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Abstract. In this paper we consider the problem of active mobile robot local-
ization with range sensors in outdoor environments. In contrast to passive ap-
proaches our approach actively selects the orientation of the laser range finder to
improve the localization results. It applies a particle filter to estimate the full six-
dimensional state of the robot. To represent the environment we utilize multi-level
surface maps which allow the robot to represent vertical structures and multiple
levels. To efficiently calculate the optimal orientation for the range scanner, we
apply a clustering operation on the particles and only evaluate potential orienta-
tions based on these clusters. Experimental results obtained with a mobile robot
in an outdoor environment indicate that the active control of the range sensor
leads to more efficient localization results.

1 Introduction

The problem of mobile robot localization with range sensorsin outdoor environments
arises whenever GPS signals are missing due to occlusions caused by buildings, bridges,
or trees. In such situations, a mobile robot typically has toestimate its position in the
environment using its exteroceptive sensors and a map of theenvironment. However,
when a robot attempts to perceive its environment to localize itself, the choice of the
direction of the perception can substantially influence theaccuracy of the position es-
timate. An example situation is shown in Figure 1. In the leftimage, the range sensor
of the robot is oriented parallel to the floor plane as in most robot scenarios with a 2D
sensor setup. This has the effect, that the vertical object shown in the image can not
be sensed by the robot. However, this vertical object might be crucial for localization,
because it might allow the robot to reduce its uncertainty. In contrast, the right image
shows a robot with a slightly different sensor orientation so that the vertical object can
be perceived. Accordingly, the robot can achieve a more accurate position estimate by
actively orienting its sensor. This is why the technique is calledactive localization. In
this paper, we consider the problem of active localization in outdoor environments by
matching laser range measurements to a given map of the environment. In a former
approach [1], we already applied multi-level surface (MLS)maps [2] to model the en-
vironment for passive localization with a fixed mounted laser range finder. The MLS
maps can be regarded as an extension of the classical elevation maps [3,4,5,6] as they
additionally represent intervals corresponding to vertical objects in the environment.



Fig. 1. Robot with the standard orientation of the range sensor where the robot is unable to sense
the vertical object (left). In contrast to this the autonomously adapted sensor orientation allows
the robot to sense the vertical object (right).

A further advantage of MLS maps is that they can represent multiple levels. This is
important when mobile robots are deployed, e.g., in environments with bridges or un-
derpasses.

The paper is organized as follows. After discussing relatedwork in the next section,
we briefly describe the general Monte Carlo localization technique in Section 3. The
details of our active Monte Carlo localization are presented in Section 4. Finally, in
Section 5, we present experimental results illustrating the advantages of applying active
localization in outdoor environments.

2 Related Work

In general, the problem of active localization can be described as generating robot ac-
tions that particularly aim at improving its position estimate. In the past, this problem
has been adressed by several authors. For example, Kaelbling et al. [7] and Koenig and
Simmons [8] used a partially observable Markov decision process to model actions in
the environment. The action selector chooses the action that minimizes the expected en-
tropy after the next control action or maximizes the expected total reward, respectively.
Jensfelt and Kristensen [9] applied multi-hypothesis localization to topological maps
for active global localization. Davison and Kita [10] described a vision-based localiza-
tion in which the robot actively senses the features based onvisibiliy and information
gain. Recently, Porta et al. [11] proposed an entropy-basedcriterion for action selection
within a localization algorithm using a stereo vision system, which allows the robot to
recover its location in the initial stages or within a failure recovery procedure more ef-
ficiently. To use fine-grained grid maps and laser range finders, Fox et al. [12] proposed
an approach for active localization based on Markov localization. Whereas their ap-
proach is able to increase the efficiency of the localizationby minimizing the expected
entropy, Markov localization has high computational demands.

In contrast to the former approaches we focus on reducing thecomputational de-
mands of the active localization. The goal of this paper is todevelop an active localiza-
tion method which is able to deal with large outdoor environments.

3 Monte Carlo Localization

To estimate the posex = (x,y,z,ϕ ,ϑ ,ψ) of the robot in its environment, we consider
probabilistic localization, which follows the recursive Bayesian filtering scheme. The



key idea of this approach is to maintain a probability density p(xt | z1:t ,u0:t−1) of the
robot’s locationxt at timet given all observationsz1:t up to timet and all control inputs
u0:t−1 up to timet −1. This probability is updated as follows:

bel(xt) = p(xt | z1:t ,u0:t−1) = α · p(zt | xt) ·
∫

p(xt | ut−1,xt−1) · p(xt−1) dxt−1. (1)

Here,α is a normalization constant ensuring thatp(xt | z1:t ,u0:t−1) sums up to one over
all xt . The terms to be described in Eqn. (1) are theprediction model p(xt | ut−1,xt−1)
and thesensor model p(zt | xt). For the implementation of the described filtering scheme,
we use a sample-based approach which is commonly known asMonte Carlo localiza-
tion (MCL) [13]. Monte Carlo localization is a variant of particle filtering [14] where
each particlex[i] corresponds to a possible robot pose and has an assigned weight w[i].
Thebelief updatefrom Eqn. (1) is performed by the following two alternating steps:

1. In theprediction step, we draw for each particle with weightw[i] a new particle
according tow[i] and to the prediction modelp(xt | ut−1,xt−1).

2. In thecorrection step, a new observationzt is integrated. This is done by assigning
a new weightw[i] to each particle according to the sensor modelp(zt | xt).

The details of the particle filter implementation in combination with the MLS maps can
be found in our previous work [1].

4 Active Monte Carlo Localization

The purpose of our active localization approach is to find theorientation of the laser
range finder which reduces the uncertainty of the current pose estimate as much as
possible. To achieve this, we apply the greedy approach of Fox et al. [12]. We assume
that at a given time stept the robot is able to execute a discrete set of actionsA . The
benefit of a sensing actiona∈ A can be determined by considering the uncertainty of
the posteriorp(xt+1 | a,zt+1). The uncertainty of the pose estimate is represented by the
entropy

h(xt) = −

∫

xt

bel(xt) logbel(xt) dxt . (2)

The ideal action would allow the robot to find out its positionwith a high certainty. In
other words, the posterior would become a single peaked distribution with a very low
entropy. Therefore the information gaingt(a) of an actiona to change the orientation
of the laser range finder is defined by:

gt(a) = h(xt)−h(xt+1 | a,zt+1) , (3)

whereh(xt+1 | a,zt+1) defines the entropy after the integration of a laser measurement
according to the actiona. In general we do not know which range measurement the
robot will obtain after changing the sensor orientation according to the actiona. There-
fore, we instead consider theexpected entropyby integrating over all possible measure-
mentszt+1:

E
[

gt(a)
]

= h(xt)−E
[

h(xt+1 | a,zt+1)
]

, (4)



whereE
[

h(xt+1 | a,zt+1)
]

defines the expected entropy after the integration of a laser
measurement obtained by executing actiona. If we now take into account that changing
the orientation of the range sensor does not change the location of the robot, then ac-
cording to the reasoning by Fox et al. [12] the expected entropy is calculated as follows:

E
[

h(xt+1 | a,zt+1)
]

= −
∫

ẑ

∫

xt

p(ẑ | xt) bel(xt) log
p(ẑ | xt)bel(xt)

p(ẑ | a)
dxt dẑ (5)

Now the action ˆa can be selected out of the action setA which maximizes the
information gain as follows:

â = argmax
a∈A

E
[

gt(a)
]

= argmax
a∈A

h(xt)−E
[

h(xt | a,zt+1)
]

. (6)

The calculation of the expected entropyE
[

h(xt | a,zt+1)
]

can be achieved by per-
forming ray casting operations in the given MLS map. The ray casting operation ap-
proximates a possible range measurement of the robot. So we do not have do consider
all possible range measurements that our sensor may generate. Using ray casting op-
erations seems to be a good approximation for a laser range finder, as we figured out
in several experiments. The result of a ray casting operation depends on the positionx
and the actiona. Furthermore this approximation allows us to compute the probability
p(zt+1 | xt) which is required to calculate the expected entropy (5).

Performing a ray casting operation for each particle of our particle set would re-
sult in high computational demands. To reduce the required computation time, we only
simulate the range beams on a subset calculated by a clustering operation. This is mo-
tivated by the fact that typically the particles are locatedin a small number of areas of
high probability. Each cluster of particles represents such an area. To cluster the parti-
cle set into subsets, we apply a technique known as QT-Clustering [15]. This technique
allows us to specify the maximal extent of a cluster beforehand and thus ensures that
the centroid of each cluster represents the whole cluster well. In our current implemen-
tation the maximal diameter of a cluster is set to 1 m. The clustering algorithm yields a
cluster setK =

⋃J
j=1(m j ,I j), wherem j is the center of mass andI j is an index set

of the particles contained in clusterj. Each particle is a member of exactly one clus-
tered subset. The range measurement generated for a subset is weighted according to
the sum of the normalized weights of the particles containedin the subset. Following
this approximation and also considering the underlying particle filter implementation,
the expected entropy (5) is calculated as follows:

E
[

h(xt+1 | a,zt+1)
]

= −
|K |

∑
j=1

N

∑
i=1

w(I j ) p(za
m j

| x[i]) ·w[i] log
p(za

m j
| x[i]) ·w[i]

p(za
m j

| a)
, (7)

wherew(I j ) refers to the sum of the normalized weights of the particles contained
in cluster j andza

m j
stands for a ray casting operation whose simulated laser beams

originate from the center of massm j with a sensor orientation described by the sensing
actiona.

Eqn. (7) specifies how to compute the future expected entropyof a sensing actiona
based on our clustered subsets. Plugging this into Eqn. (6) we are able at any point in
time to select the best action ˆa to be executed next.



Fig. 2. MLS map and mobile robot used for the localization experiments. The area represented by
this map spans approximately 195 by 146 meters. The blue / dark grey line shows the localized
robot poses. The yellow / light grey line shows the pure odometry. The traversed trajectory has a
length of 284 meters. The top right part depicts the robot Herbert used for the experiments.

5 Experiments

Our approach has been implemented and tested in real world experiments. The robot
used for the experiments is a Pioneer II AT system equipped with a SICK LMS laser
range scanner and an AMTEC wrist unit, which is used as a pan/tilt device for the
laser (see Figure 2). The experiments are designed to investigate if the active localiza-
tion approach facilitates mobile robot localization and whether it improves localization
performance.

The first set of experiments is designed to evaluate the performance of the active
localization approach during a position tracking task. To obtain the data, we steered
along a 284 meter long loop in our campus environment. Figure2 depicts a top view of
the MLS Map. The blue / dark grey line shows the localized robot poses. The yellow /
light grey line shows the pure odometry. The left image of Figure 3 depicts the average
localization error for a tracking experiment with 1,000 particles. As can be seen from
the figure, our active approach achieves the same performance as the passive approach
as long as the laser range finder is not tilted more than 3◦ downwards. This is due to
the fact that at higher tilt angles the robot perceives less vertical objects and therefore
misses the map features that are important for a correct position estimate. The right
image depicts the frequency of the tilt angles chosen by our active approach. As can be
seen from the histogram our active approach prefers upwardsto downwards orientations
of the range sensors. Thus the active approach enables the robot to sense the important
vertical features of the environment and avoids to obtain range measurements from the
ground.
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Fig. 3. Localization error of the passive approach using differenttilt angles and of the active
approach, respectively (left). The right image depicts thefrequency of the tilt angles chosen by
the active approach.
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Fig. 4. The left image depicts the convergence of the particles to the true position of the robot
with 500,000 particles. The right image depicts the frequency of the tilt angles chosen by the
active approach during the global localization task.

Additionally we also carried out experiments, in which we evaluated the conver-
gence of the active localization approach during global localization in a map that spans
approximately 195 by 146 meters. Figure 4 depicts the convergence of the particles to
the true position of the robot with 500,000 particles. Whereas the x-axis corresponds to
the resampling step, the y-axis shows the number of particles in percent that are closer
than 1 m to the true position. The figure shows the evolution ofthese numbers for the
passive and active MCL. A t-test revealed that it is significantly better to apply the active
approach than the passive one for the global localization task.

6 Conclusions

In this paper, we presented an approach to active Monte Carlolocalization with a mobile
robot using MLS maps. Our approach actively selects the orientation of the laser range
finder to improve the localization results. To speed up the entire process, we apply a
clustering operation on the particles and only evaluate potential orientations based on
these clusters. In experiments obtained with a robot in a real outdoor environment we
analyzed the active control of the range sensor and demonstrated that it leads to more
efficient localization results.
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