
Scale-Aware Object Tracking with Convex Shape
Constraints on RGB-D Images

Maria Klodt, Jürgen Sturm, and Daniel Cremers

TU München, Germany

Abstract. Convex relaxation techniques have become a popular approach to a
variety of image segmentation problems as they allow to compute solutions inde-
pendent of the initialization. In this paper, we propose a novel technique for the
segmentation of RGB-D images using convex function optimization. The func-
tion that we propose to minimize considers both the color image and the depth
map for finding the optimal segmentation. We extend the objective function by
moment constraints, which allow to include prior knowledge on the 3D center,
surface area or volume of the object in a principled way. As we show in this pa-
per, the relaxed optimization problem is convex, and thus can be minimized in
a globally optimal way leading to high-quality solutions independent of the ini-
tialization. We validated our approach experimentally on four different datasets,
and show that using both color and depth substantially improves segmentation
compared to color or depth only. Further, 3D moment constraints significantly
robustify segmentation which proves in particular useful for object tracking.

1 Introduction

Image segmentation and tracking are of central importance in image analysis. Many
successful approaches to image segmentation from monochrome or color images have
been proposed in the past [1,18]. Unfortunately, in many real-world applications ob-
ject and background share similar colors such that purely 2D color-based segmentation
methods invariably fail – see Figure 1.

With the rise of novel RGB-D cameras like the Microsoft Kinect, inexpensive sen-
sors became available that provide both color images and depth maps synchronized
and at high resolution. While depth alone is usually not sufficient to achieve good seg-
mentation results (different objects may share the same depth), it is well-known that
the combination of depth and color information outperforms purely color-based seg-
mentation [10] and allows for significant speed-ups of the segmentation process [17].
Moreover, as we will see in this paper, when prior knowledge about the object is avail-
able – like for example, its surface area, centroid, or shape covariance matrix – this
knowledge can be exploited during object segmentation.

In this paper, we show how a recently introduced convex framework for color image
segmentation [13] can be extended to RGB-D image data. In particular, the contribu-
tions of this work are three-fold:

– We show that the data term of respective segmentation energies can be extended
to incorporate the local depth information. As a consequence, the respective algo-
rithm favors a separation of object and background based on both color and depth
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Fig. 1. Tracking with area constraints: RGB area constraints (first row) cannot deal with camera
motion, whereas the RGB-D area constraints (second row) are scale-invariant.

information: It will therefore distinguish structures of the same color but different
depth. As a consequence we can segment objects that would be difficult to separate
by color or depth alone – see Figure 1.

– We show that the moment constraints introduced in [13] can be made invariant
using the depth information to the object’s distance from the camera. More specifi-
cally, the depth maps enable us to impose constraints on the object’s absolute shape
in 3D, whereas purely color based tracking methods can only impose constraints on
the object’s projected shape. These constraints can either be specified manually by
user input, or automatically extracted from an initial segmentation for example for
object tracking. In several experiments, we demonstrate that our approach allows
us to reliably segment and track humans and plants in RGB-D images. Further, we
show that respective moment constraints can be generalized to the RGB-D setting
thereby assuring that – for example – the surface area in 3D space is preserved.
In tracking experiments beyond constraining the object’s sideways motion we can
thus also constrain the motion of the object along the camera axis.

2 Related Work

Image segmentation is among the most studied problems in image analysis. Popular
algorithms to solve the arising shape optimization problems include level set methods
[15], graph cuts [11] or convex relaxation [5], with respective extensions to the multi-
region case [6,2,20,14,3].

While it was shown that segmentation results can be substantially improved by im-
posing shape priors [12,7,9], existing approaches have several limitations: Firstly, apart
from a few exceptions such as [19,16], computable solutions are only locally optimal
thus requiring appropriate initializations and leading to often suboptimal solutions. Sec-
ondly, many shape priors require an entire training set of familiar shapes [7,8], making
them unpractical for generic interactive image segmentation where the user may have a
good idea of what he/she wants but will be hard pressed to construct an entire training
set of shapes.

As a remedy it was recently proposed [13] to interactively impose constraints on the
lower-order moments of the shape in a convex relaxation framework for image segmen-
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tation. The aim of this paper is to generalize these concepts to the problem of RGB-D
image segmentation.

3 Tracking in RGB-D Sequences with Shape Constraints

We structured the description of our approach into three parts. First, we introduce in
Sec. 3.1 how image segmentation can be formulated as a convex relaxation problem.
Second, we describe in Sec. 3.2 how moment constraints can be incorporated during
image segmentation. Third, we show in Sec. 3.4 how a user can intuitively provide
these constraints with a minimum of effort.

3.1 Segmentation with Convex Relaxation

We formulate the problem of image segmentation as a minimization of functionals of
the following form:

E(u) =

∫
Ω

f(x)u(x) dx +

∫
Ω

|Du(x)|, (1)

Here, u ∈ BV (IRd; {0, 1}) is an indicator function on the space of binary functions of
bounded variation, where u = 1 and u = 0 denote the interior and exterior of a hyper
surface in IRd, i.e. a set of closed boundaries in the case of 2D image segmentation or a
set of closed surfaces in the case of 3D segmentation.

The second term in (1) is the total variation. Here Du denotes the distributional
derivative which for differentiable functions u boils down to Du(x) = ∇u(x)dx. By
relaxing the binary constraint and allowing the function u to take on values in the inter-
val between 0 and 1, the optimization problem becomes that of minimizing the convex
functional (1) over the convex set BV (IRd; [0, 1]).

Functionals of this form can be globally optimized in a spatially continuous setting
by means of convex relaxation and thresholding. The thresholding theorem [4] assures
that thresholding the solution u∗ of the relaxed problem preserves global optimality for
the original binary labeling problem. We can therefore compute global minimizers for
functional (1) in a spatially continuous setting as follows: Compute a global minimizer
u∗ of (1) on the convex set BV (IRd; [0, 1]) and threshold the minimizer u∗ at any value
θ ∈ (0, 1).

With additional depth information from RGB-D images, the boundary length can
be measured in absolute values instead of the image domain. Functional (1) can be
generalized to

E(u) =

∫
Ω

f(x)u(x) dx +

∫
Ω

d(x)|Du(x)|, (2)

with depth values d : Ω → IR. This formulation compensates the fact that objects that
are far away to the camera appear smaller in the image due to perspective projection.
Weighting with d(x) allows regularization on the absolute size of the boundary – in
contrast to assuming a uniform pixel size as in (1).
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3.2 Moment Constraints for RGB-D Images

In the following, we will successively constrain the moments of the segmentation with
depth information and show how all of these constraints give rise to nested convex sets.
We will denote by B = BV (Ω; [0, 1]) the convex hull of the set of binary indicator
functions u ∈ BV (Ω; {0, 1}) of bounded variation on the domain Ω ⊂ IRd.

Area Constraint. The 0-th order moment corresponds to the area of the shape u and can
be computed by

Area(u) :=

∫
Ω

d2(x)u(x) dx, (3)

where d(x) gives the depth of pixel x. Here, we assume that d(x) = KD(x), with K
being the focal length of the camera and D(x) being the depth of the pixel measured in
meters. Note that d2(x) corresponds to the size of a back-projected pixel in 3D space,
and thus the integral measures the absolute surface area (scaled by K2) instead of the
projected area in the image. This is in contrast to [13], where all pixels are treated
equally.

We can impose that the absolute area of the shape u to be bounded by constants
c1 ≤ c2 by constraining u to lie in the set:

C0 =
{
u ∈ B ∣∣ c1 ≤ Area(u) ≤ c2

}
. (4)

The set C0 is linearly dependent on u and therefore convex for any constants c2 ≥ c1 ≥
0.

In practice, we can either impose an exact area by setting c1 = c2, or we can impose
upper and lower bounds on the area. Alternatively, we can impose a soft area constraint
by enhancing the functional (1) as follows:

Etotal(u) = E(u) + λ

(∫
d2u dx− c

)2

, (5)

which imposes a soft constraint with a weight λ > 0 favoring the area of the estimated
shape to be near c ≥ 0. Note that the functional (5) is also convex.

Centroid Constraint. The 1-st order moment corresponds to the center of gravity (or
centroid) of the shape. It can be computed by integrating over all 3D positions of the
shape, i.e.,

μ(u) :=

(
x

d

)
=

∫
Ω

(
x
d

)
u dx∫

Ω d2u dx
, (6)

where x ∈ R
2 is the centroid in pixel coordinates and d ∈ R is the centroid in depth.

Together, μ ∈ R
3 corresponds to the centroid of the shape in 3D.

We can now impose bounds on the centroid for the object we want to segment by
constraining the solution u to the set C1:

C1 =
{
u ∈ B ∣∣ μ1 ≤ μ(u) ≤ μ2

}
, (7)

where all inequalities are to be taken point-wise and μ1, μ2 ∈ IR3. This imposes the
centroid to lie between the two constants μ1 ≤ μ2. In particular, for μ1 = μ2, the
centroid is fixed.
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Proposition 1. For any constants μ2 ≥ μ1 ≥ 0, the set C1 is convex. (The proof is
analogous to proof 2 in [13].)

Alternatively, we can impose the centroid as a soft constraint by minimizing the
energy:

Etotal(u) = E(u) + λ

∣∣∣∣
∫
Ω

(
μd2 − (

x
d

))
u dx

∣∣∣∣
2

,

which is also convex in u.

Covariance Constraint. The proposed concept can be generalized to moments of sec-
ond order. In the following, we focus on central moments (i.e. moments with respect to
a specified centroid μ). The 3D covariance of a shape u is given by

Cov(u) :=

∫
Ω

((
x
d

)− μ
) ((

x
d

)− μ
)�

u dx∫
Ω d2u dx

. (8)

The covariance structure can be considered by the following convex set:

C2 =
{
u ∈ B ∣∣ A1 ≤ Cov(u) ≤ A2

}
(9)

where the inequality constraint should be taken element wise. Here μ ∈ IR3 denotes
the centroid and A1, A2 ∈ IR3×3 denote symmetric matrices such that A1 ≤ A2 ele-
ment wise. This constraint is particularly meaningful if one additionally constrains the
centroid to be μ, i.e. considers the intersection of the set (9) with a set of the form (7).

Optimization with Moment Constraints. Shape optimization and image segmentation
with respective moment constraints can now be done by minimizing convex energies
under respective convex constraints. The optimization was implemented using the pro-
jection approach as described in [13].

3.3 Tracking with 3D Constraints

The 3D moments of a shape can be used for tracking objects in a sequence of im-
ages. Given the moments of the shape in the first frame, constraints can be imposed
on segmentations in all subsequent frames. Here, the moments of a shape are com-
puted directly in the 3D space, not in the projection to the image plane. This makes the
method independent of the projected size of the object in the image. Without the need of
defining a window in which subsequent shapes should be found, the proposed method
simply applies the moment constraints of the current frame to the subsequent. We allow
the centroid to change inside a small range to handle motion of the camera and/or the
object. The area and covariance are supposed to stay constant in the 3D space over all
time frames.
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Fig. 2. Comparison of tracking an object with and without area constraint. Top row: Color-only
tracking. Bottom row: RGB-D tracking: The surface area is constrained on the absolute dimen-
sion via additional information from the depth images.

3.4 Segmentation Priors from User Input

The data term used throughout our experiments has the following form:

f(x) = log
pbg(I(x))

pobj(I(x))
. (10)

Here, I : Ω → R
n refers to an image with n channels. For example, n = 1 for

depth or gray-scale images, n = 3 for color images and n = 4 for RGB-D images.
The data priors pobj and pbg assign probabilities to each pixel belonging to the object
or the background, respectively, and satisfy pobj + pbg = 1. We compute them from
histograms for foreground and background. The moment constraints that we consider
in our experiments include the centroid, area and covariance of the shape.

Both the data prior as well as the moment constraints can be specified by the user.
We found that an intuitive interface is to ask the user to mark the object of interest
with an ellipse (see Fig. 1). From the pixels within and outside the ellipse, we train the
n-dimensional color/depth/RGB-D histograms corresponding to the probability distri-
butions pobj and pbg, respectively. Further, we extract the surface area, 3D centroid and
3D covariance matrix that we use as moment constraints during segmentation from the
projection of the ellipse into 3D space, with the information of the depth image.

4 Experimental Results

In this section we present an evaluation of our approach for RGB-D image segmentation
with moment constraints. The goal of our experiments was to verify that (1) segmenta-
tion on RGB-D data is more reliable than segmentation of color or depth images alone,
and that (2) object tracking with 3D moment constraints is more robust than 2D moment
constraints.

All images and videos shown in this paper were captured using the Microsoft Kinect
sensor. Run-times on a GPU implementation are less than 1 second per image, making
the method useful for interactive applications.
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4.1 Tracking with Moment Constraints

Figure 1 shows results on moment-consistent tracking in 2D and 3D with large camera
motion. In the top row we see the results for color-only tracking: The area constraint
is imposed on the projected shape of the object. The method cannot cope with increas-
ing and decreasing appearance in the image domain, although the absolute size of the
object stays the same. The bottom row shows RGB-D tracking: The area constraint is
imposed on the absolute dimension via additional information from the depth images.
The method enables area-consistent tracking with arbitrary camera motion. In the Fig-
ure, we took images of a plant in an office scene with a hand-held Kinect sensor from
different view points. Of course, the basic properties of the 3D shape – and thus the
surface area and covariance structure – of the selected object remains the same dur-
ing the sequence. However, the projection of the object’s shape in 2D changes its size
due to object and/or camera motion. As a result, simple 2D moment tracking fails, as
it tries to keep the area in image space constant. In contrast, 3D moment constraints
are scale-invariant and are thus more robust against camera and/or object motion. From
these examples, we conclude that in the case of arbitrary camera motion 3D moment
constraints are better suited for object tracking than 2D moment constraints.

The image sequence in Fig. 2 was captured by a flying quadrocopter with a Kinect
camera mounted on top of it. The towel’s shape and color distribution vary over time
due to camera motion and wind caused by the quadrocopter’s rotors. The figure shows
that color-only segmentation (first row) is not sufficient to track the object, whereas
additional information from the depth images allow 3D moment constraints to track the
exact surface area (second row).

4.2 Segmentation with Color, Depth, and RGB-D

We tested our segmentation method with moment constraints in several scenes to de-
monstrate that RGB-D segmentation can outperform segmentation based on color or
depth alone. To demonstrate this, we segmented different objects in the color, depth,
and the (combined) RGB-D image.

Our first example is shown in Fig. 3 where we aimed at segmenting individual per-
sons from the crowd. We found that neither color nor depth information are sufficient
to uniquely separate a single person in the image, see Fig. 3(b+c). In more detail, the
person in the first row is hard to segment in the color image because of the blue jeans in
front of the blue door. The person in the second row wears a black shirt and is partially
occluded by the wardrobe, and the person in the third row overlaps with the person in
the background, having similar histograms which makes the segmentation task hard.
Depth segmentation alone has shortcomings in other regions of the image. We found
that there are often pixels in an image with similar depth values as the foreground ob-
ject – with the exception of the person sitting on the chair, where no other pixels had
the same depth values. In the first two rows of Fig. 3, the segmentation problems are re-
solved when RGB and depth information is jointly considered. To conclude, all persons
could be separated well in the RGB-D case.

Another interesting example is depicted in Fig. 4 where we found that even the ab-
sence of information in the depth image can be exploited to successfully segment an
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1.64% error 1.30% error 0.87% error

3.96% error 2.18% error 1.57% error

3.71% error 1.05% error 1.27% error
(a) Input (b) RGB Segm. (c) Depth Segm. (d) RGB-D Segm.

Fig. 3. Segmentation of images with ambiguous color and depth information. Moment constraint
parameters are derived from user input (a). Purely color (b) and depth (c) images alone do not
provide enough information to uniquely segment one person. The combination (d) allows for
segmentation of one single person in all three examples. Segmentation errors can be reduced by
combining depth and color information.

image. Here, we consider a water glass located on a table. In the color image, the glass
is difficult to see because of its transparency. Moreover, the depth of the glass pixels
cannot be estimated due to the material’s reflective property. By considering both the
color and the depth image, we found that the glass is well separable.

4.3 Quantitative Analysis

For a quantitative analysis of the presented method, we measured the amount of pixels
that differ from a manually segmented ground truth for segmentation with and without
constraints, as well as segmentations using color, depth, and their combination. Seg-
mentation errors were computed for the images in Fig. 3.

Table 1 shows average segmentation errors compared to the ground truth. Here
we also compared to segmentations without moment constraints, where segmentations
were computed using only the color information of the histograms inside and outside
the ellipse drawn by the user. The table clearly shows that the amount of misclassified
pixels can be reduced by combining depth and color information for segmentation with
moment constraints. Interestingly, segmentation with depth only yields significantly
better results than color only.
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Table 1. Average segmentation errors with and without moment constraints, compared to ground
truth. The combination of color and depth leads to better results, even more improvement is
achieved by additionally constraining the moments of the segmentation.

Average Segmentation Error
Without Constraints: Color only 29.25%

Depth only 16.99%
RGB-D 17.93%

With Constraints: Color only 3.10%
Depth only 1.51%
RGB-D 1.24%

(a) Input Color (b) Input Depth (c) User Input (d) Color-only (e) RGB-D
Image Image Segmentation Segmentation

Fig. 4. Segmentation of reflective material. (a+b) Input image and (c) user input. (d) When only
the color image is considered, the glass is indistinguishable from the background due to its trans-
parency. (e) When the depth image is taken into account, the glass becomes separable.

5 Conclusion

We introduced a convex framework for interactive RGB-D image segmentation and
tracking. Building up on state-of-the-art approaches for color segmentation, we showed
that depth information can be integrated in the data terms for image segmentation so
as to favor segmentations of coherent depth. In particular objects of similar color but
different depth can be discriminated. Moreover, we show that the availability of depth
allow to impose constraints on the absolute shape rather than the projected shape. And
lastly we show that one can impose moment constraints in 3D space – thereby we
exploit the fact that the 3D motion of a tracked object is constrained over time. Our
studies demonstrate that combining color and depth drastically enhances the possibili-
ties of variational segmentation methods. In particular, it allows to generalize respective
constraints from the image plane to the physical 3D space. Experiments show that with
a minimal amount of user input we can obtain fast interactive segmentations of good
quality in a variety of challenging real-world scenarios.
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by simplex-constrained total variation. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A.
(eds.) SSVM 2009. LNCS, vol. 5567, pp. 150–162. Springer, Heidelberg (2009)

15. Osher, S.J., Sethian, J.A.: Fronts propagation with curvature dependent speed: Algorithms
based on Hamilton–Jacobi formulations. J. of Comp. Phys. 79, 12–49 (1988)

16. Schoenemann, T., Cremers, D.: A combinatorial solution for model-based image segmenta-
tion and real-time tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence
(2009)

17. Taylor, C., Cowley, A.: Fast scene analysis using image and range data. In: Proc. of the
Intl. Conf. on Robotics and Automation, ICRA (2011)

18. Unger, M., Pock, T., Cremers, D., Bischof, H.: TVSeg - interactive total variation based im-
age segmentation. In: British Machine Vision Conference (BMVC), Leeds, UK (September
2008)

19. Veksler, O.: Star shape prior for graph-cut image segmentation. In: Europ. Conf. on Com-
puter Vision., pp. 454–467 (2008)

20. Zach, C., Gallup, D., Frahm, J.M., Niethammer, M.: Fast global labeling for real-time
stereo using multiple plane sweeps. In: Vision, Modeling and Visualization Workshop VMV
2008(October 2008)


	Scale-Aware Object Tracking with Convex Shape Constraints on RGB-D Images
	Introduction
	Related Work
	Tracking in RGB-D Sequences with Shape Constraints
	Segmentation with Convex Relaxation
	Moment Constraints for RGB-D Images
	Tracking with 3D Constraints
	Segmentation Priors from User Input

	Experimental Results
	Tracking with Moment Constraints
	Segmentation with Color, Depth, and RGB-D
	Quantitative Analysis

	Conclusion


