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Abstract. In this paper we consider the problem of active mobile robotl-
ization with range sensors in outdoor environments. Inreshtto passive ap-
proaches our approach actively selects the orientatiomeofatser range finder to
improve the localization results. It applies a particlesfilio estimate the full six-
dimensional state of the robot. To represent the envirohmennitilize multi-level
surface maps which allow the robot to represent verticakctres and multiple
levels. To efficiently calculate the optimal orientatiom fbe range scanner, we
apply a clustering operation on the particles and only etalpotential orienta-
tions based on these clusters. Experimental results @otaiith a mobile robot
in an outdoor environment indicate that the active contfahe range sensor
leads to more efficient localization results.

1 Introduction

The problem of mobile robot localization with range sensorsutdoor environments
arises whenever GPS signals are missing due to occlusiaasaay buildings, bridges,
or trees. In such situations, a mobile robot typically hasgtimate its position in the
environment using its exteroceptive sensors and a map drthieonment. However,
when a robot attempts to perceive its environment to loeatself, the choice of the
direction of the perception can substantially influenceabeuracy of the position es-
timate. An example situation is shown in Figure 1. In the iefage, the range sensor
of the robot is oriented parallel to the floor plane as in mobbt scenarios with a 2D
sensor setup. This has the effect, that the vertical objemt/s in the image can not
be sensed by the robot. However, this vertical object mightrocial for localization,
because it might allow the robot to reduce its uncertaimtycdntrast, the right image
shows a robot with a slightly different sensor orientatiorttgat the vertical object can
be perceived. Accordingly, the robot can achieve a morerateposition estimate by
actively orienting its sensor. This is why the techniquealiet active localizationIn
this paper, we consider the problem of active localizationutdoor environments by
matching laser range measurements to a given map of theoanwent. In a former
approach [1], we already applied multi-level surface (Mib®ps [2] to model the en-
vironment for passive localization with a fixed mounted tasamge finder. The MLS
maps can be regarded as an extension of the classical etevadips [3,4,5,6] as they
additionally represent intervals corresponding to vaftmbjects in the environment.



Fig. 1. Robot with the standard orientation of the range sensorevierrobot is unable to sense
the vertical object (left). In contrast to this the autonaisly adapted sensor orientation allows
the robot to sense the vertical object (right).

A further advantage of MLS maps is that they can representipfeilevels. This is
important when mobile robots are deployed, e.g., in enwirents with bridges or un-
derpasses.

The paper is organized as follows. After discussing relatexk in the next section,
we briefly describe the general Monte Carlo localizatiorhtegue in Section 3. The
details of our active Monte Carlo localization are presénteSection 4. Finally, in
Section 5, we present experimental results illustratieggitivantages of applying active
localization in outdoor environments.

2 Redated Work

In general, the problem of active localization can be desdrias generating robot ac-
tions that particularly aim at improving its position esgite. In the past, this problem
has been adressed by several authors. For example, Kaatbkh [7] and Koenig and
Simmons [8] used a partially observable Markov decisiorcess to model actions in
the environment. The action selector chooses the actiomtingmizes the expected en-
tropy after the next control action or maximizes the expetdéal reward, respectively.
Jensfelt and Kristensen [9] applied multi-hypothesis liaation to topological maps
for active global localization. Davison and Kita [10] debed a vision-based localiza-
tion in which the robot actively senses the features basedsiiliy and information
gain. Recently, Porta et al. [11] proposed an entropy-bestion for action selection
within a localization algorithm using a stereo vision systevhich allows the robot to
recover its location in the initial stages or within a faduecovery procedure more ef-
ficiently. To use fine-grained grid maps and laser range fmdkerx et al. [12] proposed
an approach for active localization based on Markov loadilin. Whereas their ap-
proach is able to increase the efficiency of the localizatipminimizing the expected
entropy, Markov localization has high computational dedsan

In contrast to the former approaches we focus on reducingdhgputational de-
mands of the active localization. The goal of this paper @eweelop an active localiza-
tion method which is able to deal with large outdoor enviremnis.

3 Monte Carlo Localization

To estimate the pose= (x,y,z ¢,3, ) of the robot in its environment, we consider
probabilistic localization, which follows the recursivaesian filtering scheme. The



key idea of this approach is to maintain a probability denpit: | z11,Upt—1) of the
robot’s locatiorx; at timet given all observations; ; up to timet and all control inputs
Upt_1 Up to timet — 1. This probability is updated as follows:

bel(x¢) = p(xt | z11,Uot—1) = a - P(z | xt)-/p(xt | Ut—1,%—1) - P(X—1) dX¢—1. (1)

Here,a is a normalization constant ensuring tipé; | z11,Upt—1) SUMS up to one over

all x;. The terms to be described in Eqn. (1) are phediction model {x; | Ut—1,X;—1)

and thesensor model (& | x;). For the implementation of the described filtering scheme,
we use a sample-based approach which is commonly knowtoase Carlo localiza-
tion (MCL) [13]. Monte Carlo localization is a variant of partfiltering [14] where
each particle! corresponds to a possible robot pose and has an assignett wéig
Thebelief updatdrom Eqgn. (1) is performed by the following two alternatirtgyss:

1. In theprediction step, we draw for each particle with weight! a new particle
according toart’ and to the prediction modek(x; | ut_1,%_1).

2. Inthecorrection step, a new observation is integrated. This is done by assigning
a new weight!l to each particle according to the sensor maqule] | x;).

The details of the particle filter implementation in combtioa with the MLS maps can
be found in our previous work [1].

4 Active Monte Carlo L ocalization

The purpose of our active localization approach is to finddhientation of the laser
range finder which reduces the uncertainty of the currené gssimate as much as
possible. To achieve this, we apply the greedy approachxgFal. [12]. We assume
that at a given time stepthe robot is able to execute a discrete set of actighshe
benefit of a sensing actiane <7 can be determined by considering the uncertainty of
the posteriop(x;+1| & z1). The uncertainty of the pose estimate is represented by the
entropy

hix) = — /X bel(x;) logbel(x;) dx:. @)

The ideal action would allow the robot to find out its positiwith a high certainty. In
other words, the posterior would become a single peakedldibn with a very low
entropy. Therefore the information gain(a) of an actiona to change the orientation
of the laser range finder is defined by:

a(@) = h(x) —h(Xet1]a,z41), )

whereh(x¢;1 | a,z.1) defines the entropy after the integration of a laser measeniem
according to the actioa. In general we do not know which range measurement the
robot will obtain after changing the sensor orientatioroading to the actiom. There-
fore, we instead consider tlexpected entroply integrating over all possible measure-
mentsz;; 1:

E [gt (a)] =h (Xt) -E [h (Xt+l | a, Z'[+1)} ) (4)



whereE [h (Xt+1 | & zt+1)] defines the expected entropy after the integration of a laser
measurement obtained by executing actoli we now take into account that changing
the orientation of the range sensor does not change thedoaztthe robot, then ac-
cording to the reasoning by Fox et al. [12] the expected egti®calculated as follows:

E [h (Xt+l | a, Zt+l)] - /2/xt p(2 | Xt) bel(xt) Iog%

Now the actiona"can be selected out of the action s&twhich maximizes the
information gain as follows:

dx dz  (5)

a=argmak [g(a)] = argmah (x;) —E[h(x | a,z41)]. (6)

aco/ aca/

The calculation of the expected entrdﬁ% (X | &, zt+1)} can be achieved by per-
forming ray casting operations in the given MLS map. The rasting operation ap-
proximates a possible range measurement of the robot. S@wetdhave do consider
all possible range measurements that our sensor may genesing ray casting op-
erations seems to be a good approximation for a laser ranger fias we figured out
in several experiments. The result of a ray casting operat&pends on the position
and the actiora. Furthermore this approximation allows us to compute tlodability
p(z:41 | X) which is required to calculate the expected entropy (5).

Performing a ray casting operation for each particle of cantiple set would re-
sult in high computational demands. To reduce the requioetputation time, we only
simulate the range beams on a subset calculated by a chgstgrération. This is mo-
tivated by the fact that typically the particles are located small number of areas of
high probability. Each cluster of particles representdisarc area. To cluster the parti-
cle set into subsets, we apply a technique known as QT-Cingtd 5]. This technique
allows us to specify the maximal extent of a cluster befonelhand thus ensures that
the centroid of each cluster represents the whole clustibriweur current implemen-
tation the maximal diameter of a cluster is set to 1 m. Thetetirgy algorithm yields a
cluster set?” = Ule(mj,fj), wherem; is the center of mass and; is an index set
of the particles contained in clust@¢r Each particle is a member of exactly one clus-
tered subset. The range measurement generated for a subssghted according to
the sum of the normalized weights of the particles containdtle subset. Following
this approximation and also considering the underlyindigarfilter implementation,
the expected entropy (5) is calculated as follows:

[ N D(Zamj | x[i]) i

ElnOs|azn)] == 3 5 wis) piahy [0 willog—Zbmar, @)

wherew(.7;) refers to the sum of the normalized weights of the particlagtained
in clusterj and zﬁ‘nj stands for a ray casting operation whose simulated lasandbea
originate from the center of mass; with a sensor orientation described by the sensing
actiona.

Eqn. (7) specifies how to compute the future expected entwbpysensing actioa
based on our clustered subsets. Plugging this into Eqn. €@rer able at any point in
time to select the best acti@td be executed next.



Fig. 2. MLS map and mobile robot used for the localization experitaehhe area represented by
this map spans approximately 195 by 146 meters. The blue/gtay line shows the localized
robot poses. The yellow / light grey line shows the pure odoyn&he traversed trajectory has a
length of 284 meters. The top right part depicts the robobklerused for the experiments.

5 Experiments

Our approach has been implemented and tested in real wasktiexents. The robot
used for the experiments is a Pioneer Il AT system equipp#d avSICK LMS laser
range scanner and an AMTEC wrist unit, which is used as aiftadetice for the
laser (see Figure 2). The experiments are designed to igatstf the active localiza-
tion approach facilitates mobile robot localization andettier it improves localization
performance.

The first set of experiments is designed to evaluate the padoce of the active
localization approach during a position tracking task. boain the data, we steered
along a 284 meter long loop in our campus environment. Figutepicts a top view of
the MLS Map. The blue / dark grey line shows the localized tgmses. The yellow /
light grey line shows the pure odometry. The left image oliFéy3 depicts the average
localization error for a tracking experiment with 1,000tdes. As can be seen from
the figure, our active approach achieves the same perfomanthe passive approach
as long as the laser range finder is not tilted more tfadd8vnwards. This is due to
the fact that at higher tilt angles the robot perceives lestoal objects and therefore
misses the map features that are important for a correctigo@stimate. The right
image depicts the frequency of the tilt angles chosen by civesapproach. As can be
seen from the histogram our active approach prefers upwadisvnwards orientations
of the range sensors. Thus the active approach enabledabietocsense the important
vertical features of the environment and avoids to obtaigeaneasurements from the
ground.



05

passive localization
active localization

tilt angle ——1

0.4

0.3

frequency

0.2

translation error [m]

0.1

-10 -5 0 5 10 -10 -5 0 5 10
tilt angle [] tilt angle [°]

Fig. 3. Localization error of the passive approach using diffetéhangles and of the active
approach, respectively (left). The right image depictsfteguency of the tilt angles chosen by
the active approach.
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Fig.4. The left image depicts the convergence of the particlesedrie position of the robot
with 500,000 particles. The right image depicts the fregyeof the tilt angles chosen by the
active approach during the global localization task.

Additionally we also carried out experiments, in which walerated the conver-
gence of the active localization approach during globadlization in a map that spans
approximately 195 by 146 meters. Figure 4 depicts the coerere of the particles to
the true position of the robot with 500,000 particles. Whsrthe x-axis corresponds to
the resampling step, the y-axis shows the number of pastiolpercent that are closer
than 1 m to the true position. The figure shows the evolutiothese numbers for the
passive and active MCL. A t-test revealed that it is signifibabetter to apply the active
approach than the passive one for the global localizatisi ta

6 Conclusions

In this paper, we presented an approach to active Monte @adtization with a mobile

robot using MLS maps. Our approach actively selects thentaimn of the laser range
finder to improve the localization results. To speed up th&eprocess, we apply a
clustering operation on the particles and only evaluatemi@l orientations based on
these clusters. In experiments obtained with a robot in boaoor environment we
analyzed the active control of the range sensor and denadedtthat it leads to more
efficient localization results.
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