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Abstract. Neural fields have gained significant attention in the com-
puter vision community due to their excellent performance in novel view
synthesis, geometry reconstruction, and generative modeling. Some of
their advantages are a sound theoretic foundation and an easy implemen-
tation in current deep learning frameworks. While neural fields have been
applied to signals on manifolds, e.g., for texture reconstruction, their rep-
resentation has been limited to extrinsically embedding the shape into
Euclidean space. The extrinsic embedding ignores known intrinsic man-
ifold properties and is inflexible wrt. transfer of the learned function. To
overcome these limitations, this work introduces intrinsic neural fields,
a novel and versatile representation for neural fields on manifolds. In-
trinsic neural fields combine the advantages of neural fields with the
spectral properties of the Laplace-Beltrami operator. We show theoreti-
cally that intrinsic neural fields inherit many desirable properties of the
extrinsic neural field framework but exhibit additional intrinsic qualities,
like isometry invariance. In experiments, we show intrinsic neural fields
can reconstruct high-fidelity textures from images with state-of-the-art
quality and are robust to the discretization of the underlying manifold.
We demonstrate the versatility of intrinsic neural fields by tackling var-
ious applications: texture transfer between deformed shapes & different
shapes, texture reconstruction from real-world images with view depen-
dence, and discretization-agnostic learning on meshes and point clouds.

1 Introduction

Neural fields have grown incredibly popular for novel view synthesis since the
breakthrough work by Mildenhall et al. [29]. They showed that neural radiance
fields together with differentiable volume rendering can be used to reconstruct
scenes and often yield photorealistic renderings from novel viewpoints. This in-
spired work in related fields, e.g., human shape modeling [34], shape and texture
generation from text [28], and texture representation on shapes [32,2], where
neural fields are able to generate a wide variety of functions with high fidelity.
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Fig. 1: (a) Overview of our method. We use the eigenfunctions φi of the Laplace-
Beltrami operator (LBO) at each point as a point embedding γ(p). This overcomes
the spectral bias of the multilayer perceptron (MLP) fθ, and hence the combined
intrinsic neural field Fθ can represent a high-frequency function on the surface. Notice
that p can be inside a triangle, and the function is clearly more detailed than the
discretization (insets). (b) An intrinsic neural texture field trained on one shape (top)
can be transferred to a new shape (bottom) without retraining. (c) Due to our intrinsic
approach (LBO eigenfunctions) local geometry is maintained in close but separate
parts, whereas an extrinsic approach (Random Fourier Features [50]) shows bleeding
artifacts when trained with sparse supervision.

These methods use neural fields as functions from a point in Euclidean space
to the quantity of interest. While this is valid for many applications, for others,
the output actually lives on a general manifold. For example, texture mappings
define a high-frequency color function on the surface of a 3D object. Texture-
Fields [32] and Text2Mesh [28] solve this discrepancy by defining a mapping of
each surface point to its Euclidean embedding and then learning the neural field
there. Both show that they can achieve detail preservation above the discretiza-
tion level, but the detour to Euclidean space has drawbacks. The Euclidean and
geodesic distance between points can differ significantly. This is important on
intricate shapes with fine geometric details that overlap because the local ge-
ometry prior is lost. Further, extrinsic representations cannot be used in the
presence of surface deformations without retraining or applying heuristics.

Similar challenges have been solved in geometry processing by using purely
intrinsic representations, most famously properties derived from the Laplace-
Beltrami operator (LBO). Some of the main advantages of the LBO are its
invariance under rigid and isometric deformations and reparametrization. We
follow this direction by defining intrinsic neural fields on manifolds independent
of the extrinsic Euclidean embedding and thus inherit the favorable properties
of intrinsic representations. This is enabled by the fact that random Fourier fea-
tures [50], an embedding technique that enabled the recent success of Euclidean
neural fields, have an intrinsic analog based on the LBO. The result is a fully
differentiable method that can learn high-frequency information on any 3D ge-
ometry representation that admits the computation of the LBO. A schematic
overview of our method can be found in Figure 1. Our main theoretical and
experimental contributions are:
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– We introduce intrinsic neural fields, a novel and versatile representation
for neural fields on manifolds. Intrinsic neural fields combine the advantages
of neural fields with the spectral properties of the Laplace-Beltrami operator.

– We extend the neural tangent kernel analysis of [50] to the manifold set-
ting. This yields a proof characterizing the stationarity of the kernel induced
by intrinsic neural fields and insight into their spectral properties.

– We show that intrinsic neural fields can reconstruct high-fidelity tex-
tures from images with state-of-the-art quality.

– We demonstrate the versatility of intrinsic neural fields by tackling various
applications: texture transfer between isometric and non-isometric shapes,
texture reconstruction from real-world images with view dependence, and
discretization-agnostic learning on meshes and point clouds.

We will release the full source code for all experiments and the associated data
along with the final publication.

This work studies how a neural field can be defined on a manifold. Current
approaches use the extrinsic Euclidean embedding and define the neural field on
the manifold as a Euclidean neural field in the extrinsic embedding space – we
describe this approach in Sec. 3.1. In contrast, our approach uses the well-known
Laplace-Beltrami Operator (LBO), which we briefly introduce in Sec. 3.2. The
final definition of intrinsic neural fields is given in Sec. 4. The experimental
results are presented in Sec. 5.

2 Related Work

This work investigates neural fields for learning on manifolds, and we will only
consider directly related work in this section. We point interested readers to the
following overview articles: neural fields in visual computing [58], advances in
neural rendering [51], and an introduction into spectral shape processing [25].

Neural Fields. While representing 3D objects and scenes with coordinate-
based neural networks, or neural fields, has already been studied more than
two decades ago [16,37,36], the topic has gained increased interest following the
breakthrough work by Mildenhall et al. [29]. They show that a Neural Radi-
ance Field (NeRF) often yields photorealistic renderings from novel viewpoints.
One key technique underlying this success is positional encoding, which trans-
forms the three-dimensional input coordinates into a higher dimensional space
using sines and cosines with varying frequencies. This encoding overcomes the
low-frequency bias of neural networks [38,3] and thus enables high-fidelity recon-
structions. The aforementioned phenomenon is analyzed using the neural tangent
kernel [20] by Tancik et al. [50], and our analysis extends theirs from Euclidean
space to manifolds. Simultaneously to Tancik et al., Sitzmann et al. [47] use
periodic activation functions for neural scene representation, which is similar
to the above-mentioned positional encoding [4]. Additionally, many other works
[60,41,40,27,22,19,63,54,26] offer insights into neural fields and their embedding
functions. However, none of these works considers neural fields on manifolds.
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Neural Fields on Manifolds. Prior works [32,11,2,57,34,30,59,28,18] use neural
fields to represent a wide variety of quantities on manifolds. Oechsle et al. [32]
use the extrinsic embedding of the manifold to learn textures as multilayer per-
ceptrons. Their Texture Fields serve as an important baseline for this work.
NeuTex by Xiang et al. [57] combines neural, volumetric scene representations
with a 2D texture network to facilitate interpretable and editable texture learn-
ing. To enable this disentanglement, their method uses mapping networks from
the 3D space of the object to the 2D space of the texture and back. We compare
with an adapted version of their method that utilizes the known geometry of the
object. Baatz et al. [2] introduce NeRF-Tex, a combination of neural radiance
fields (NeRFs) and classical texture maps. Their method uses multiple small-
scale NeRFs to cover the surface of a shape and represent mesoscale structures,
such as fur, fabric, and grass. Because their method focuses on mesoscale struc-
tures and artistic editing, we believe that extending the current work to their
setting is an interesting direction for future research.

Additionally, neural fields have been used to represent quantities other than
texture on manifolds. Palafox et al. [34] define a neural deformation field that
maps points on a canonical shape to their location after the shape is deformed.
This model is applied to generate neural parametric models, which can be used
similarly to traditional parametric models like SMPL [24]. Yifan et al. [59] de-
compose a neural signed distance function (SDF) into a coarse SDF and a high-
frequency implicit displacement field. Morreale et al. [30] define neural surface
maps, which can be used to define surface-to-surface correspondences among
other applications. Text2Mesh [28] uses a coarse mesh and a textual description
to generate a detailed mesh and associated texture as neural fields.

Intrinsic Geometry Processing. Intrinsic properties are a popular tool in ge-
ometry processing, especially in the analysis of deformable objects. Two of the
most basic intrinsic features are Gauss curvature and intrinsic point descriptors
based on the Laplace-Beltrami operator (LBO). They have been heavily used
since the introduction of the global point signature [42] and refined since then
[49,1]. Intrinsic properties are not derived from a manifold’s embedding into its
embedding space but instead arise from the pairwise geodesic distance on the
surface. These are directly related to natural kernel functions on manifolds, e.g.,
shown by the efficient approximation of the geodesic distance from the heat
kernel [12]. Kernel functions as a measure of similarity between points are very
popular in geometry processing. They have been used in various applications,
e.g., in shape matching [53,9,23], parallel transport [45], and robustness wrt.
discretization [52,43]. Manifold kernels naturally consider the local and global
geometry [5], and our approach follows in this direction by showing a natural
extension of neural fields on manifolds.

3 Background

Differential geometry offers two viewpoints onto manifolds: intrinsic and ex-
trinsic. The extrinsic viewpoint studies the manifold M through its Euclidean
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embedding where each point p ∈ M is associated with its corresponding point
in Euclidean space. In contrast, the intrinsic viewpoint considers only properties
of points independent of the extrinsic embedding, such as, the geodesic distance
between a point pair. Both can have advantages depending on the method and
application. An intrinsic viewpoint is by design invariant against certain defor-
mations in the Euclidean embedding, like rigid transformations but also pose
variations that are hard to characterize in the extrinsic view.

3.1 Neural Fields for Euclidean Space

A Euclidean neural field FE
θ : Rm → Ro is a neural network that maps points in

Euclidean space to vectors and is parametrized by weights θ ∈ Rp. The network
is commonly chosen to be a multilayer perceptron (MLP). Let M ⊂ Rm be a
manifold with a Euclidean embedding into Rm. Naturally, the restriction of FE

θ

to M leads to a neural field on a manifold: Fθ :M→ Ro ,Fθ(x) = FE
θ (x) .

Natural signals, such as images and scenes, are usually quite complex and
contain high-frequency variations. Due to spectral bias, standard neural fields fail
to learn high-frequency functions from low dimensional data [50,47] and generate
blurry reconstructions. With the help of the neural tangent kernel, it was proven
that the composition FE

θ ◦ γ of a higher dimensional Euclidean neural field and
a random Fourier feature (RFF) encoding γ helps to overcome the spectral bias
and, consequently, enables the neural field to better represent high-frequency
signals. The RFF encoding γ : Rm → Rd with d� m is defined as

γ(x) = [a1 cos(b>1 x), a1 sin(b>1 x), . . . , ad/2 cos(b>d/2x), ad/2 sin(b>d/2x)], (1)

where the coefficients bi ∈ Rm are randomly drawn from the multivariate normal
distribution N (0, (2πσ)2I). The factors ai are often set to one for all i and σ > 0
is a hyperparameter that offers a trade-off between reconstruction fidelity and
overfitting of the training data.

3.2 The Laplace-Beltrami Operator

In the following, we briefly introduce the Laplace-Beltrami operator (LBO) and
refer the interested reader to [42] for more details. The LBO 4M is the general-
ization of the Euclidean Laplace operator on general closed compact manifolds.
Its eigenfunctions φi : M → R and eigenvalues λi ∈ R are the non-trivial so-
lutions of the equation 4Mφi = λiφi . The eigenvalues are non-negative and
induce a natural ordering which we will use for the rest of the paper. The eigen-
functions are orthonormal to each other, build an optimal basis for the space
of square-integrable functions [35], and are frequency ordered allowing a low-
pass filtering by projecting onto the first k eigenfunctions. Hence, a function
f :M→ R ∈ L2(M) can be expanded in this basis:

f =

∞∑
i=0

ciφi =

∞∑
i=0

〈f, φi〉φi ≈
k∑
i=0

〈f, φi〉φi , (2)
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where the quality of the last ≈ depends on the amount of high-frequency in-
formation in f . The projection onto the LBO basis is similar to the Fourier
transform, allowing the same operations, and thus we use the LBO basis as the
replacement for Fourier features. In fact, if [0, 1]2 is considered as a manifold, its
LBO eigenfunctions with different boundary conditions are exactly combinations
of sines and cosines. Furthermore, the eigenfunctions of the LBO are identical
up to sign ambiguity for isometric shapes since the LBO is entirely intrinsic.

4 Intrinsic Neural Fields

We introduce Intrinsic Neural Fields based on the eigenfunctions of the Laplace-
Beltrami operator (LBO) which can represent detailed surface information, like
texture, directly on the manifold. In the presence of prior geometric surface
information, it is more efficient than using the extrinsic Euclidean embedding
space which is often mainly empty. Additionally, this representation is naturally
translation and rotation invariant, surface representation invariant, as well as
invariant to isometric deformations.

Definition 1 (Intrinsic Neural Field). Let M ⊂ Rm be a closed, compact
manifold and φ1, . . . , φd be the first d Laplace-Beltrami eigenfunctions ofM. We
define an intrinsic neural field Fθ :M→ Ro as

Fθ(p) = (fθ ◦ γ)(p) = fθ(a1φ1(p), . . . , adφd(p)) . (3)

where γ :M→ Rd, γ(p) = (a1φ1(p), . . . , adφd(p)), with ai ≥ 0 and λi = λj ⇒
ai = aj, is our embedding function and fθ : Rd → Ro represents a neural network
with weights θ ∈ Rp.

Within this work, we will use ai = 1, which has proven sufficient in praxis,
and multilayer perceptrons (MLPs) for fθ, as this architectural choice is common
for Euclidean neural fields [58]. A detailed description of the architecture can
be found in Fig. 8. It is possible to choose different embedding functions γ but
we choose the LBO eigenfunctions as they have nice theoretical properties (see
Section 4.1) and are directly related to Fourier features.

In Fig. 2, we apply intrinsic neural fields to the task of signal reconstruction
on a 1D manifold to give an intuition about how it works and what its advantages
are. The results show that the neural tangent kernel (NTK) for intrinsic neural
fields exhibits favorable properties, which we prove in Sec. 4.1. We show that we
can represent high-frequency signals on manifold surfaces that go far beyond the
discretization level. In Sec. 5, we apply the proposed intrinsic neural fields to a
variety of tasks including texture reconstruction from images, texture transfer
between shapes without retraining, and view-dependent appearance modeling.

4.1 Theory

In this section, we will prove that the embedding function γ proposed in Defi-
nition 1 generalizes the stationarity result of [50] to certain manifolds. Station-
arity is a desirable property if the kernel is used for interpolation, for example,
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Fig. 2: Signal reconstruction. (2b) The target is sampled at 32 points and MLPs with
three layers, 1024 channels, and different embeddings are trained using L2 loss. The
intrinsic neural field with d=8 eigenfunctions performs best. Using only two eigenfunc-
tions leads to oversmoothing. The reconstruction with the extrinsic embedding and
random Fourier features (RFF) [50] can capture the high-frequency details, but intro-
duces artifacts when the Euclidean distance is not a good approximation of the geodesic
distance, for example, at points A & B. (2d-2g) The second row of subfigures shows the
pairwise neural tangent kernel (NTK) [20,31] between all points on the manifold. (2d)
The NTK using the extrinsic Euclidean embedding is not maximal along the diagonal.
(2e) For the NTK with RFF embedding the maximum is at the diagonal because each
point’s influence is maximal onto itself. However, it has many spurious correlations be-
tween points that are close in Euclidean space but not along the manifold, for example,
around B. (2f,2g) The NTK with our intrinsic embedding is localized correctly and is
stationary (c.f. Thm. 1), which makes it most suitable for interpolation.

(a) XYZ: S1 (b) RFF: S1 (c) Ours: S1 (d) Ours: S2 (e) Ours: S3

Fig. 3: Neural tangent kernels (NTKs) [20,31] with different embedding functions. The
source S1 lies directly inside the ear of the cat. (3a) The NTK using the extrinsic
Euclidean embedding is not maximal at the source. (3b) The NTK using random
Fourier features (RFF) [50] is localized correctly, but shows wrong behavior on the cat’s
body. (3c) The NTK with our intrinsic embedding is localized correctly and adapts
to the local and global geometry. (3d,3e) Additionally, the NTK with our intrinsic
embedding is nearly shift-invariant, if the local geometry is approximately Euclidean:
When the source is shifted from S2 to S3 the kernel is approximately shifted as well.
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in novel view synthesis [50, App. C]. Fourier features induce a stationary (shift-
invariant) neural tangent kernel (NTK). Namely, the composed NTK for two
points in Euclidean space x,y ∈ Rm is given by kNTK(x,y) = (hNTK ◦hγ)(x−y)
where hNTK : R → R is a scalar function related to the NTK of the MLP and
hγ : Rm → R is a scalar function related to the Fourier feature embedding
[50, Eqn. 7,8]. Extending this result to cover inputs p,q ∈ M on a manifold
is challenging because the point difference p − q and, therefore, the concept of
stationary is not defined intrinsically.

Stationarity on Manifolds. While one could use the Euclidean embedding of the
manifold to define the difference p− q, this would ignore the local connectivity
and can change under extrinsic deformations. Instead, we make use of an equiv-
alent definition from Bochner’s theorem which implies that for Euclidean space
any continuous, stationary kernel is the Fourier transform of a non-negative
measure [39, Thm. 1]. This definition can be directly used on manifolds, and we
define a kernel k :M×M→ R to be stationary if it can be written as

k(p,q) =
∑
i

k̂(λi)φi(p)φi(q) , k̂(λi) ≥ 0 ∀i , (4)

where the function k̂ : R → R+
0 is akin to the Fourier transform. This implies

that k̂(λi) and k̂(λj) for identical eigenvalues λi = λj must be identical.
First, we want to point out that for inputs with ‖x‖ = ‖y‖ = r the result of

kNTK(x,y) = hNTK(〈x,y〉) shown by [20] for r = 1 and used in [50] still holds.
This slight extension is given as Lem. 1. It is a prerequisite for the following
theorem which requires the same setting as used in [20].

Theorem 1. LetM be Sn or a closed 1-manifold. Let (λi, φi)i=1,...,d be the pos-
itive, non-decreasing eigenvalues with associated eigenfunctions of the Laplace-
Beltrami operator onM. Let ai ≥ 0 be coefficients s.t. λi = λj ⇒ ai = aj, which
define the embedding function γ :M→ Rd with γ(p) = (a1φ1(p), . . . , adφd(p)).
Then, the composed neural tangent kernel kNTK :M×M→ R of an MLP with
the embedding γ is stationary as defined in Eq. 4.

Proof. Let M = Sn and let Hn
l be the space of degree l spherical harmonics

on Sn. Let Ylm ∈ Hn
l be the m-th real spherical harmonic of degree l with

m = 1, . . . ,dim Hn
l . Notice that the spherical harmonics are the eigenfunctions

of the LBO. We will use j to linearly index the spherical harmonics and l(j) for
the degree. Spherical harmonics of the same degree have the same eigenvalues,
thus we use cl(j) = aj = ai for λi = λj to denote the equal coefficients for same
degree harmonics. First, the norm of the embedding function is constant:

‖γ(q)‖2 =
∑
j

c2l(j)φ
2
j (q) =

∑
l

c2l

dimHn
l∑

m=1

Y 2
lm(q)

(a)
=
∑
l

c2lZl(q,q)
(b)
= const . (5)

Here, Zl(q,q) is the degree l zonal harmonic and (a), (b) are properties of zonal
harmonics [13, Lem. 1.2.3, Lem. 1.2.7]. Due to Eq. 5 and Lem. 1 kNTK(γ(p), γ(q)) =
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hNTK(〈γ(p), γ(q)〉) ∀p,q ∈ M holds. We can rewrite the scalar product as fol-
lows

〈γ(p), γ(q)〉 =
∑
j

c2l(j)φj(p)φj(q) =
∑
l

c2l

dimHn
l∑

m=1

Ylm(p)Ylm(q) (6)

(c)
=
∑
l

c2lZ
l
p(q)

(d)
=
∑
l

c2l (1 + l/α)Cαl (〈p,q〉) , (7)

where Cαl : [−1, 1] → R are the Gegenbauer polynomials which are orthogonal
on [−1, 1] for the weighting function wα(z) = (1− z2)α−1/2 with α = (n− 1)/2
[13, B.2]. Equality (c) holds again due to [13, Lem. 1.2.3]. Equality (d) holds due
to a property of Gegenbauer polynomials [13, Thm. 1.2.6], here 〈p,q〉 denotes
the extrinsic Euclidean inner product. For the composed NTK we obtain

kNTK(γ(p), γ(q)) = hNTK

(∑
lc

2
l (1 + l/α)Cαl (〈p,q〉)

)
. (8)

We see that kNTK(γ(p), γ(q)) is a function depending only on 〈p,q〉. Because the
Gegenbauer polynomials are orthogonal on [−1, 1], this function can be expanded
with coefficients ĉl ∈ R, which yields

kNTK(γ(p), γ(q)) =
∑
l

ĉl (1 + l/α)Cαl (〈p,q〉) =
∑
l

ĉl Z
l(p,q) (9)

=
∑
l

ĉl

dimHn
l∑

m=1

Ylm(p)Ylm(q) =
∑
j

ĉl(j)φj(p)φj(q) . (10)

The coefficients ĉl(j) are non-negative as a consequence of the positive definite-
ness of the NTK [20, Prop. 2] and a classic result by Schoenberg [13, Thm. 14.3.3].
This shows that kNTK(γ(p), γ(q)) is stationary as defined in Equation 4. ut
The adapted proof for 1-manifolds can be found in Sec. D.1. A qualitative ex-
ample of the stationary kernels can be seen in Fig. 2. The theorem does not hold
for general manifolds but we do not consider this a shortcoming. The composed
kernel adapts to the intrinsic geometry of the underlying manifold and is approx-
imately shift-invariant between points that share a similar local neighborhood,
see Fig. 3. Hence, the proposed method naturally and unambiguously integrates
the geometry of the manifold based on an intrinsic representation.

5 Experiments

Due to the large number of experiments presented within this section, we re-
fer to Sec. B for all experimental details and hyperparameter settings as well
as further results. To facilitate fair comparisons, all methods use the same hy-
perparameters like learning rate, optimizer, number of training epochs, or MLP
architecture except when noted otherwise. For baselines using random Fourier
features (RFF), we follow [50] and tune the standard deviation σ (c.f. Eq. 1) of
the random frequency matrix to obtain optimal results.
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5.1 Texture Reconstruction from Images

To investigate the representation power of the proposed intrinsic neural fields,
we consider the task of texture reconstruction from posed images as proposed
by Oechsle et al. [32] in Tab. 1 and Fig. 4. The input to our algorithms is a set
of five 512×512 images with their camera poses and the triangle mesh of the
shape. After fitting the intrinsic neural field to the data, we render images from
200 novel viewpoints and compare them to ground-truth images for evaluation.

For each pixel, we perform ray mesh intersection between the ray through
the pixel and the mesh. The eigenfunctions of the Laplace-Beltrami operator are
defined only on vertices of the mesh [44]. Within triangles, we use barycentric
interpolation. We employ the mean L1 loss across a batch of rays and the RGB
color channels. The eigenfunction computation and ray-mesh intersection are
performed once at the start of training. Hence, our training speed is similar to
the baseline method that uses random Fourier features. Training takes approx.
one hour on an Nvidia Titan X with 12 GB memory.

Comparison with State of the Art Methods. We compare against Texture
Fields [32] enhanced with random Fourier features (RFF) [50]. Additionally,
we compare against NeuTex [57], which uses a network to map a shape to the
sphere and represents the texture on this sphere. We adapt NeuTex s.t. it takes
advantage of the given geometry, see Sec. B.1. Tab. 1 and Fig. 4 show that in-
trinsic neural fields can reconstruct texture with state-of-the-art quality. This is
also true if the number of training epochs is decreased from 1000 to 200.

Ablation Study. We investigate the effect of different hyperparameters on the
quality of the intrinsic neural texture field. The results in Tab. 2 show that the
number of eigenfunctions is more important than the size of the MLP, which is
promising for real-time applications. A model using only 64 eigenfunctions and
17k parameters3 still achieves a PSNR of 29.20 for the cat showing that intrinsic
neural fields can be a promising approach for compressing manifold data.

5.2 Discretization-agnostic Intrinsic Neural Fields

For real-world applications, it is desirable that intrinsic neural fields can be
trained for different discretizations of the same manifold. First, the training
process of the intrinsic neural field should be robust to the sampling in the
discretization. Second, it would be beneficial if an intrinsic neural field trained
on one discretization could be transferred to another, which we show in Sec. 5.3.
To quantify the discretization dependence of intrinsic neural fields, we follow
the procedure proposed by Sharp et al. [43, Sec. 5.4] and rediscretize the meshes
used in Sec. 5.1. The qualitative results in Fig. 5 and the quantitative results
in Tab. 3 show that intrinsic neural fields work across various discretizations.
Furthermore, Fig. 6 shows that transferring pre-trained intrinsic neural fields
across discretizations is possible with minimal loss in visual quality.

3 For reference: a 80× 80 3-channel color texture image has over 17k pixel values.
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(a) NeuTex [57] (b) TF (σ=8) [32,50] (c) Ours (d) GT Image

Fig. 4: Texture reconstruction from images. (4a) NeuTex uses a network to map from
the shape to the sphere and represents the texture on the sphere, which yields dis-
tortions around the shoe. (4b) Texture Fields (TF) [32] with random Fourier Features
(RFF) [50] learns the texture well and only around the breast pocket our method shows
slightly better results. (4c) Intrinsic neural fields can reconstruct texture from images
with state-of-the-art quality, which we show quantitatively in Tab. 1.

(a) orig (b) iso (c) dense (d) qes (e) cloud ↓

Fig. 5: Discretization-agnostic intrinsic neural fields. Our method produces identical
results for a wide variety of triangular meshings and even point cloud data. For the
point cloud, we use local triangulations [44, Sec. 5.7] for ray-mesh intersection. Pre-
trained intrinsic neural fields can be transferred across discretizations as shown in
Fig. 6.

(a) source (b) dense (c) ARAP [48] (d) TOSCA cat 2 (e) TOSCA dog 0

Fig. 6: Intrinsic neural field transfer. (6a) The pre-trained intrinsic neural texture field
from the source mesh is transferred to the target shapes using functional maps [33,15].
(6b,6c) The transfer across rediscretization (c.f. Fig. 5) and deformation gives nearly
perfect visual quality. (6d,6e) As a proof of concept, we show artistic transfer to a
different cat shape and a dog shape from the TOSCA dataset [8]. Both transfers work
well but the transfer to the dog shows small visual artifacts in the snout area due to
locally different geometry. Overall, the experiment shows the advantage of the intrinsic
formulation which naturally incorporates field transfer through functional maps.
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Table 1: Texture reconstruction from images. Our intrinsic neural fields show state-of-
the-art performance (first row block), which also holds for fewer training epochs (Ep. ↓,
second row block). For a fair comparison, we improve the original Texture Fields by
employing the same MLP architecture as our model and by additionally using random
Fourier features (TF+RFF ). NeuTex already has more parameters than our model and
we increase the embedding size (Em. ↑). We adapt NeuTex s.t. it takes advantage of the
given geometry, which we detail in Sec. B.1. The methods are evaluated on novel views
using the PSNR, DSSIM [55], and LPIPS [62]. DSSIM and LPIPS are scaled by 100.
For each row block, the best number is in bold font. The intrinsic representation shows
better results than the extrinsic representation (TF+RFF ) as well as when mapping
to a sphere and representing the texture there (NeuTex ). For qualitative results, see
Fig. 4.

Em. Ep.
cat human

PSNR ↑ DSSIM ↓ LPIPS ↓ PSNR ↑ DSSIM ↓ LPIPS ↓

NeuTex [57] 63 1000 31.60 0.242 0.504 29.49 0.329 0.715
NeuTex Em. ↑ 1023 1000 31.96 0.212 0.266 29.22 0.306 0.669
TF+RFF (σ=4) [32,50] 1023 1000 33.86 0.125 0.444 32.04 0.130 0.420
TF+RFF (σ=16) 1023 1000 34.19 0.105 0.167 31.53 0.193 0.414
TF+RFF (σ=8) 1023 1000 34.39 0.097 0.205 32.26 0.129 0.336
Intrinsic (Ours) 1023 1000 34.82 0.095 0.153 32.48 0.121 0.306

NeuTex Ep. ↓ 1023 200 30.96 0.290 0.355 28.02 0.418 0.900
TF+RFF (σ=8) Ep. ↓ 1023 200 34.07 0.116 0.346 31.85 0.142 0.427
Intrinsic (Ours) Ep. ↓ 1023 200 34.79 0.100 0.196 32.37 0.126 0.346

5.3 Intrinsic Neural Field Transfer

One advantage of the Laplace-Beltrami operator is its invariance under isome-
tries which allows for transferring a pre-trained intrinsic neural field from one
manifold to another. However, this theoretic invariance does not always per-
fectly hold in practice, for example, due to discretization artifacts as discussed
by Kovnatsky et al. [21]. Hence, we employ functional maps [33] to transfer the
eigenfunctions of the source to the target shape, computed with the method
proposed by Eisenberger et al. [15]. Fig. 6 shows that intrinsic neural fields can
be transferred between shapes. Specifically, the transfer is possible between dif-
ferent discretizations and deformations [48] of the same shape. As a proof of
concept, we also show artistic transfer, which yields satisfying results for shapes
from the same category, but small visual artifacts for shapes from different cate-
gories. It is, of course, possible to generate similar results with extrinsic fields by
calculating a point-to-point correspondence and mapping the coordinate values.
However, functional maps are naturally low-dimensional, continuous, and differ-
entiable. This makes them a beneficial choice in many applications, especially
related to learning.

5.4 Real-world Data & View Dependence

We validate the effectiveness of intrinsic neural fields under real-world settings on
the BigBIRD dataset [46]. The dataset provides posed images and reconstructed
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Table 2: Ablation study based on the texture reconstruction experiment (c.f. Sec. 5.1).
The number of eigenfunctions is more important than the size of the MLP which is
promising for real-time applications. A model using only 64 eigenfunctions and only
17k parameters still achieves a PSNR of 29.20 for the cat, which shows that intrinsic
neural fields can be a promising approach for compressing manifold data.

#Params #φ
cat human

PSNR ↑ DSSIM ↓ LPIPS ↓ PSNR ↑ DSSIM ↓ LPIPS ↓

Full model 329k 1023 34.82 0.095 0.153 32.48 0.121 0.306
Smaller MLP 140k 1023 34.57 0.108 0.205 32.20 0.134 0.379
Fewer eigenfunctions 83k 64 31.18 0.284 0.927 28.95 0.312 1.090
Smaller MLP & fewer efs 17k 64 29.20 0.473 1.428 26.72 0.493 1.766
Just 4 eigenfunctions 68k 4 22.84 1.367 3.299 20.60 1.033 2.756

Table 3: Discretization-agnostic intrinsic neural fields. We employ the procedure pro-
posed by Sharp et al. [43, Sec. 5.4] to generate different discretizations of the original
meshes (orig): uniform isotropic remeshing (iso), densification around random vertices
(dense), refinement and subsequent quadric error simplification [17] (qes), and point
clouds sampled from the surfaces with more points than vertices (cloud ↑) and with
fewer points (cloud ↓). The discretizations are then used for texture reconstruction as
in Sec. 5.1. For the point clouds, we use local triangulations [44, Sec. 5.7] for ray-mesh
intersection. This table and the qualitative results in Fig. 5 show that intrinsic neu-
ral fields can be trained for a wide variety of discretizations. Furthermore, pre-trained
intrinsic neural fields can be transferred across discretizations as shown in Fig. 6.

cat human

Method orig iso dense qes cloud ↑ cloud ↓ orig iso dense qes cloud ↑ cloud ↓

PSNR ↑ 34.82 34.85 34.74 35.07 34.91 33.17 32.48 32.63 32.57 32.49 32.45 31.99
DSSIM ↓ 0.095 0.093 0.096 0.096 0.096 0.130 0.121 0.117 0.120 0.121 0.123 0.135
LPIPS ↓ 0.153 0.152 0.159 0.147 0.152 0.220 0.306 0.300 0.301 0.297 0.307 0.323

meshes, and we apply a similar pipeline as in Sec. 5.1. However, the objects un-
der consideration are not perfectly Lambertian, and thus, view dependence must
be considered. This is achieved by using the viewing direction as an additional
input to the network, as done in [29]. At first glance, using the viewing direction
in its extrinsic representation is in contrast to our intrinsic definition of neural
fields. However, view dependence arises from the extrinsic scene of the object,
such as the lighting, which cannot be represented purely intrinsically. Decom-
posing the scene into the intrinsic properties, like the BRDF, of the object and
the influence of the environment, like light sources, is an interesting future appli-
cation for intrinsic neural fields. Such decomposition has recently been studied
in the context of neural radiance fields [10,61,6,56,7]. Intrinsic neural fields can
reconstruct high-quality textures from real-world data with imprecise calibration
and imprecise meshes, as shown in Fig. 7.
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(a) Baseline [46] (b) Ours (c) GT Image (d) Baseline (e) Ours (f) GT Image

Fig. 7: Texture reconstruction from real-world data. (7b,7e) Intrinsic neural fields can
reconstruct high quality textures from the real-world BigBIRD dataset [46] with im-
precise calibration and imprecise meshes. (7a,7d) The baseline texture mapped meshes
provided in the dataset show notable seams due to the non-Lambertian material, which
are not present in our reconstruction that utilizes view dependence as proposed by [29].

6 Conclusion

Discussion. The proposed intrinsic formulation of neural fields outperforms the
extrinsic formulation in the presented experiments. However, if the data is very
densely sampled from the manifold, and the kernel is thus locally limited, the
extrinsic method can overcome many of its weaknesses shown before. In practice,
dense sampling often leads to an increase in runtime of further processing steps,
and therefore, we consider our intrinsic approach still to be superior. Further,
we provided the proof for a stationary NTK on n-spheres. Our good results and
intuition imply that for general manifolds, it is advantageous how the NTK takes
local geometry into account. We believe this opens up an interesting direction
for further theoretical analysis.

Conclusion. We present intrinsic neural fields, an elegant and direct general-
ization of neural fields for manifolds. Intrinsic neural fields can represent high-
frequency functions on the manifold surface independent of discretization by
making use of the Laplace-Beltrami eigenfunctions. As a result, they also inherit
beneficial properties of the LBO, like isometry invariance, a natural frequency
filter, and are directly compatible with the popular functional map framework.
We introduce a new definition for stationary kernels on manifolds, and our the-
oretic analysis shows that the derived neural tangent kernel is stationary under
specific conditions.

We conduct experiments to investigate the capabilities of our framework on
the application of texture reconstruction from a limited number of views. Our
results show that intrinsic neural fields can represent high-frequency functions on
the surface independent of sampling density and surface discretization. Further-
more, the learned functions can be transferred to new examples using functional
maps without any retraining, and view-dependent changes can be incorporated.
Intrinsic neural fields outperform competing methods in all settings. Addition-
ally, they add flexibility, especially in settings with deformable objects due to
the intrinsic nature of our approach.
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Supplementary Material

In this supplementary, we elaborate on the implementation details for our intrin-
sic neural fields (Sec. A), discuss the details of our experiments (Sec. B), show
that our method is not overly initialization-dependent (Sec. C), and, finally,
provide further theoretical results (Sec. D).

The high-resolution intrinsic neural texture field on the human model that
we showcase in Fig. 1 is available as a textured mesh on sketchfab4. We would
like to note that the small texture seams are not due to our method, but due to
the conversion from our network to a uv texture map. Intrinsic neural fields do
not possess the discontinuities which are present in the uv map. The texture is
created by an inverse uv lookup of each texel and an evaluation of the intrinsic
neural field at the corresponding point on the manifold. We provide the textured
mesh as a convenient possibility for qualitative inspection with current tools but
it is never used to evaluate the proposed method qualitatively or quantitatively
in the paper.

A Implementation Details

For our method, we calculate the eigenfunctions of the Laplace-Beltrami operator
of a given triangle mesh once by solving the generalized eigenvalue problem for
the first d eigenvalues using the robust Laplacian by Sharp and Crane [44]. If
the given geometry is a pointcloud, we create a local triangulation around each
point which lets us perform a normal ray-mesh intersection. Additionally, the
robust Laplacian [44] supports calculating eigenfunctions on pointclouds.

Depending on whether the viewing direction is taken into account, we use
the respective network architectures shown in Fig. 8 for our experiments. Both
networks take as input a point p from the surface of the discrete 2-manifold
embedded into its d eigenfunctions. Since p might not be a vertex, we linearly
interpolate the eigenfunctions of the vertices vi, vj , and vk, which span the trian-
gle face where p is located, using the barycentric coordinates. For embedding the
unit viewing direction d ∈ R3, we use the sine/cosine positional encoding [29].

During the training, we randomly sample preprocessed rays from the whole
training split. We use a batch size of 4096 across all our experiments. As op-
timizer, we use Adam with the default parameters (β1 = 0.9, β2 = 0.999,
ε = 10−8). Our loss function is the mean L1 loss over a batch of randomly
sampled rays B

L1 =
1

|B|
∑
p∈B
‖Fθ(p)− cgt(p)‖1 (11)

where Fθ is an intrinsic neural field and cgt(p) is the ground-truth RGB color.

4 https://skfb.ly/otvFK

https://skfb.ly/otvFK
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B Experimental Details

B.1 Modification of NeuTex

In order to make the comparison between our method and NeuTex [57] fair, we
adapt the latter one to the setting of a given geometry. Since the geometry is
known in our experimental setup, we remove the latent vector used for learning
a representation of the geometry. Additionally, we remove the volume density
from NeuTex because our experiments are focused on learning a function on
the surface of a given 2-manifold. Furthermore, we do not incorporate view
dependence in the experiments of Sec. 5.1. Hence, we use the the provided, non-
view dependent MLP architecture for Ftex from the official Github repository5.
We, additionally, add a sigmoid non-linearity to the last linear layer to ensure
that the RGB color values are in [0, 1]. The overall architecture is shown in
Fig. 9.

Due to the higher complexity of additionally learning a mapping between the
surface of the manifold and the uv-space, we pretrain the mapping networks Fuv

and F−1uv . In each training iteration, we randomly sampleN = 25, 000 points from
the sphere and map them into the 3D world coordinate space of the geometry
using F−1uv . Then, we map the predicted 3D world points back onto the sphere
using Fuv. We train for 200, 000 iterations using the Adam optimizer with default
parameters (β1 = 0.9, β2 = 0.999, ε = 10−8) and a learning rate of 0.0001. The
loss function is a combination of the mean Chamfer distance Lchamfer between the
predicted 3D world points and the vertices of the mesh and the mean 2D-3D-2D
cycle loss between the sampled and predicted uv-points ui

Lcycle =
1

N

N−1∑
i=0

‖Fuv(F−1uv (ui))− ui‖22. (12)

After the pretraining, we employ a combination of the rendering loss and
the 3D-2D-3D cycle loss as the loss function for learning a surface function on a
given geometry:

Lneutex =
1

|B|
∑
p∈B
‖Ftex(Fuv(p))− cgt‖22 + ‖F−1uv (Fuv(p))− p‖22. (13)

For the experiment in Sec. 5.1, we, additionally, increase the embedding size
of the sphere coordinates to 1023 for NeuTex, so that it is similar to the other
methods. For the sine/cosine positional encoding, we select the frequency bands
from [0, 6] linearly spaced because it covers a range that is similar to RFF with
σ = 8.

https://github.com/fbxiang/NeuTex
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Table 4: Hyperparameter table: Texture reconstruction.

Hyperparameter Value

optimizer Adam with default parameters (β1 = 0.9, β2 =
0.999, ε = 10−8)

learning rate 0.0001

batch size 4096

image size 512×512

random seed 0

eigenfunctions 1 to 256, 1794 to 2304, 3841 to 4096 where 0 is
the constant eigenfunction

epochs 1000

B.2 Texture Reconstruction

In this experiment, we use the same cat6 and human7 mesh as in [32]. The
2D views of the meshes are rendered using Blender and blenderproc [14]. For
the experiments in Sec. 5.1 and Sec. 5.2, we randomly render 5 training, 100
validation, and 200 test 512×512 views. The training views are visualized in
Fig. 10. The hyperparameters are given in Tab. 4. Further qualitative results for
Sec. 5.1 can be found in Fig. 12. The human shown in Fig. 1 was trained using a
4096×4096 high-resolution dataset. It consists of 20 training, 20 validation, and
20 test views that were randomly generated. All training views are visualized in
Fig. 11. In Tab. 5 the hyperparameters for the high-resolution human are shown.

B.3 Discretization-agnostic Intrinsic Neural Fields

We use the same datasets for the cat and human as in Sec. 5.1 but generate
different discretizations of the meshes with the scripts from the Github project8

by Sharp et al. [43]. The hyperparameters can be found in Tab. 4. The scripts
and the meshes will be released together with the code.

B.4 Intrinsic Neural Field Transfer

For the neural texture transfer, we train an intrinsic neural field on the cat
from Sec. 5.1 with the hyperparameters shown in Tab. 6. Since the input to our

5 https://github.com/fbxiang/NeuTex
6 https://free3d.com/3d-model/cat-v1–522281.html
7 https://www.turbosquid.com/3d-models/water-park-slides-3d-max/1093267
8 https://github.com/nmwsharp/discretization-robust-correspondence-benchmark

https://free3d.com/3d-model/cat-v1--522281.html
https://www.turbosquid.com/3d-models/water-park-slides-3d-max/1093267
https://github.com/nmwsharp/discretization-robust-correspondence-benchmark
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Table 5: Hyperparameter table: High-resolution texture reconstruction.

Hyperparameter Value

optimizer Adam with default parameters (β1 = 0.9,
β2 = 0.999, ε = 10−8)

learning rate 0.0001

batch size 4096

image size 4096×4096

random seed 0

eigenfunctions 1 to 4096 where 0 is the constant eigenfunction

epochs 500

method is only the first d LBO eigenfunctions, we can reuse the network on the
cat on other shapes without retraining as long as we know how to transfer the
eigenfunctions. This is exactly what functional maps [33] do. We use the method
of [15], which works with both isometric and non-isometric pairs, to calculate a
correspondence P between the cat C and a target T , and obtain the functional
map by projecting C = Φ>T PΦC . Instead of using the eigenfunctions ΦT of the
target shape directly, we use ΦT C as input to the network.

B.5 Real-world Data and View Dependence

For experiments with real-world data, we select the objects detergent and cinna-
mon toast crunch from the BigBIRD dataset [46]. The dataset provides images
from different directions, foreground-background segmentation masks, camera
calibration, and a reconstructed mesh of the geometry of each object. The pro-
vided meshes and the object masks do not align well, which can cause color
bleeding from the background into the reconstruction. Hence, we improve the
masks using intensity thresholding and morphological operations. Specifically,
potential background pixels are identified based on their intensity due to the
mostly white background. They are removed if they are close to the bound-
ary of the initial mask. Finally, a small margin of the mask is eroded to limit
the number of false positive mask pixels. This process could be replaced by
a more advanced method for a large-scale experiment on real-world data. For
both objects, we train our method on 60 evenly-spaced views from a 360 degree
perspective. The view used for qualitative comparison is centered between two
training views. The model for this experiment implements the view-dependent
network architecture visualized in Fig. 8 and uses the hyperparameters shown
in Tab. 7. We will release the preprocessing code and the training data used in
this experiment along with the final publication.
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Table 6: Hyperparameter table: Texture transfer.

Hyperparameter Value

optimizer Adam with default parameters (β1 = 0.9, β2 =
0.999, ε = 10−8)

learning rate 0.0001

batch size 4096

image size 512×512

random seed 0

eigenfunctions 1 to 512 where 0 is the constant eigenfunction

epochs 500

C Initialization Dependence of Intrinsic Neural Fields

In order to test the dependence of our method on the initialization, we repeat
the experiment from Sec. 5.1 with different seeds. The results can be found in
Tab. 8. Our method has a relative standard deviation of roughly 1% for DSSIM
and LPIPS and only about 0.2% for PSNR, which shows that intrinsic neural
fields are not overly initialization-dependent.

D Theory

In this section, we provide further details regarding the theory of intrinsic neu-
ral fields. In Fig. 13 we demonstrate that the composed neural tangent kernel
(NTK) can be non-stationary for a general 2-manifold. In Sec. D.1 the proof
for Thm. 1 is given specifically for 1-manifolds. Finally, in Sec. D.2 we provide
further theoretical results regarding the NTK, specifically Lem. 1, which was
used in the proof of Thm. 1.

D.1 Theorem 1 on 1-Manifolds

The proof for Thm. 1 only considered n-spheres. Here, we will give a short
proof why it extends to general closed compact 1-manifolds. The proof depends
only on properties of the spherical harmonics which are equivalent to the LBO
eigenfunctions of closed 1-manifolds.

Since the proof in the main paper is for n-spheres, it also holds for circles of
arbitrary radius which are 1-spheres. Notice that all closed compact 1-manifolds
N are isometric to the circle with radius equal to the circumference of N . This
is quite obvious if one considers that the geodesic distance between two points
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Table 7: Hyperparameter table: Real-world data and view dependence.

Hyperparameter Value

optimizer Adam with default parameters (β1 = 0.9, β2 =
0.999, ε = 10−8)

learning rate 0.0002

learning rate

schedule

plateau with factor=0.1, patience=10,
threshold=0.0001

batch size 16384

image size 2848×4272

random seed 0

eigenfunctions 1 to 4096 where 0 is the constant eigenfunction

epochs 500

on a curve is simply the arc length between them, the geodesic distance on a
closed 1-manifold is the minimum of both possible arc lengths. Therefore, the
geodesic distances of any 1-manifolds with fixed circumference r is invariant to
its extrinsic embedding, and all 1-manifold with circumference r are isometric
to each other.

The spherical harmonics are the eigenfunctions of the Laplace-Beltrami oper-
ator and those are invariant under isometries. Therefore, the spherical harmonics
and all their properties transfer to general closed compact 1-manifolds and the
proof still holds.

Table 8: Initialization dependence for intrinsic neural fields. We retrain our method with
different seeds on the texture reconstruction experiment from Sec. 5.1. The results show
that intrinsic neural fields are not overly dependent on the initialization. Additionally,
the results presented in Sec. 5.1 with seed 0 are not cherry picked.

Seed 0 1 2 3 4 5 6 7 8 9 Avg. Std.

cat

PSNR ↑ 34.82 34.73 34.80 34.81 34.85 34.95 34.87 35.00 34.77 35.01 34.86 0.262%

DSSIM ↓ 0.095 0.096 0.096 0.096 0.093 0.094 0.093 0.092 0.096 0.091 0.094 1.846%

LPIPS ↓ 0.153 0.155 0.156 0.158 0.153 0.158 0.154 0.151 0.156 0.156 0.155 1.305%

human

PSNR ↑ 32.48 32.43 32.35 32.47 32.47 32.56 32.50 32.50 32.42 32.42 32.46 0.171%

DSSIM ↓ 0.121 0.122 0.124 0.121 0.121 0.120 0.121 0.121 0.121 0.122 0.121 0.843%

LPIPS ↓ 0.306 0.309 0.305 0.309 0.305 0.306 0.306 0.301 0.303 0.305 0.306 0.763%
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D.2 Neural Tangent Kernel

In this section, we prove Lem. 1 that was used in the proof of Thm. 1. Addi-
tionally, we briefly discuss the positive definiteness of the NTK. As in the main
paper, we consider the same setting as Jacot et al. [20].

Lemma 1. Let kNTK : Rn × Rn → R be the neural tangent kernel for a mul-
tilayer perceptron (MLP) with non-linearity σ. If the inputs are restricted to a
scaled hypersphere ‖x‖ = r then there holds

kNTK(x, x′) = hNTK(〈x, x′〉) , (14)

for a scalar function hNTK : R→ R.

Proof. For this proof we adopt the notation of Jacot et al. [20] to simplify fol-
lowing both papers simultaneously. We give a detailed proof, as this also gives
good insight into the NTK. Let all requirements be equivalent to the ones used
for [20, Prop. 1]. Jacot et al. show that the neural network Gaussian process
(NNGP) has covariance Σ(L) defined recursively

Σ(1)(x, x′) =
1

n0
x>x′ + β2 (15)

Σ(L+1)(x, x′) = E(u,v)∼N(0,Λ(L)(x,x′))[σ(u)σ(v)] + β2 (16)

Λ(L)(x, x′) =

(
Σ(L)(x, x) Σ(L)(x, x′)
Σ(L)(x′, x) Σ(L)(x′, x′)

)
, (17)

where σ : R→ R is the non-linearity of the network and β is related to the bias
of the network. We use u = f(x) and v = f(x′) instead of the Gaussian process
notation used in [20]. We prove by induction that Σ(L)(x, x′) depends only on
x>x′, which also implies that Σ(L)(x, x) does not depend on x because x>x = r2.
For L = 1 this follows directly from the definition. Assume now that for L we
have that Σ(L)(x, x′) depends only on x>x′. It directly follows that Λ(L)(x, x′)
and thus Σ(L+1)(x, x′) also only depend on x>x′, which is the induction step.

Given the NNGP kernel, the neural tangent kernel (NTK) is given by Theo-
rem 1 from Jacot et al:

Θ(1)
∞ (x, x′) = Σ(1)(x, x′) (18)

Θ(L+1)
∞ (x, x′) = Θ(L)

∞ (x, x′)Σ̇(L+1)(x, x′) +Σ(L+1)(x, x′) (19)

Σ̇(L+1)(x, x′) = E(u,v)∼N(0,Λ(L)(x,x′))[σ̇(u)σ̇(v)] + β2 , (20)

where σ̇ is the derivative of the non-linearity. By a similar induction argument to

above we obtain that Θ
(L)
∞ (x, x′) only depends on x>x′ and hence that Θ

(L)
∞ (x, x)

does not depend on x. In the notation of our Lem. 1 this means that kNTK only
depends on 〈x, x′〉 and can thus be written as hNTK(〈x, x′〉) for a scalar function
hNTK : R→ R. ut
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Positive-definiteness of the NTK. In the proof of Thm. 1, we used the fact that
the NTK is positive definite as shown by [20, Prop. 2]. Their proposition is stated
for ‖x‖ = 1 and the extension to ‖x‖ = r requires only slight changes, which we
will detail in the following. In the third step of Jacot et al.’s proof when doing
the change of variables to arrive at their Eqn. 1 the following changes

E(X,Y )∼N(0,Σ̃)[σ(X)σ(Y )] + β2 = µ̂

(
n0β

2 + x>x′

n0β2 + r2

)
+ β2 , (21)

where µ̂ : [−1, 1] → R is the dual in the sense of [20, Lem. 2] of the function

µ : R→ R defined by µ(x) = σ
(
x
√
r2/n0 + β2

)
. Finally, in step 5 of their proof

ν(x>x′) = ν(r2ρ) = β2 +

∞∑
i=0

ai

(
n0β

2 + r2ρ

n0β2 + r2

)i
. (22)
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Fig. 8: Network architecture. We use a similar network architecture as used for
NeRF [29]. A point on the 2-manifold is described by p. The unit ray direction is
represented by d. The notations γIntr and γFF represent the proposed eigenfunction
embedding and the sine/cosine positional encoding [29] respectively. The + sign de-
notes concatenation. The second architecture is used in the experiments of Sec. 5.4
while we use the first architecture in all other experiments.
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Fig. 9: Modified network architecture for NeuTex [57]. We remove the volume density
as well as the view dependence enabling NeuTex to learn a simpler setting because the
geometry is known and the textures are diffuse in the experiment of Sec. 5.1. A 3D
coordinate on the sphere representing the uv-space is described by u. The symbol x
is a 3D world coordinate on the surface of the given 2-manifold. The notation for the
sine/cosine positional encoding [29] is γFF. The + sign denotes concatenation.
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Fig. 10: Training views for the cat and human datasets with 5 views used in Sec. 5.1,
Sec. 5.2, and Sec. 5.3.

Fig. 11: Training views for the human high resolution dataset. Due to the large size
of the 4096×4096 png images, we converted them to jpg and scaled them down to
1024×1024 for this figure.
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(a) NeuTex [57] (b) TF (σ=8) [32,50] (c) Ours (d) GT Image

(e) NeuTex [57] (f) TF (σ=8) [32,50] (g) Ours (h) GT Image

Fig. 12: Further qualitative comparisons of unseen views from the texture reconstruc-
tion experiment (Sec. 5.1). All the methods from this figure use an embedding size of
1023. We want to point out that these renderings are not high-quality due to the low
resolution of the training views.
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(a) XY (b) RFF [50] (c) Ours

Fig. 13: Non-stationarity of NTKs on a general 2-manifold. We investigate the non-
stationarity of the neural tangent kernels (NTKs) on a general 2-manifold, namely the
cat shown in Fig. 3. Each small square in the image shows the coefficient cij when
projecting the kernel onto the LBO basis: cij =

∫
M

∫
M φi(p)k(p,q)φj(q) dp dq. The

integral is approximated numerically as the area-weighted sum over the vertices. A
stationary kernel as defined in Eq. 4 would have entries only along the main diagonal
cij = ciδij . The composed NTK is non-stationary for all features. We do not consider
this a shortcoming of the proposed intrinsic neural fields because the NTK adapts to
the intrinsic geometry of the underlying manifold as we show in Fig. 3.
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