computed as follows:

nðx; yÞ ¼ z

f 2
f∇zðx; yÞ; zðx; yÞþðx; yÞ � ∇zðx; yÞð Þ; ð2Þ

whose normalized version follows the notation:

nðx; yÞ ¼ nðx;yÞ
jnðx; yÞj: ð3Þ

Here and in the following sections, we will use v to indicate that a
given vector v is normalized.

2.1. Unconstrained light source with attenuation

Differently from [18], we parametrize point light sources placed
at general locations and thus remove the constraint that fixes
them onto the optical plane. For general placements Pj ¼ ðξj;ηj; ζjÞ
we have the following light directions:

ljðx; y; zÞ ¼ Pj�uðx; yÞ ¼ ξjþx
zðx; yÞ

f
;ηjþy

zðx; yÞ
f

; ζj�zðx; yÞ
� �

: ð4Þ

This parametrization allows us to easily include other features
such as light attenuation. For example, the classical light attenua-
tion due to energy reduction inversely proportional to (squared)
distance between light source and object can be easily computed
as jljðx; y; zÞj�2.

Additionally, radial propagation of light with respect to the
light source needs to be taken into account since light emitted by
LEDs does not have uniform intensity, depending on the angle of
exposure to the light source itself. Typical diagrams of radial
dissipation of light have the shape shown in Fig. 3, and can be
effectively computed as follows:

cos ðθÞμðx; y; zÞ ¼ ðl jðx; y; zÞ � ð0;0;1ÞÞμ ¼
ζj�z

� �μ
jljðx; y; zÞjμ

; ð5Þ

where θ is the angle of exposure, μ40 is an attenuation coeffi-
cient depending on the light source, and ljðx;y; zÞ is the j-th light
source placed at ðξj;ηj; ζjÞ.

Both attenuation effects can be combined into the following
attenuation factor:

ajðx; y; zÞ ¼
ζj�z

� �μ
jljðx; y; zÞjμþ2: ð6Þ

Fig. 2. A schematic section of the derivation of the perspective view geometry. In
the perspective world (i.e. the image coordinate system given by Oxyz) the light
reflected at image point (x, y) comes form the real point ðξ; η; ζÞ of the surface.
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Remark. The true potential of this approach can be appreciated by
considering that the model allows any kind of non-linear light
attenuations. As we will show in the next sections, even when
considering a general form for ajðx; y; zÞ we still obtain a well-
posed differential problem.

2.2. Lambertian model

We start by briefly recalling the irradiance equation for the
diffusive reflection of light. Consider the cosine law given by the
following inner product:

Djðx; yÞ ¼ ρdðx; yÞajðx; y; zÞl jðx; y; zÞ � nðx; yÞ; ð7Þ

where Dj : Ω-½0;1� is the diffusive image function taken under
the j-th light source, and ρdðx; yÞ is the unknown diffusive albedo.

We derive our differential formulation by considering the
image ratios given by Dj=Di. This makes the problem easier to
solve, since the non-linearities of the first partial derivatives of z
disappear due to the simplification of jnjðx; y; zÞj. In fact, after some
algebra the ratio Dj=Di leads to the following quasi-linear PDE:

Di
jlij
ai
ðfξj�xζjÞ�Dj

jljj
aj
ðfξi�xζiÞ

� �
zx

þ Di
jlij
ai
ðfηj�yζjÞ�Dj

jljj
aj
ðfηi�yζiÞ

� �
zy

¼Dj
jljj
aj
ðzζi�z2Þ�Di

jlij
ai
ðzζj�z2Þ: ð8Þ

These equations can be succinctly expressed as follows:

bdðx; y; zÞ �∇zðx; yÞ ¼ kdðx; y; zÞ; ðx; yÞAΩ
zðx; yÞ ¼ gðx; yÞ ðx; yÞA∂Ω

(
ð9Þ

where gðx; yÞ is the Dirichlet boundary condition.

2.3. Specular model

We consider the well-known irradiance equation for specular
surfaces, given by the Blinn–Phong shading model by the follow-
ing inner product:

Sjðx; yÞ ¼ ρsðx; yÞajðx; y; zÞðnðx; yÞ � h jðx; y; zÞÞc; ð10Þ

where Sj : Ω-½0;1� is the specular image function, c40 is a
specularity coefficient, and ρsðx; yÞ is the unknown specular albedo.

Function hjðx; y; zÞ is defined as

hjðx; y; zÞ ¼ vðx; y; zÞþ l jðx; y; zÞ; ð11Þ
where vðx; y; zÞ is the direction of the viewer. We emphasize that v
also depends explicitly on the image points (x, y) and on the depth z
itself. Following this important observation, we parametrize this
dependency by deriving a new Blinn–Phong shading formulation
which is suitable for the differential model we present. In our setup,
the viewer direction can be expressed as

vðx; y; zÞ ¼ x; y; � fð Þ: ð12Þ
We remark the ductility of this differential approach: in fact,

instead of considering an orthogonal viewer direction ð0;0;1Þ as it
is commonly done, we model the pinhole camera accordingly.

Similarly to the previous case, in order to deal with a solvable
differential formulation we consider the specular image ratio Sj=Si
instead of the non-linear system constructed by taking equations
as in (10). After some more algebra, this leads to the following
quasi-linear PDE:

a1=cj S1=ci f h
1
j þxh

3
j

� �
�a1=ci S1=cj f h

1
i þxh

3
i

� �� �
zx

þ a1=cj S1=ci f h
2
j þyh

3
j

� �
�a1=ci S1=cj f h

2
i þyh

3
i

� �� �
zy

¼ a1=ci S1=cj zh
3
i �a1=cj S1=ci zh

3
j ð13Þ

and in turn

bsðx; y; zÞ �∇zðx; yÞ ¼ ksðx; y; zÞ on Ω
zðx; yÞ ¼ gðx; yÞ on ∂Ω

(
: ð14Þ

Observe that the structure of the differential problems for both
the specular (9) and diffusive component (14) is actually the same,
and both formulations can be shown to be mathematically well-
posed admitting a unique weak Lipschitz solution.

3. Numerical scheme

In the previous section we introduced two differential formula-
tions for the diffuse and specular reflections, respectively given in
Eqs. (9) or (14), which can be solved using an identical numerical
methodology for quasi-linear PDEs. Such formulations are based
on pairs of images, but can be easily extended to handle N42
images by exploiting the quasi-linearity of the PDEs. Using multi-
ple images allows us to safely ignore the boundary conditions,
since depth information is not traveling from the boundary over
the image domain. We adapted the numerical scheme [18] for our
purposes so as to handle the unconstrained light parametrization
and the specular shading model.

By keeping the diffuse and specular models separate, we con-
sider linear combinations of those PDEs once we fix an initial point
for the reconstruction (usually the central point), where the depth
or initial guess thereof must be known. In our experiments we
measured such distance in order to understand the artifacts of the
shape recovery not depending on it. The updating formula is given
by the following upwind numerical scheme:

zðrþ1Þ
i;j ¼

jb1i;jðzðrÞi;j Þjz
ðrÞ
iþ sgnðb1i;jðzðrÞi;j ÞÞ;j

þjb2i;jðzðrÞi;j Þjz
ðrÞ
i;jþ sgnðb2i;jðzðrÞi;j ÞÞ

�Δki;jðzðrÞi;j Þ

jb1i;jðzðrÞi;j Þjþjb2i;jðzðrÞi;j Þj
ð15Þ

where Δ is the size of the discretized image domain. The vector
field bðxi; yjÞ ¼ ðb1

i;j;b
2
i;jÞ and kðxi; yjÞ ¼ ki;j are suitable linear combi-

nations of the N
2

� �
quasi-linear PDEs. Using a fast-marching

procedure, we couple pairs of (9) or (14) in order to compute
the directional derivative according to eight principal directions (2
horizontals, 2 verticals and 4 diagonals) which span the two-

Fig. 3. The intensity of light for a directional light source. This graph is reproduced
from the data sheet of the CREE XLamp MP-L EasyWhite LEDs, which were used for
the real tests.
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dimensional image domain [28]. We choose the specific equation
by taking the pair of images having the highest gray scale value at
pixel ðxi; yjÞ.

4. Experimental results

We performed a wide range of experiments on synthetic and real
data. In order to provide a quantitative evaluation of our method, we
generated synthetic data from the “bimba”, “pierrot”, and “bumpy
sphere” 3D models from the AIM@Shape Repository. Specifically, for
each model we took several snapshots from different points of view,
with a virtual perspective pinhole camera placed at �45 cm from the
object. Each object was rescaled to have a diameter of �30 cm;
camera resolution was fixed at 640� 480, with no simulated lens
distortion, and the camera plane placed at z¼ 0 as in Fig. 2. Other
variables such as number and position of lights, specularity, noise,
and light attenuation are investigated with more specific experi-
ments in the following sections.

In these experiments we initialize the reconstruction process
(Section 3) with the ground-truth depth value of the central pixel;
this is required only for comparison purposes, as by doing so we
fix the scale of the reconstructed surface to be the same as the
original object.

4.1. Sensitivity analysis

Aim of this section is to study the sensitivity of our model with
respect to different parametrizations, and under the action of
various sources of nuisance. We provide two measures of error in
order to give a quantitative assessment of our results, namely, the
angular error between the reconstructed and ground-truth normals
(degrees), and the point-to-pointmean squared error (MSE) between
the recovered 3D surface and the ground-truth object (mm2).

Light attenuation: As described in Section 2.1, our model takes
into account general light positions as well as the combined
attenuation due to radial dissipation of light and distance from
the source. In Fig. 4 we show the reconstruction of a diffuse surface

Fig. 4. Reconstruction of the Lambertian “pierrot” model under freely positioned light sources with realistic radial dissipation. In each row we show the three images used
for the reconstruction (left), followed by the reconstructed normals, the angular error (in degrees) with respect to the ground-truth normals, and the final reconstructed
surface. The two rows correspond to light sources with almost null (μ¼ 1:1) and strong (μ¼ 30) attenuation coefficients respectively. Notice how the reconstruction remains
fairly accurate even when the signal is very weak; see, for instance, the visible part of the folded collar in the second row.

Fig. 5. Reconstruction under realistic shadows and missing data. In this example, the weak signal is due to both the model being a specular surface, and to the strong radial
dissipation of the light sources (μ¼ 40). The shadow map (bottom left) counts the number of lights that “see” each point, as calculated from the 5 images used for the
reconstruction (top row). On the right we show a closeup of the ground-truth model (bottom), and the reconstructed surface with a per-vertex error map plotted over it
(top). Notice that the maximum error is equal to 2 mm2.
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from three images generated by manually displaced point lights.
Notice that the depth discontinuity between the right side of the
face and the folded collar (� 15 cm deeper) is handled well, and the
collar can still be recovered with low error. Average MSE values for
the two reconstructions are 0:97 mm2 (first row) and 2:33 mm2

(second row). We emphasize that although for simplicity in this
experiment we use lights with the same attenuation properties, our
model can accommodate arbitrary dissipation models for each
individual light source.

Missing data and shadows: When dealing with complex objects,
shadows and missing data may occur frequently also depending on
the measurement conditions and the physical properties of the
object itself. For this experiment we chose a challenging setting: a
specular surface, with complex details and strong light attenuation.
The results are shown in Fig. 5. Notice how, due to the intertwining
strands of hair and the signal decay, many object pixels are either
covered by few images or carry feeble information. Nevertheless,
the reconstructed surface remains crisp, with no holes, and the
high-frequency details are preserved.

Noise: In a separate set of experiments we investigated the
sensitivity of our method to sensor noise, which can indeed occur
in practical scenarios especially under low light conditions. To this
end, we injected additive Gaussian noise into the synthetic images
of both diffuse and specular surfaces (5 images per reconstruc-
tion), which we analyzed separately. Fig. 6 reports the results of
this experiment. It is interesting to note that, while the presence of
noise induces a clear decrease in accuracy, the main features of the
(diffuse) object still remain intact even under strong light dissipa-
tion. The effect of noise is more visible with specular surfaces, as
illustrated in Fig. 7. In this more difficult scenario, the low signal-
to-noise ratio attained at the darker image regions renders the
reconstruction more susceptible to pixel noise.

In this situation, integrating the information captured from
different vantage points can be an effective solution when applic-
able. In Fig. 1 we show an example of full reconstruction of the
“bimba” model from six partial views around the object. For each
viewpoint, we captured 5 images with different light sources. The
partial views were individually reconstructed using our method
for specular surfaces (i.e., solving Eq. (14)), then rigidly aligned
using the ground-truth motions, and finally merged together using
Poisson integration [32] on the resulting oriented point cloud. In
practical scenarios, where the ground-truth poses are not avail-
able, the rigid motions relating the partial views can still be easily
obtained by robust methods [33,34].

4.2. Comparisons

In this section we compare our method with other approaches
from the literature. As already discussed in Section 1.1, our model
is the first to deal with specular data, realistic light propagation,
and arbitrary light sources all in a unified framework. For this
reason, a direct comparison with other methods relying on simpler
models might seem unfair. However, this experiment allows us to
position our approach and clarify its benefits with respect to the
existing literature. For the purpose, we chose the traditional
approach based on the computation of the normal field [3] and
surface reconstruction [8] as a baseline, and the more recent state-
of-the-art method of Ikehata et al. [5] which also works with
specular surfaces, but does not consider light attenuation effects.
We keep the comparison as fair as possible by (1) radially arran-
ging the light positions on the camera plane at 2 cm from the
center of projection, (2) by completely removing sensor noise, and
(3) by disabling light attenuation in the specular case.

Fig. 6. First row: reconstruction error of diffuse surfaces, as a function of noise (σ) and light attenuation (μ). The curves are averaged over a collection of 8 objects; random
pixel noise with standard deviation σ is added to the captured images, which are normalized to have values in ½0;1�. Second row: the same experiment performed over
specular surfaces. Third row: reconstructed normals of a diffuse surface at different noise levels (here μ¼ 30).
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The results of this experiment are shown in Fig. 8. All methods,
including ours, have the error maps textured on the reconstructed
surfaces. The baseline approach [3,8] does not deal well with
attenuated light and it cannot handle specular reflections at all,
hence the reconstruction process diverges completely in the latter
case. The second method [5], on the other hand, attains much better
results in both experiments. The effect of radial dissipation (first
row) is less evident than in the former case; however, the surface
still diverges from the correct geometry as light gradually diffuses
from the middle. The specular object (second row) is partially
recovered in correspondence to the brighter areas, although with
large error; the reconstruction slightly improves when 40 images
are given as input (last column). These results are probably due to

the strong signal decay that characterizes the source images, and to
the inability of the method to deal with purely specular data.

4.3. Real data

In the last experiment we evaluate the practical applicability of
our model for reconstruction of real world objects. Our setup
consists of a pinhole Basler BIP2-1300c IP camera with 1.2 Mega-
pixel, mounted on a rigid support; three ultra-bright white LEDs
are radially displaced on the same plane of the camera with radius
equal to 7.5 cm, and controlled by an Arduino Nano board. For this
experiment we used a a 2 Euro coin and a toy figure of � 5 cm
diameter, both placed at 25 cm from the camera; this distance
value was then used as the initial depth for the reconstruction
process in order to fix the scale of the object.

The resulting reconstructions are depicted in Fig. 10. We would
like to point out that in these experiments we did not perform any
photometric calibration of the scene, nor did we perform an
intrinsic/extrinsic calibration of the camera parameters and of the
optical distortion. While a high-accuracy calibration would arguably
increase the quality of the results [35], we preferred not to do so in
an attempt to keep the reconstruction pipeline as simple and
practical as possible, and at the same time evaluate its resilience
to inaccurate measurements.

Note, however, that our model does require estimates for the
focal length f (Eq. (4)), attenuation factor μ (Eq. (6)), and spec-
ularity coefficient c (Eq. (10)). We obtained these values by a
simple simulation of the image acquisition process: Given the

Fig. 7. Reconstruction of a specular surface in the noise-free case (left) and with 0.1% additive pixel noise (right). The colored images show the angular error (in degrees) of
the reconstructed normals in the two cases. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

0

40

0

2e3

images ground truth ours [3]+[8] [5] [5], 40 images

Fig. 8. Comparisons between our method and the approaches described in [3,8,5]. First row: diffuse surface with mild light attenuation (μ¼ 2). Second row: specular surface,
no attenuation. All methods take as input the same 4 images, except for the last column. MSE maps are plotted on top of each reconstruction (notice the different error scales
among the two rows).

Fig. 9. Simulation of the image acquisition process. Model parameters are esti-
mated roughly by adjusting them to get similar appearance as the real images
(shown on top). In this diffuse example we use f ¼ 16 mm and μ¼ 20 (bottom).
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approximate object size, distance from the camera, CCD width
(� 4:79 mm from the technical specification) and light positions,
we reproduced the projective model depicted in Fig. 2, and took a
synthetic snapshot of the “bumpy sphere” under this virtual setup.
This allowed us to get rough estimates for the required parameters,
which were then used without further optimization. In Fig. 9 we
show an example of this estimation procedure.

4.4. Runtimes

The numerical schemes (Section 3) were implemented in Cþþ ,
and executed in Matlab using an Intel Core i7 3.40 GHz with 32 GB
RAM. Being based on fast marching, the code can be easily paralle-
lized; however, we did not perform any such optimization in order to
keep the runtimes easily interpretable. Table 1 reports the execution
times of our pipeline on image sets of increasing size. In all cases, the
process reached convergence in less than 10 iterations.

Note how the specular case reports larger execution times on
average. This is due to the different visibility conditions with
respect to the diffuse setting, which causes the marching process
to seek for better candidates over the whole collection of images
whenever a dark pixel is encountered.

5. Conclusions

In this paper we tackled the problem of 3D shape recovery from
multiple light sources. The proposed model overcomes the state of
the art in terms of modeling physical factors; it is able to deal
with photometric invariants, specular and diffusion shading models
including point light sources with arbitrary attenuation. We intro-
duced a physically motivated model based on PDEs, and demon-
strated its capability to deal with challenging and realistic cases on
a wide range of experiments. The method allows to obtain faithful
reconstructions efficiently and in noisy conditions, confirming its
practical applicability and promoting further exciting directions of
research.
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