

# Submap-based Bundle Adjustment for 3D Reconstruction from RGB-D Data

Robert Maier, Jürgen Sturm, Daniel Cremers
German Conference on Pattern Recognition (GCPR) 2014

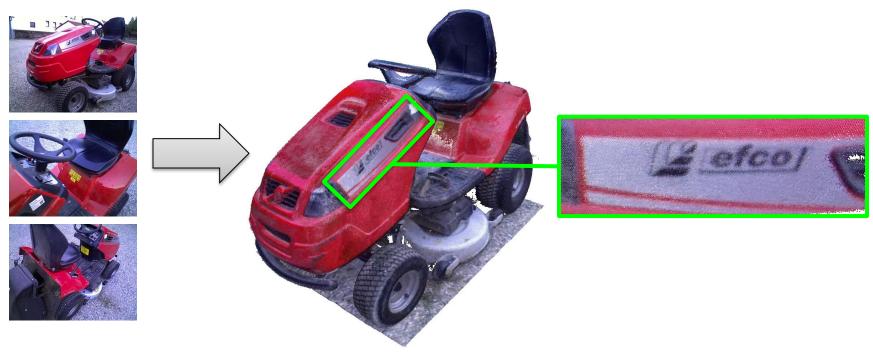


September 3, 2014



#### Motivation

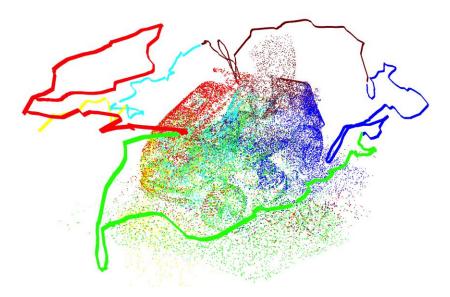
- Given: Low-cost RGB-D sensors
- Wanted: 3D reconstruction of highly accurate 3D models (e.g. for reverse-engineering)





## Submap-based Bundle Adjustment

- Problem:
  - Incremental tracking and mapping methods prone to drift
  - Full bundle adjustment (BA) too slow
- Our solution: Novel submap-based BA method for RGB-D based 3D reconstruction





#### Related Work



#### **Related Work**

- RGB-D SLAM systems
  - An evaluation of the RGB-D SLAM system [Endres et al., ICRA 2012]
  - RGB-D mapping: Using Kinect-Style Depth Cameras for Dense 3D Modeling of Indoor Environments [Henry et al., IJRR 2012]
  - Using depth in visual simultaneous localisation and mapping [Scherer et al., ICRA 2012]

Pose Graph Optimization

Sparse Bundle Adjustment

3D Bundle Adjustment



#### **Related Work**

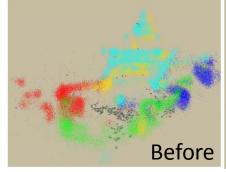
- RGB-D SLAM systems
  - An evaluation of the RGB-D SLAM system [Endres et al., ICRA 2012]
  - RGB-D mapping: Using Kinect-Style Depth Cameras for Dense 3D Modeling of Indoor Environments [Henry et al., IJRR 2012]
  - Using depth in visual simultaneous localisation and mapping [Scherer et al., ICRA 2012]
- Out-of-core bundle adjustment for large-scale 3D reconstruction [Ni et al., ICCV 2007]

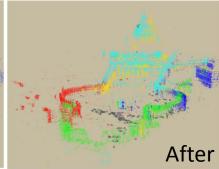
Pose Graph Optimization

Sparse Bundle Adjustment

3D Bundle Adjustment

#### Submap-based Bundle Adjustment

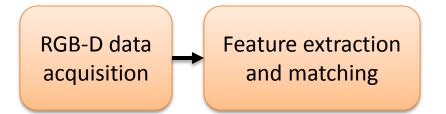






RGB-D data acquisition

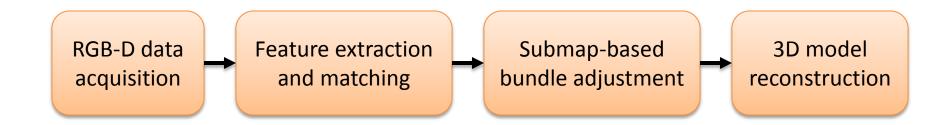








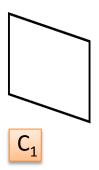








- Camera poses  $C_i \in SE(3)$  (with  $i \in 1...M$ )







- Camera poses  $C_i \in SE(3)$  (with  $i \in 1 ... M$ )
- Landmark observations  $\mathbf{z}_k = (u_k, v_k, d_k)^{\top} \in \mathbb{R}^3$  (with  $k \in 1 \dots K$ )

$$(\mathbf{u}_1, \mathbf{v}_1, \mathbf{d}_1)^{\mathsf{T}} = \mathbf{z_1}$$

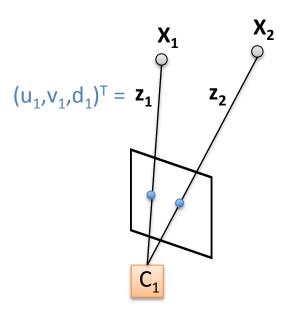
$$(\mathbf{u}_1, \mathbf{v}_1)$$

$$\mathbf{C_1}$$





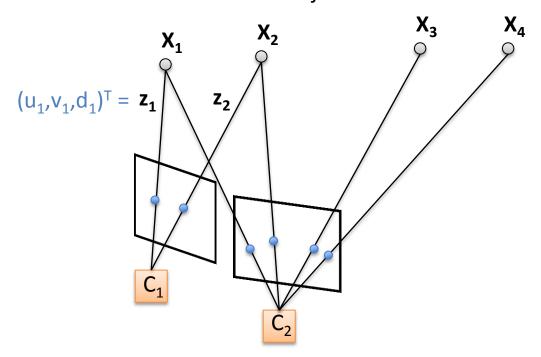
- Camera poses  $C_i \in SE(3)$  (with  $i \in 1...M$ )
- Landmark observations  $\mathbf{z}_k = (u_k, v_k, d_k)^{\top} \in \mathbb{R}^3$  (with  $k \in 1 \dots K$ )
- 3D landmarks  $\mathbf{X}_j \in \mathbb{R}^3$  (with  $j \in 1 \dots N$ )







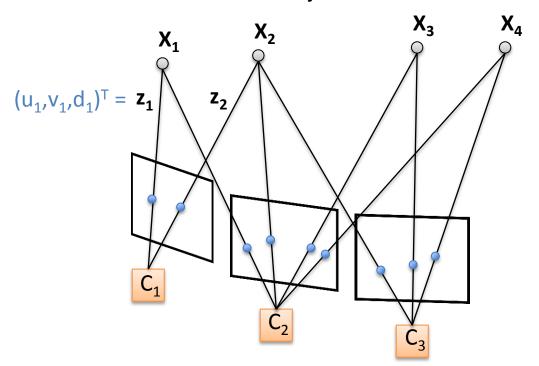
- Camera poses  $C_i \in SE(3)$  (with  $i \in 1 ... M$ )
- Landmark observations  $\mathbf{z}_k = (\pmb{u}_k, \pmb{v}_k, \pmb{d}_k)^{ op} \in \mathbb{R}^3$  (with  $k \in 1 \dots K$ )
- 3D landmarks  $\mathbf{X}_i \in \mathbb{R}^3$  (with  $j \in 1 \dots N$ )





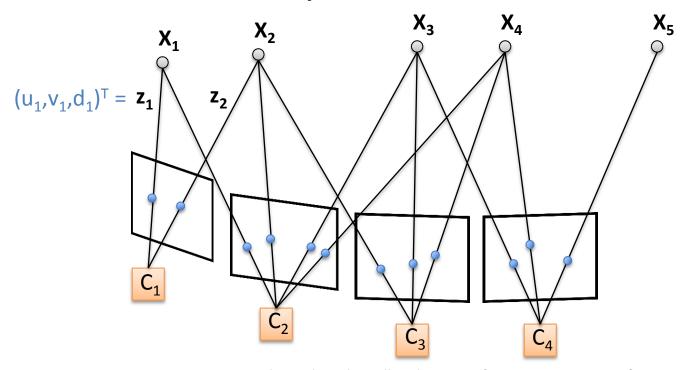


- Camera poses  $C_i \in SE(3)$  (with  $i \in 1...M$ )
- Landmark observations  $\mathbf{z}_k = (\pmb{u}_k, \pmb{v}_k, \pmb{d}_k)^{ op} \in \mathbb{R}^3$  (with  $k \in 1 \dots K$ )
- 3D landmarks  $\mathbf{X}_j \in \mathbb{R}^3$  (with  $j \in 1 \dots N$ )



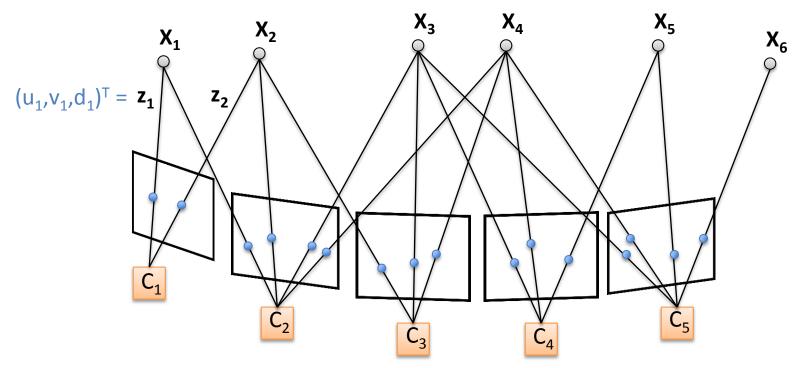


- Camera poses  $C_i \in SE(3)$  (with  $i \in 1...M$ )
- Landmark observations  $\mathbf{z}_k = (\pmb{u}_k, \pmb{v}_k, \pmb{d}_k)^{ op} \in \mathbb{R}^3$  (with  $k \in 1 \dots K$ )
- 3D landmarks  $\mathbf{X}_j \in \mathbb{R}^3$  (with  $j \in 1 \dots N$ )



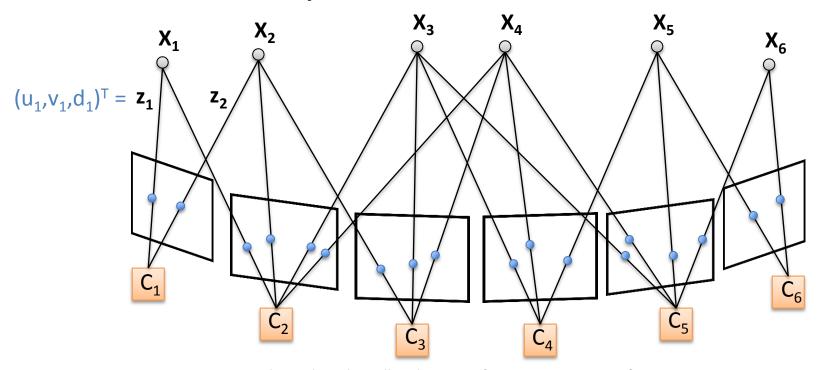


- Camera poses  $C_i \in SE(3)$  (with  $i \in 1...M$ )
- Landmark observations  $\mathbf{z}_k = (\pmb{u}_k, \pmb{v}_k, \pmb{d}_k)^{ op} \in \mathbb{R}^3$  (with  $k \in 1 \dots K$ )
- 3D landmarks  $\mathbf{X}_j \in \mathbb{R}^3$  (with  $j \in 1 \dots N$ )





- Camera poses  $C_i \in SE(3)$  (with  $i \in 1...M$ )
- Landmark observations  $\mathbf{z}_k = (\pmb{u}_k, \pmb{v}_k, \pmb{d}_k)^{ op} \in \mathbb{R}^3$  (with  $k \in 1 \dots K$ )
- 3D landmarks  $\mathbf{X}_{j} \in \mathbb{R}^{3}$  (with  $j \in 1 \dots N$ )



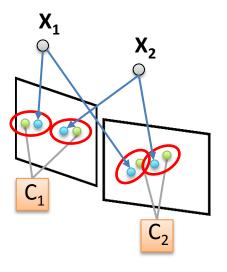




## Full Bundle Adjustment for RGB-D Sensors

#### 2D reprojection error

$$\min_{\boldsymbol{C}_{i_k}, \mathbf{X}_{j_k}} \sum_{k=1}^K ||\pi(\mathcal{T}^{-1}(\boldsymbol{C}_{i_k}, \mathbf{X}_{j_k})) - (\boldsymbol{u}_k, \boldsymbol{v}_k)^\top||^2$$







# Full Bundle Adjustment for RGB-D Sensors

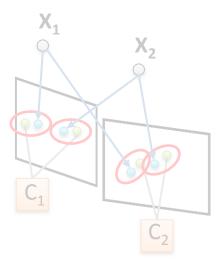
#### 2D reprojection error

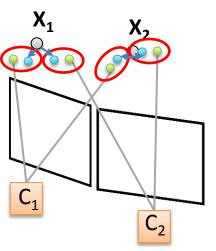
$$\min_{\boldsymbol{C}_{i_k}, \mathbf{X}_{j_k}} \sum_{k=1}^K ||\pi(\mathcal{T}^{-1}(\boldsymbol{C}_{i_k}, \mathbf{X}_{j_k})) - (\boldsymbol{u}_k, \boldsymbol{v}_k)^\top||^2$$



#### 3D alignment error

$$\min_{C_{i_k}, \mathbf{X}_{j_k}} \sum_{k=1}^{K} ||\mathcal{T}^{-1}(C_{i_k}, \mathbf{X}_{j_k}) - \rho(u_k, v_k, d_k)||^2$$









## Full Bundle Adjustment for RGB-D Sensors

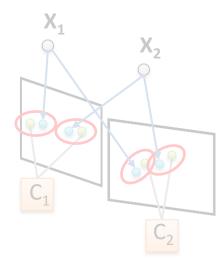
#### 2D reprojection error

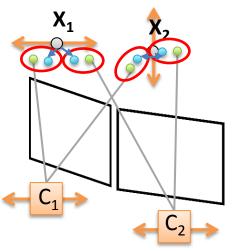
$$\min_{\boldsymbol{C}_{i_k}, \mathbf{X}_{j_k}} \sum_{k=1}^K ||\pi(\mathcal{T}^{-1}(\boldsymbol{C}_{i_k}, \mathbf{X}_{j_k})) - (\boldsymbol{u}_k, \boldsymbol{v}_k)^\top||^2$$



#### 3D alignment error

$$\min_{C_{i_k}, \mathbf{X}_{j_k}} \sum_{k=1}^{K} ||\mathcal{T}^{-1}(C_{i_k}, \mathbf{X}_{j_k}) - \rho(u_k, v_k, d_k)||^2$$





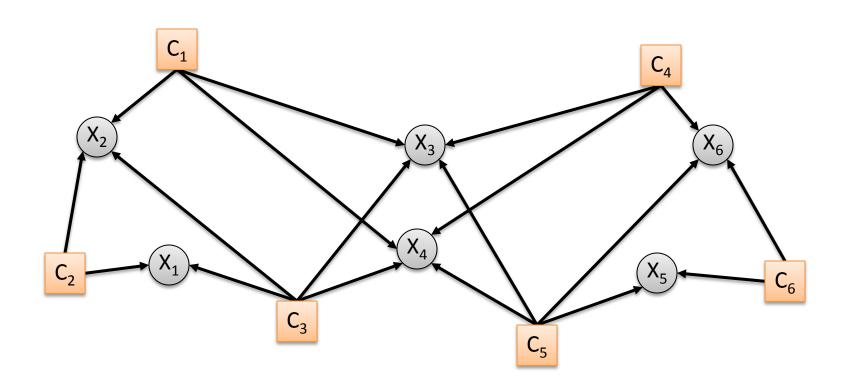


# Efficient Bundle Adjustment for RGB-D Sensors using Submapping

- 1. Graph partitioning into submaps
- 2. Submap optimization
- 3. Global submaps alignment
- 4. Submap optimization with fixed separator

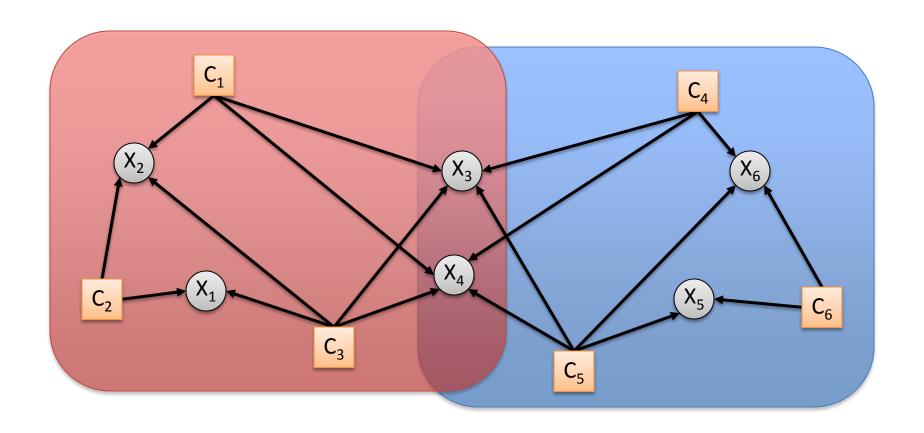






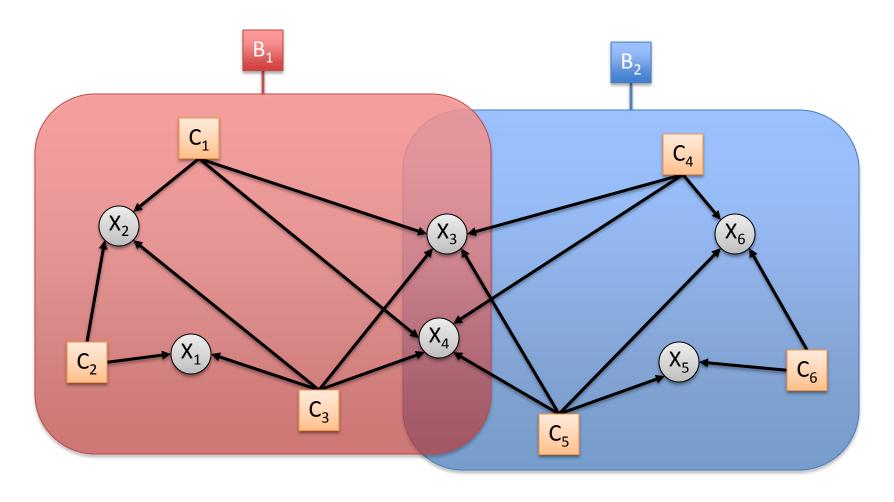






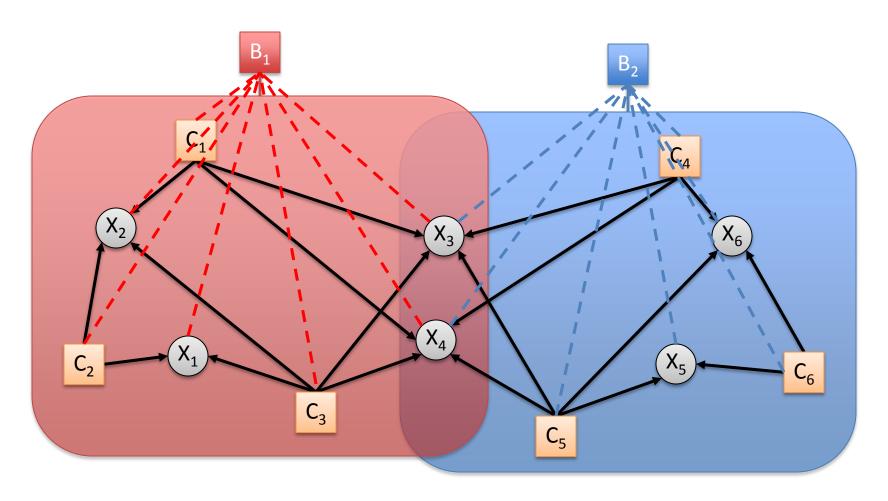








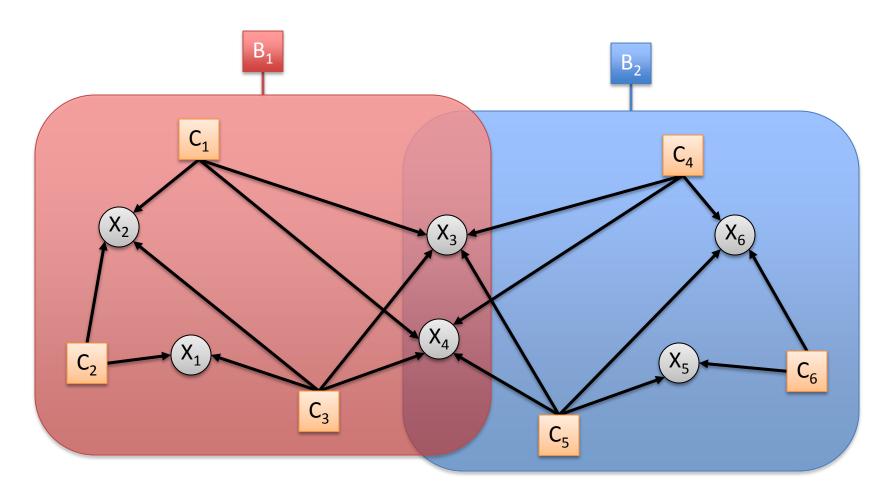








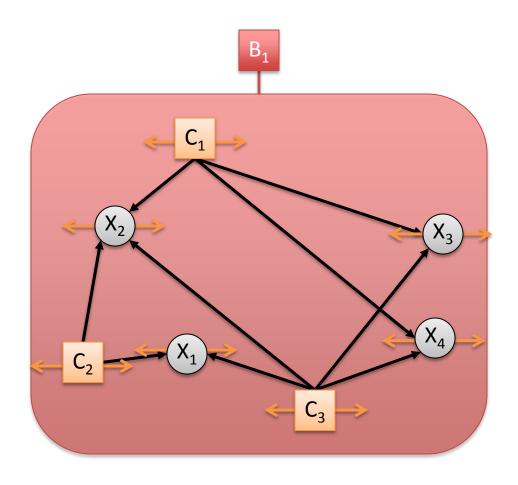
# Stage 2: Submap optimization







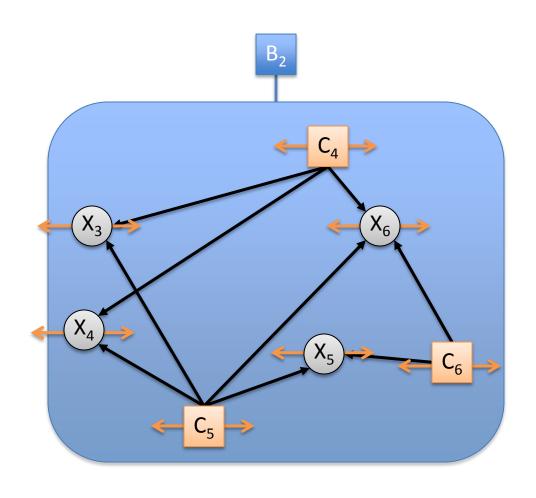
# Stage 2: Submap optimization







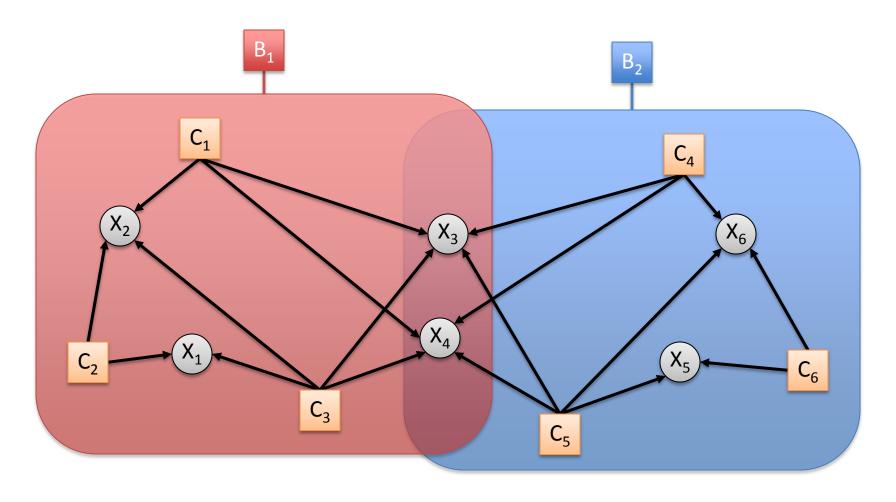
# Stage 2: Submap optimization







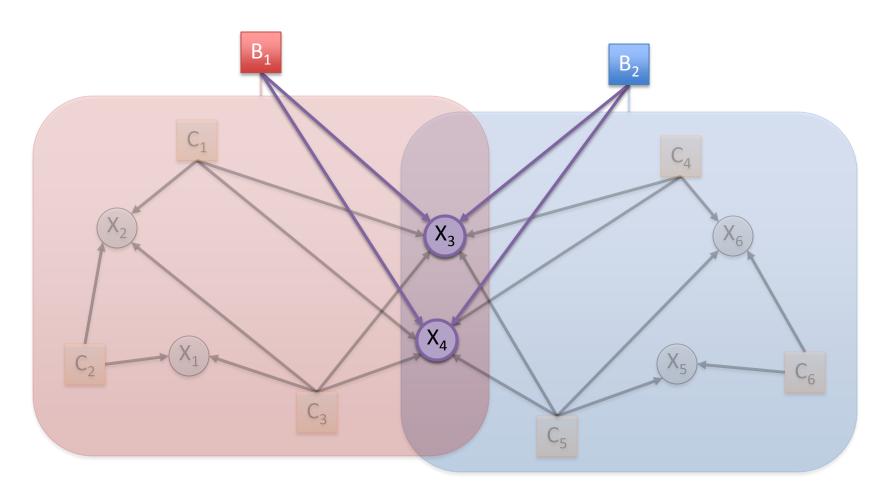
## Stage 3: Global submaps alignment







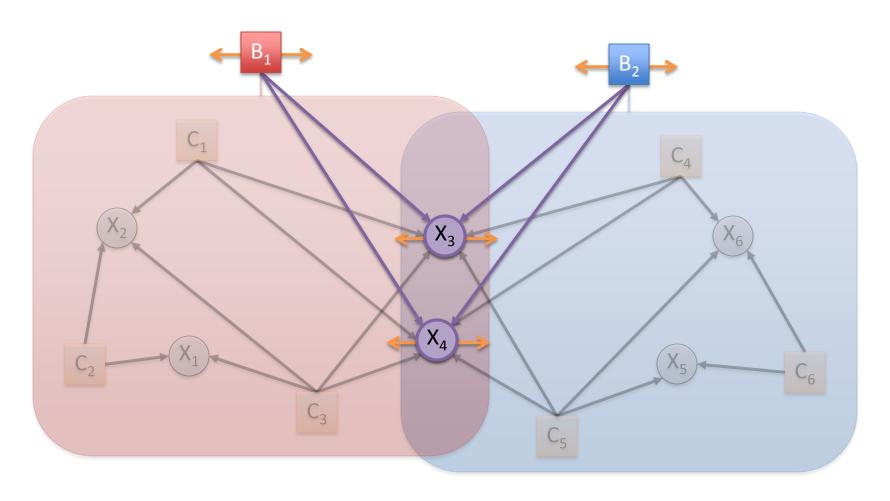
# Stage 3: Global submaps alignment







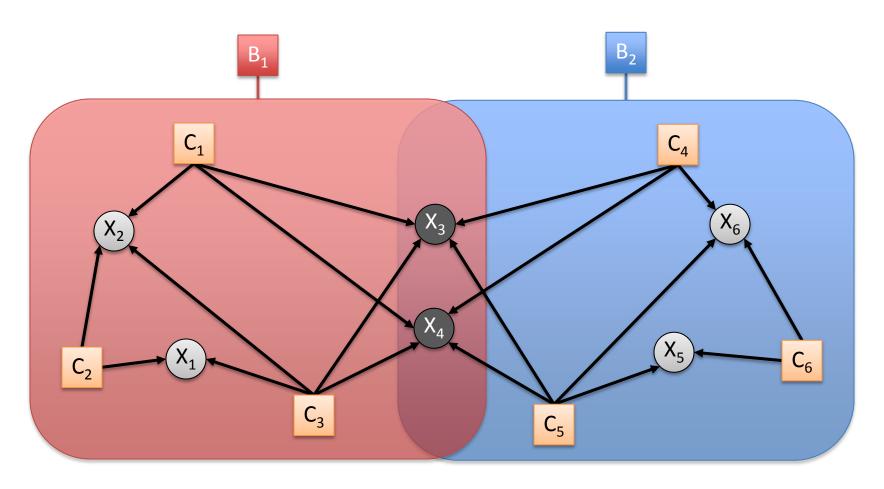
# Stage 3: Global submaps alignment







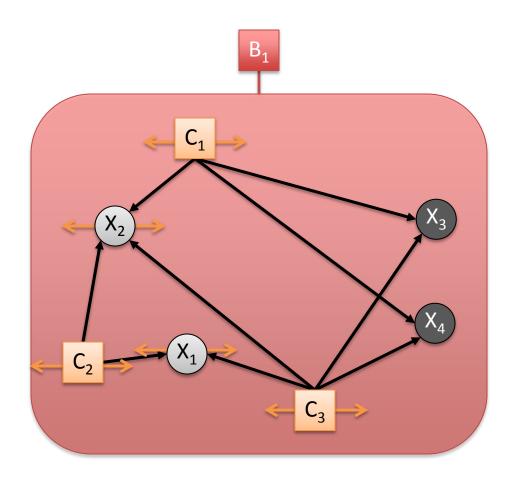
# Stage 4: Internal submap update







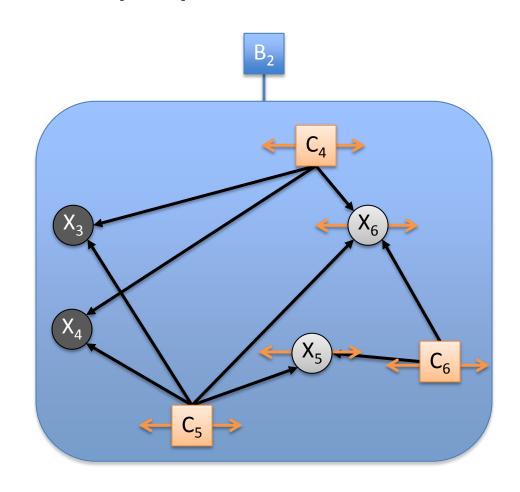
# Stage 4: Internal submap update





#### Technische Universität München

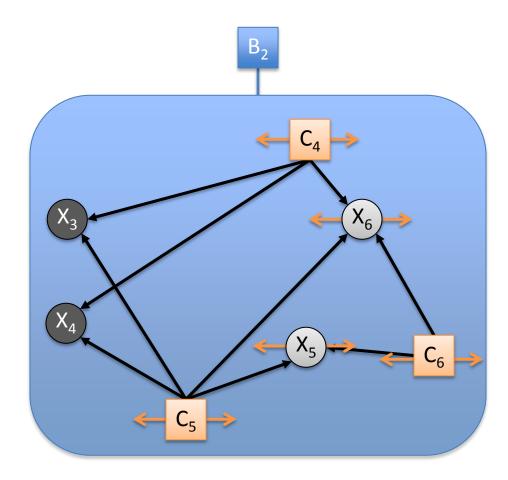
# Stage 4: Internal submap update







#### Stage 4: Internal submap update



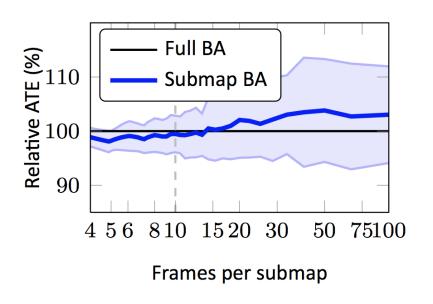
→ Use final camera poses to fuse RGB-D frames into 3D octree model

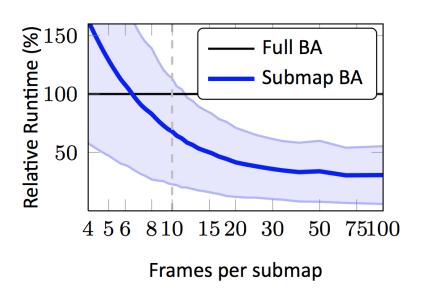


#### Technische Universität München

#### **Evaluation: Size of Submaps**

 Evaluation of Absolute Trajectory Error (ATE) over 10 sequences of TUM RGB-D benchmark [Sturm et al., IROS 2012]





- Small submaps: smaller ATE than full BA
- Large submaps: increase efficiency but decrease accuracy
- Good speed/accuracy trade-off: 10 frames per submap



#### **Evaluation: Performance**

• Benchmark sequences (4 of 10 sequences):

| Sequence   | No BA | Full 2D | Full 3D |         | Submap-based 3D BA |       |            |        |           |
|------------|-------|---------|---------|---------|--------------------|-------|------------|--------|-----------|
|            | ATE   | ATE     | ATE     | time    | submaps            | ATE   | $\pm (\%)$ | time   | $\pm(\%)$ |
| FR1/desk2  | 0.098 | 0.044   | 0.030   | 27.23   | 62                 | 0.031 | +3.4       | 21.36  | -21.5     |
| FR1/room   | 0.275 | 0.228   | 0.085   | 125.46  | 135                | 0.086 | +1.7       | 77.30  | -38.4     |
| FR2/desk   | 0.201 | 0.080   | 0.079   | 2355.26 | 289                | 0.076 | -3.3       | 372.20 | -84.2     |
| FR3/office | 0.176 | 0.039   | 0.036   | 1290.24 | 248                | 0.035 | -3.0       | 242.88 | -81.2     |
|            |       |         |         |         |                    |       |            |        |           |
| average    | 0.129 | 0.066   | 0.047   |         |                    | 0.047 | -0.5       |        | -32.0     |

- Similar accuracy as Full 3D BA at reduced cost (-32%)
- Runtime improvement of up to 84% for long sequences
- Comparison with state-of-the-art approaches:
  - RGB-D SLAM [Endres et al., ICRA 2012]: 13% (0.047m vs. 0.054m)
  - Direct SDF tracking [Bylow et al., RSS 2013]: 17% (0.047m vs. 0.058m)



Soil auger











Soil auger













Farm tractor











Farm tractor













#### Conclusion

- Our contribution: Submap-based bundle adjustment for RGB-D data
- Global optimization exploits available depth information
- Evaluation on benchmark datasets:
  - Accuracy similar to full bundle adjustment
  - Average runtime reduced by 32%
  - Higher accuracy than other state-of-the-art approaches
- Reconstructed 3D models: compelling visual quality and metric accuracy

#### Conclusion

- Our contribution: Submap-based bundle adjustment for RGB-D data
- Global optimization exploits available depth information
- Evaluation on benchmark datasets:
  - Accuracy similar to full bundle adjustment
  - Average runtime reduced by 32%
  - Higher accuracy than other state-of-the-art approaches
- Reconstructed 3D models: compelling visual quality and metric accuracy

#### Thank you!