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Abstract. Shape optimization is a problem which arises in numerous
computer vision problems such as image segmentation and multiview re-
construction. In this paper, we focus on a certain class of binary labeling
problems which can be globally optimized both in a spatially discrete set-
ting and in a spatially continuous setting. The main contribution of this
paper is to present a quantitative comparison of the reconstruction accu-
racy and computation times which allows to assess some of the strengths
and limitations of both approaches. We also present a novel method to
approximate length regularity in a graph cut based framework: Instead
of using pairwise terms we introduce higher order terms. These allow to
represent a more accurate discretization of the L2-norm in the length
term.

1 Introduction

Shape optimization is at the heart of several classical computer vision problems.
Following a series of seminal papers [2, 12, 15, 21, 27], functional minimization
has become the established paradigm for these problems. In the spatially discrete
setting the study of the corresponding binary labeling problems goes back to the
spin-glas models introduced in the 1920’s [19]. In this paper, we focus on a class
of functionals of the form:

E(S) =
∫

int(S)

f(x) dnx + ν

∫

S

g(x) dS, (1)

where S denotes a hypersurface in IRn, i.e. a set of closed boundaries in the
case of 2D image segmentation or a set of closed surfaces in the case of 3D
segmentation and multiview reconstruction. The functions f : IRn → IR and
g : IRn → IR+ are application dependent. In a statistical framework for image
segmentation, for example, f(x) = log pbg(I(x)) − log pob(I(x)) may denote the
log likelihood ratio for observing the intensity I(x) at any given point x given
that x is part of the background or the object, respectively.

The second term in (1) corresponds to an isotropic measure of area (for n = 3)
or boundary length (n = 2), measured by the function g.
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Input image Intensity-based One of the Reconstructed
segmentation input images object

Fig. 1. Examples of shape optimization: Image segmentation and 3D reconstruction

In the context of image segmentation, g may be a measure of the local edge
strength – as in the geodesic active contours [6, 22] – which energetically fa-
vors segmentation boundaries along strong intensity gradients. In the context of
multiview reconstruction, g(x) is typically a measure of the consistency among
different views of the voxel x, where low values of g indicate a strong agree-
ment from different cameras on the observed patch intensity – see for example
[12]. Figure 1 shows examples of shape optimization using the example of image
segmentation and multiview reconstruction.

Functionals of the form (1) can be globally optimized by reverting to implicit
representations of the hypersurface S using an indicator function u : IRn →
{0, 1}, where u=1 and u=0 denote the interior and exterior of S. The functional
(1) defined on the space of surfaces S is therefore equivalent to the functional

E(u) =
∫

IRn

f(x)u(x) dnx + ν

∫
IRn

g(x) |∇u(x)| dnx, (2)

defined on the space of binary labelings u, where the second term in (2) is
the weighted total variation norm which can be extended to non-differentiable
functions in a weak sense.

In the current experimental comparison, we focus on functionals of the type
(1) since they allow for the efficient computation of globally optimal solutions
of region-based functionals. There exist numerous alternative functionals for
shape optimization, including ratio functionals [20, 29]. Recently it was shown
that some region-based ratio functionals can be optimized globally [25]. As this
method did not yet reach a high popularity, we leave it for future discussion.

The functional (2) can be globally optimized in a spatially discrete setting: By
mapping each labeling to a cut in a graph, the problem is reduced to computing
the minimal cut. First suggested in [18], it was later rediscovered in [5] and has
since become a popular framework for image segmentation [28] and multiview
reconstruction [31]. More recently it was shown in [7, 8] that the same binary
labeling problem (2) can be globally minimized in a spatially continuous set-
ting as well. An alternative spatially continuous formulation of graph cuts was
developed in [1].

In this paper, we propose the first quantitative experimental comparison of
spatially discrete and spatially continuous optimization methods for functionals
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of the form (2). In particular, we focus on the quality and efficiency of shape
optimization in discrete and continuous setting. Furthermore we propose a new
approximation of the L2-norm in the context of graph cuts based optimization.

2 Spatially Discrete Optimization Via Graph Cuts

To solve the binary labeling problem (2) in a discrete setting, the input data
is converted into a directed graph in form of a regular lattice: Each pixel (or
voxel) in the input data corresponds to a node in the lattice. To approximate
the metric g measuring the boundary size of the hypersurface S, neighboring
nodes are connected. The degree of connectivity depends on the application. We
defer details to Section 2.2.

Additionally a source node s and a sink node t are introduced. They allow to
include the unary terms f(x)u(x) for the pixels x: If f(x) ≥ 0, an edge to the
source is introduced, weighted with f(x). Otherwise an edge to the sink weighted
with −f(x) is created.

The optimal binary labeling u corresponds to the minimal s/t - cut in the
graph. An s/t - cut is a partitioning of the nodes in the graph into two sets S
and T , where S contains the source s and T the sink t. Nodes x ∈ S are assigned
the label u(x) = 0, nodes x ∈ T the label u(x)= 1. The weight of such a cut is
the sum of the weights of all edges starting in S and ending in T .

2.1 Computing the Minimal Cut in a Graph

Efficient solvers of the minimal s/t - cut problem are based on computing the
maximal flow in the graph [13]. Such methods are divided into three major cat-
egories: those based on augmenting paths [4, 11, 13], blocking flows [10, 17] and
the push-relabel method [16]. Some of these methods do not guarantee a polyno-
mial running time [4] or require integral edge weights [17]. To solve 2-dimensional
problems of form (2) usually the algorithm of Boykov and Kolmogorov performs
best [4]. For highly connected three-dimensional grids the performance of this
algorithm breaks down [4] and push-relabel methods become competitive. Re-
cently efforts were made to parallelize push-relabel-based approaches [9].

2.2 Approximating Metrics Using Graph Cuts

The question of how to approximate continuous metrics of the boundary size in
a discrete setting has received significant attention by researchers. Boykov and
Kolmogorov [3] show how to approximate any Riemannian metric, including
anisotropic ones. In [24] they discuss how to integrate flux. A similar construc-
tion can be derived from the divergence theorem. In the following we limit our
discussion to the isotropic case.

We start with a review of the method in [3] which replaces the L2-norm of the
gradient in (2) by its L1-norm. For the Euclidean metric (g(x) = 1 ∀x ∈ IRn)
we then propose a novel discretization scheme which allows to use the L2-norm
of the gradient by introducing higher order terms.
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Approximation Using Pairwise Terms. Based on the Cauchy-Crofton for-
mula of integral geometry, Boykov and Kolmogorov [3] showed that the metric
given by g can be approximated by connecting pixels to all pixels in a given
neighborhood. The respective neighborhood systems can be expressed as

NR(x) =

{
x +

(
a
b

) ∣∣∣∣∣a, b ∈ Z,
√

a2 + b2 ≤ R, gcd(|a|, |b|) = 1

}
.

The constraint on the greatest common divisor avoids duplicate directions. The
edge corresponding to (a b)� is given a weight of g(x)/

√
a2 + b2. For R = 1

the obtained 4-connected lattice reflects the L1-norm of the gradient. With in-
creasing R and decreasing grid spacing the measure converges to the continuous
measure. This is not true when fixing the connectivity (i.e. when keeping R
constant).

A Novel Length Approximation Using Higher Order Terms. The en-
ergy (2) involves the L2-norm of the generalized gradient of the {0, 1}-function
u. With the pairwise terms discussed above a large connectivity is needed to
approximate this norm. In the following, we will show that a more accurate ap-
proximation of the L2-norm can be integrated in a graph cut framework, with-
out increasing the connectivity. The key observation is that in a two-dimensional
space a consistent calculation of the gradient is obtained by taking the differences
to the upper and left neighbor in the grid - see Figure 2.

The Figure also shows the arising term. One easily verifies that this term
satisfies the submodularity condition [26]. For a third order term as this one,
this condition implies that the term can be minimized using graph cuts.

We also considered the corresponding term in 3D space where each pixel
is connected to three neighbors. The arising fourth order term – with values
in {0, 1,

√
2,
√

3} – is submodular. However it is not clear whether it can be
minimized via graph cuts: It does not satisfy the sufficient conditions pointed
out by Freedman [14].

From a practical point of view, in 2D the novel terms do not perfom well: The
length discretization only compares a pixel to those pixels in the direction of the
upper left quadrant. Performance is boosted when adding the respective terms
for the other three quadrants as well.

gradient
mask

u(x) u(y) u(z) |∇u|
0 0 0 0
0 0 1 1
0 1 0 1

0 1 1
√

2

u(x) u(y) u(z) |∇u|
1 0 0

√
2

1 0 1 1
1 1 0 1
1 1 1 0

Fig. 2. The L2-norm of the 2D gradient as a ternary term. One easily verifies that this
term is submodular.
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3 Spatially Continuous Optimization Via Relaxation

More recently, it was shown that the class of functionals (2) can also be mini-
mized in a spatially continuous setting by reverting to convex relaxations [7, 8].
By relaxing the binary constraint and allowing the function u to take on values
in the interval between 0 and 1, the optimization problem becomes minimizing
the convex functional (2) over the convex set

u : IRn → [0, 1]. (3)

Global minimizers u∗ of this relaxed problem can efficiently be computed (see
section 3.2).

3.1 Convex Relaxation and the Thresholding Theorem

The following theorem [8, 30] assures that thresholding the solution u∗ of the
relaxed problem provides a minimizer of the original binary labeling problem (2).
In other words the convex relaxation preserves global optimality for the original
binary labeling problem.

Theorem 1. Let u∗ : IRn → [0, 1] be a global minimizer of the functional (2).
Then all upper level sets (i.e. thresholded versions)

Σμ,u∗ = {x ∈ IRn |u∗(x) > μ}, μ ∈ (0, 1), (4)

of u∗ are minimizers of the original binary labeling problem (1).

Proof. Using the layer cake representation of the function u∗ : IRn → [0, 1]:

u∗(x) =
∫ 1

0

1Σµ,u∗(x) dμ (5)

we can rewrite the first term in the functional (2) as
∫

IRn

fu∗ dx =
∫

IRn

f

(∫ 1

0

1Σµ,x dμ

)
dx =

∫ 1

0

∫
Σµ,u∗

f(x) dx (6)

As a consequence, the functional (2) takes on the form:

E(u∗) =
∫ 1

0

{∫
Σµ,u∗

f dx +
∣∣∂Σμ,u∗

∣∣
g

}
dμ ≡

∫ 1

0

Ê
(
Σμ,u∗

)
dμ, (7)

where we have used the coarea formula to express the weighted total variation
norm in (2) as the integral over the length of all level lines of u measured in the
norm induced by g. Clearly the functional (7) is now merely an integral of the
original binary labeling problem Ê applied to the upper level sets of u∗.

Assume that for some threshold value μ̃ ∈ (0, 1) theorem 1 was not true, i.e.
there exists a minimizer Σ∗ of the binary labeling problem with smaller energy:

Ê(Σ∗) < Ê(Σμ̃,u∗). (8)
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Then for the indicator function 1Σ∗ of the set Σ∗ we have:

E(1Σ∗) =
∫ 1

0

Ê(Σ∗) dμ <

∫ 1

0

Ê(Σμ,u∗) dμ = E(u∗), (9)

which contradicts the assumption that u∗ was a global minimizer of (2). �

Global minimizers of the functional (2) in a spatially continuous setting are
therefore calculated as follows:

1. Compute a minimizer u∗ of the energy (2) on the convex set of functions
u : IRn → IR. Details are given in section 3.2.

2. Threshold the minimizer u∗ at some value μ ∈ (0, 1) to obtain a binary
solution of the original shape optimization problem. Although these solutions
generally depend on μ, all of them are guaranteed to be global minimizers
of (2). In all experiments in this paper we set μ = 0.5.

3.2 Numerical Implementation

A minimizer of (2) must satisfy the Euler-Lagrange equation

0 = f(x) − ν div
(

g(x)
∇u(x)
|∇u(x)|

)
∀x ∈ IRn. (10)

Solutions to this system of equations can be obtained by a large variety of nu-
merical solvers. We discuss some of them in the following.

Gradient Descent. The right hand side of (10) is the functional derivative
of the energy (2) and gives rise to a gradient descent scheme. In practice such
schemes are known to converge very slowly.

Linearized Fixed-Point Iteration. Discretization of the Euler-Lagrange
equation (10) leads to a sparse nonlinear system of equations. This can be solved
using a fixed point iteration scheme that transforms the nonlinear system into a
sequence of linear systems. These can be efficiently solved with iterative solvers,
such as Jacobi, Gauss-Seidel, Successive over-relaxation (SOR), or even multi-
grid methods (also called FAS for “full approximation schemes”).

The only source of nonlinearity in (10) is the diffusivity d := g
|∇u| . Starting

with an (arbitrary) initialization, one alternates computing the diffusivities and
solving the linear system of equations with fixed diffusivities. We choose the
SOR method as in [23].

Parallelization on Graphics Processing Unit. PDE-based approaches are
generally suitable for parallel computing on graphics cards: The gradient descent
and Jacobi schemes are straightforward to parallelize. This does not hold for the
standard Gauss-Seidel scheme as it requires sequential processing of the image.
However, in its Red-Black variant the Gauss Seidel scheme is parallelizable. The
same holds for its various derivates such as SOR and FAS.
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4 Quantitative Comparison

This section constitutes the main contribution of this paper. It provides a de-
tailed quantitative comparison of the spatially discrete and spatially continuous
shape optimization schemes introduced above. While both approaches aim at
minimizing the same functional, we identified three important differences:

– The spatially discrete approach has an exact termination criterion and a
guaranteed polynomial running time (for a number of maximum-flow al-
gorithms). On the other hand, the spatially continuous approach is based
on the iterative minimization of a non-linear convex functional. While the
required number of iterations is typically size-independent (leading to a com-
putation time which is linear in the number of voxels), one cannot speak of
a guaranteed polynomial time complexity.

– The spatially discrete approach is based on discretizing the cost functional
on a lattice and minimizing the resulting submodular problem by means of
graph cuts. The spatially continuous approach, on the other hand is based on
minimizing the relaxed problem in a continuous setting where the resulting
Euler-Lagrange equations are solved on a discrete lattice. This difference
gives rise to metrication errors of the spatially discrete approach which will
be discussed in Section 4.1.

– The optimization of the spatially discrete approach is based on solving a
maximum flow problem, whereas the spatially continuous approach is per-
formed by solving a partial differential equation. This fundamental difference
in the underlying computational machinery leads to differences in computa-
tion time, memory consumption and parallelization properties.

4.1 Metrication Errors and Consistency

Figure 4 shows a comparison of graph cut approaches with the continuous to-
tal variation (TV) segmentation, where we show several ways to deal with the
discretization of the metric for graph cuts. None of the graph cut approaches pro-
duces such a smooth curve as the TV segmentation, although the 16-connected
grid gets quite close to it. This inspired us to investigate the source for the
metrication errors arising in graph cut methods.

On the 4-connected grid in IR2, for example, graph cuts usually approximate
the Euclidean boundary length of the interface S as

|S| =
∫

S

dS ≈ 1
2

∑
i

∑
j∈N (i)

|ui − uj |, (11)

where N (i) denotes the four neighbors of pixel i. This implies that the boundary
length is measured in an L1-norm rather than the L2-norm corresponding to the
Euclidean length. The L1 norm clearly depends on the choice of the underlying
grid and is not rotationally invariant. Points of constant distance in this norm
form a diamond rather than a circle (see Figure 3). This leads to a preference of
boundaries along the axes (see fig. 4(a)).
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L1 L2

Fig. 3. 2D visualization of the L1-norm and the L2-norm for points of constant dis-
tance: Unlike the L1-norm, the L2-norm is rotationally invariant

This dependency on the underlying grid can be reduced by increasing the
neighborhood connectivity. By reverting to larger and larger neighborhoods one
can gradually eliminate the metrication error [3]. Increasing the connectivity
leads in fact to better and better approximations of the Euclidean L2-norm (see
fig. 4(b) and 4(c)).

Yet, a computationally efficient solution to the labeling problem requires to
fix a choice of connectivity. And for any such choice, one can show that the
metrication error persists, that the numerical scheme is not consistent in the
sense that a certain residual reconstruction error (with respect to the ground
truth) remains and cannot be eliminated by increasing the resolution.

Since the spatially continuous formulation is based on a representation of the
boundary length by the L2-norm:

|S| =
∫

S

dS =
∫

|∇u| dx =
∫ √

u2
x + u2

y dx, (12)

the resulting continuous numerical scheme does not exhibit such metrication
errors (see fig. 4(f)). The TV segmentation performs optimization in the convex
set of functions with range in [0, 1]. It hence allows intermediate values where
the graph cut only allows binary values.

The proposed third order graph cuts discretization of the L2-norm (see fig.
4(d) and 4(e)) computes the same discretization of the L2-norm, however al-
lowing only for binary values. Hence, in this discretized version, the Euclidean
length is computed for angles of 45◦ and 90◦ to the grid, by using only a 4-
connected grid. Therefore the third order L2-norm leads to similar results on a
4-connected grid as second order terms on an 8-connected grid.

Figure 5 shows a synthetic experiment of solving a minimal surface problem
with given boundary constraints using the example of a bounded catenoid. As
the true solution of this problem can be computed analytically, it is suitable
for a comparison of different solvers. The experiment compares graph cuts and
continuous TV minimization. It demonstrates that the 6-neighborhood graph
cuts method completely fails to reconstruct the correct surface topology – in
contrast to the full 26-neighborhood which approximates the Euclidean metric
in a better way. However, discretization artifacts are still visible in terms of
polyhedral blocky structures. Figure 5 also shows the deviation of the computed
catenoid solutions from the analytic ground-truth for increasing volume resolu-
tion. It shows that for a fixed connectivity structure the computed graph cut
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(a) 4-conn. (b) 8-conn. (c) 16-conn. (d) 4-conn. (e) 4-conn. (f) TV seg-
Graph cuts Graph cuts Graph cuts Graph cuts Graph cuts mentation

(L1) (third order) (third order) (cont. L2)
(symmetric)

Fig. 4. Comparison of different norms and neighborhood connectivities for discrete
and continuous optimization for image segmentation (Close ups of the cameraman
image from figure 1). The experiment shows that a 16-connected graph is needed for
the discrete solution to obtain similiar results to the continuous solution.

solution is not consistent with respect to the volume resolution. In contrast, for
the solution of the continuous TV minimization the discretization error decays
to zero.

Figure 6 shows an experiment for real image data. In this multiview recon-
struction problem the data fidelity term is dominant, therefore the discrete and
the continuous solutions are similar for the same volume resolution (108×144×
162). Increasing the volume resolution to 216×288×324 gives more accurate
results for the continuous TV formulation, while a graph cut solution for this
resolution was not feasible to compute because of RAM overflow.

4.2 Computation Time

Numerous methods exist to solve either the discrete or the continuous optimiza-
tion tasks. A comparison of all these methods is outside the scope of our paper.
Instead we pick a few solvers we consider competetive. For all graph cut meth-
ods we use the algorithm in [4], which is arguably the most frequently used in
Computer Vision. We test all discretizations mentioned above.

For the TV segmentation we implemented sequential methods on the CPU
and parallel solvers on a Geforce GTX 8800 graphics card using the CUDA
framework. Both implementations are based on the SOR method. On the CPU
we use the usual sequential order of pixels, and on the GPU the correspond-
ing parallelizable Red-Black scheme. A termination criterion is necessary as the
number of required iterations depends on the length weight ν. We compare the
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Fig. 5. Comparison of discrete and continuous optimization methods for the recon-
struction of a catenoid: While the discrete graph cut algorithm exhibits prominent
metrication errors (polyhedral structures), the continuous method does not show these.
The plot shows the accuracy of the 26-connected graph cuts and the continuous TV
method in dependence of the volume resolution. The consistency of the continuous
solution is validated experimentically in the sense that the reconstruction error goes to
zero with increasing resolution.

segmentations every 50 iterations and stop as soon as the maximal absolute
difference drops below a value of 0.000125.

Evaluation for 2D Shape Optimization. Table 1 shows run-times for all
mentioned methods. The task is image segmentation using a piecewise constant
Mumford-Shah with fixed mean values 0 and 1. The main conclusions are sum-
marized as follows:

– The TV segmentation profits significantly from parallel architectures. Ac-
cording to our results this is roughly a factor of 5. It should be noted that
the GPU-implementation usually requires more iterations as the Red-Black
order is used.

– The graph cut based methods clearly outperform the TV segmentation.
– While for the graph cut methods the 16-connected pairwise terms give gen-

erally the best results (they are largely free from grid bias), they also use up
the most run-time.

Evaluation for 3D shape optimization. Table 2 shows run-times of the
different optimization methods for the 3D catenoid example shown in figure 5.
We detect three main conclusions:

– The 6-connected graph cuts method is the fastest, however it computes the
wrong solution (see figure 5).
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Two of 33 Graph Cuts Convex TV Convex TV
input images (108×144×162) (108×144×162) (216×288×324)

Fig. 6. Comparison of discrete and continuous optimization for multiview 3D recon-
struction (presented in [23]): Due to the dominant data fidelity term, the discrete and
continuous reconstructions are similar for the same volume resolution. However, for
increasing resolution more accurate results can be achieved with the continuous for-
mulation, while graph cuts rapidly come across memory limitations.

Table 1. 2D image segmentation: Run-times for the different optimization methods
on two different images

Cameraman Image Berkeley Arc Image

Method ν = 1 ν = 3 ν = 5 ν = 1 ν = 3 ν = 5

Graph Cuts 4-connected 0.02s 0.1s 0.33s 0.06s 0.16s 0.53s

Graph Cuts 8-connected 0.05s 0.15s 0.4s 0.1s 0.27s 0.93s

Graph Cuts 16-connected 0.2s 0.35s 0.95s 0.33s 0.85s 2.7s

Graph Cuts L2 (1 quadrant) 0.03s 0.15s 0.45s 0.06s 0.19s 0.8s

Graph Cuts L2 (4 quadrants) 0.1s 0.25s 0.86 0.23s 0.53s 1.8s

TV w/ gradient descent (CPU) 111.38s 251.97s 259.87s 409.08s 636.28s 157.64s

TV w/ SOR (CPU) 10.9s 13.26s 10.2s 35.89s 103.5s 39.26s

TV w/ red-black SOR (GPU) 2s 2.7s 2s 7.6s 28.3s 8.6s

Table 2. Run-times for the 3D catenoid example

Graph cuts 6-connected 13 s

Graph cuts 26-connected 12 min 35 s

TV w/ SOR (CPU) 9 min 36 s

TV w/ red-black SOR (GPU) 30 s

– The run-time of the graph cut method changes for the worse with high
connectivities, and gets slower than the TV optimization, both on CPU
and GPU. Note that this limitation is due to the fact that the Boykov-
Kolmogorov algorithm [4] is optimized for sparse graph structures. For denser
(3D) graphs alternative push-relabel algorithms might be faster.

– The parallel implementation of the TV method allows for a speed up factor
of about 20 compared to the CPU version.
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4.3 Memory Consumption

With respect to the memory consumption the TV segmentation is the clear
winner: It requires only one floating point value for each pixel in the image. In
contrast, graph cut methods require an explicit storage of edges as well as one
flow value for each edge. This difference becomes important for high resolutions,
as can be seen in the experiment in figure 6.

5 Conclusion

A certain class of shape optimization functionals can be globally minimized both
in a spatially discrete and in a spatially continuous setting. In this paper, we re-
viewed these recent developments and presented an experimental comparison of
the two approaches regarding the accuracy of reconstructed shapes and computa-
tional speed. A detailed quantitative analysis confirms the following differences:

– Spatially discrete approaches generally suffer from metrication errors in the
approximation of geometric quantities such as boundary length or surface
area. These arise due to the binary optimization on a discrete lattice. These
errors can be alleviated by reverting to larger connectivity. Alternatively,
we showed that higher-order terms allow to implement an L2-norm of the
gradient, thereby providing better spatial consistency without extending the
neighborhood connectivity. As the spatially continuous formulation is not
based on a discretization of the cost functional but rather a discretization of
the numerical optimization (using real-valued variables), it does not exhibit
metrication errors in the sense that the reconstruction errors decay to zero
as the resolution is increased.

– The spatially continuous formulation allows for a straight-forward paral-
lelization of the partial differential equation. As a consequence, one may
obtain lower computation times than respective graph cut methods, in par-
ticular for the denser graph structures prevalent in 3D shape optimization.

– While the discrete graph cut optimization can be performed in guaranteed
polynomial time, this is not the case for the analogous continuous shape op-
timization. While respective termination criteria for the convex optimization
work well in practice, defining termination criteria that apply to any shape
optimization problem remains an open problem.
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