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Abstract Convex relaxation techniques have become a popular approach to shape

optimization as they allow to compute solutions independent of initialization to a va-

riety of problems. In this chapter, we will show that shape priors in terms of moment

constraints can be imposed within the convex optimization framework, since they

give rise to convex constraints. In particular, the lower-order moments correspond

to the overall area, the centroid, and the variance or covariance of the shape and can

be easily imposed in interactive segmentation methods. Respective constraints can

be imposed as hard constraints or soft constraints. Quantitative segmentation studies

on a variety of images demonstrate that the user can impose such constraints with

a few mouse clicks, leading to substantial improvements of the resulting segmenta-

tion, and reducing the average segmentation error from 12% to 0.35%. GPU-based

computation times of around 1 second allow for interactive segmentation.

1 Introduction

Shape optimization is at the heart of several classical computer vision problems such

as image segmentation and multi view reconstruction. Following a series of seminal

papers [12, 1, 19], functional minimization has become the established paradigm to

solve shape optimization problems such as image segmentation or 3D reconstruc-

tion. In the spatially discrete setting the study of the corresponding binary labeling

problems goes back to the spin-glas models introduced in the 1920’s [11]. Popular

algorithms to solve the arising shape optimization problems include level set meth-

ods [20], graph cuts [9] or convex relaxation [4].

In this chapter, we focus on a class of functionals of the form:
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User input Color only Segmentation with Moment Constraints

Fig. 1 We propose a convex formulation for interactive image segmentation which allows to im-

pose constraints on moments of arbitrary order. In particular, constraints on the lower order mo-

ments (area, centroid, covariance) are easily transmitted through mouse interaction (left). They

allow to stabilize the segmentation process while preserving fine-scale details of the shape (right).

E(S) =
∫

int(S)

f (x)dx +
∫

S

g(x)dA, (1)

where S denotes a hyper surface in IRd , i.e. a set of closed boundaries in the case

of 2D image segmentation or a set of closed surfaces in the case of 3D segmenta-

tion and multi view reconstruction. The functions f : IRd → IR and g : IRd → IR+

are application dependent. In a statistical framework for image segmentation, for

example,

f (x) = log pbg(I(x))− log pob(I(x)), (2)

may denote the log likelihood ratio for observing the color I(x) at a point x given

that x is part of the background or the object, respectively. A common choice for g

is the function

g(x) =
1

1+β |∇Iσ (x)|2
(3)

with suitable choices for the parameters β and σ . Here, Iσ is a Gaussian smoothed

version of the input image.

The second term in (1) corresponds to the area (for d = 3) or the boundary length

(for d = 2), measured in a metric given by the function g. In the context of image

segmentation, g may be a measure of the local edge strength – as in the geodesic

active contours [3, 13] – which energetically favors segmentation boundaries along

strong intensity gradients. In the context of multi view reconstruction, g(x) typically

measures the photo-consistency among different views of the voxel x, where low
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values of g indicate a strong agreement from different cameras on the observed

patch intensity.

1.1 Shape Priors for Image Segmentation

There has been much research on imposing prior shape knowledge into image seg-

mentation. While it was shown that segmentation results can be substantially im-

proved by imposing shape priors [10, 5, 8], existing approaches typically suffer

from the following problems:

• Apart from a few exceptions such as [23] – computable solutions are only locally

optimal. As a consequence, one typically needs appropriate initializations and

solutions may be arbitrarily far from the globally optimal ones. Other notable

exceptions were designed by Veksler and coworkers for specific scenarios such

as “compact objects” [6] or “star-shaped objects” [25].

• Many shape priors have a rather fine granularity in the sense that they impose

the object silhouette to be consistent with those silhouettes observed in a training

set [5, 7]. The degree of abstraction is typically rather small. In particular, devia-

tions of the observed shape from the training shapes are (elastically) suppressed

by the shape prior. This is particularly undesirable in medical image segmenta-

tion where malformations of organs (that make it deviate from the training shapes

of healthy organs) should be detected rather than ignored. It may therefore be of

interest to merely impose some coarse-level shape information rather that impos-

ing the exact form of the object.

An alternative approach that may provide a remedy for both of the above prob-

lems is to impose moment constraints. In particular, the lower-order moments allow

to constrain the area/volume, the centroid and the size or covariance of objects with-

out imposing any constraints on their local shape. A related idea of using Legendre

moments (albeit in a local optimization scheme) was developed in [8].

In a convex formulation of multiple view 3D reconstruction, it was recently

shown [15] that one can impose additional convex constraints which assure that

the computed minimal surfaces are silhouette-consistent. Essentially this constraint

can be seen as a volume constraint: The volume along any ray from the camera cen-

ter must be at least 1 if that ray passes through the silhouette and zero otherwise. In

the two-dimensional case, a related constraint was recently proposed as a bounding

box prior for image segmentation [17].

1.2 Contribution

We show that one can impose an entire family of moment constraints in the frame-

work of convex shape optimization, thereby generalizing from the zeroth order mo-
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ment (volume) to higher order moments (centroid, scale, covariance, etc). In particu-

lar, all moment constraints - both soft or hard - correspond to convex constraints. As

a consequence we can compute moment-constrained shapes which are independent

of initialization and lie within a bound of the optimum.

The outline of the paper is as follows. In Section 2, we will briefly review a

framework for convex relaxation and thresholding which allows to efficiently com-

pute global minima of the above energies in a spatially continuous setting. In Section

3, we will then show that moment constraints can be imposed as convex constraints

within the optimization framework. In Section 4 we show how the arising opti-

mization problem can be minimized using efficient GPU-accelerated PDE solving.

We will furthermore show that computing projections onto the moment constraint

sets reduces to solving systems of linear equations. Section 5 shows how the pre-

sented method for image segmentation with moment constraints can be extended to

a method for object tracking in videos. In Section 6 we present experimental results

and a quantitative evaluation showing that interactive segmentation results can be

drastically improved using moment constraints.

2 Shape Optimization via Convex Relaxation

Functionals of the form (1) can be globally optimized in a spatially continuous

setting by means of convex relaxation and thresholding [4]. To this end, one re-

verts to an implicit representation of the hyper surface S using an indicator function

u ∈ BV (IRd ;{0,1}) on the space of binary functions of bounded variation, where

u = 1 and u = 0 denote the interior and exterior of S. The functional (1) defined on

the space of surfaces S is therefore equivalent to the functional

E(u) =
∫

Ω
f (x)u(x)dx +

∫

Ω
g(x)|Du(x)|, (4)

where the second term in (4) is the weighted total variation. Here Du denotes the

distributional derivative which for differentiable functions u boils down to Du(x) =
∇u(x)dx. By relaxing the binary constraint and allowing the function u to take on

values in the interval between 0 and 1, the optimization problem becomes that of

minimizing the convex functional (4) over the convex set BV (IRd ; [0,1]). Global

minimizers u∗ of this relaxed problem can therefore efficiently be computed, for

example by a simple gradient descent procedure.

The thresholding theorem [4] assures that thresholding the solution u∗ of the re-

laxed problem preserves global optimality for the original binary labeling problem.

We can therefore compute global minimizers for functional (4) in a spatially con-

tinuous setting as follows: Compute a global minimizer u∗ of (4) on the convex set

BV (IRd ; [0,1]) and threshold the minimizer u∗ at any value µ ∈ (0,1).
The following theorem [4] assures that thresholding the solution u∗ of the re-

laxed problem provides a minimizer of the original binary labeling problem (4), in



Moment Constraints in Convex Optimization 5

other words the convex relaxation preserves global optimality for the original binary

labeling problem.

Theorem 1. Let u∗ ∈ BV (IRd [0,1]) be a global minimizer of the functional (4).

Then all upper level sets (i.e. thresholded versions)

Σµ ,u∗ = {x ∈ IRd |u∗(x)> µ}, µ ∈ (0,1), (5)

of u∗ are minimizers of the original binary labeling problem (1).

Proof. Using the layer cake representation of the function u∗ ∈ BV (IRd ; [0,1]):

u∗(x) =

1
∫

0

1Σµ ,u∗ dµ (6)

we can rewrite the first term in the functional (4) as

∫ d

IR
f u∗ dx =

∫ d

IR
f

(

∫ 1

0
1Σµ ,x dµ

)

dx =
∫ 1

0

∫

Σµ ,u∗

f (x)dx (7)

As a consequence, the functional (4) takes on the form:

E(u∗) =
∫ 1

0

{

∫

Σµ ,u∗

f dx +
∣

∣∂Σµ ,u∗
∣

∣

g

}

dµ ≡
∫ 1

0
Ê
(

Σµ ,u∗
)

dµ , (8)

where we have used the coarea formula to express the weighted total variation norm

in (4) as the integral over the length of all level lines of u measured in the norm

induced by g. Clearly the functional (8) is now merely an integral of the original

binary labeling problem Ê applied to the upper level sets of u∗.

Assume that for some threshold value µ̃ ∈ (0,1) theorem 1 was not true, i.e. there

exists a minimizer Σ ∗ of the binary labeling problem with smaller energy:

Ê(Σ ∗)< Ê(Σµ̃ ,u∗). (9)

Then – using continuity arguments – we have for the indicator function 1Σ∗ of the

set Σ ∗:

E(1Σ∗) =
∫ 1

0
Ê(Σ ∗)dµ <

∫ 1

0
Ê(Σµ ,u∗)dµ = E(u∗), (10)

which contradicts the assumption that u∗ was a global minimizer of (4). �

The above theorem allows to compute global minimizers of the functional (4) in

a spatially continuous setting as follows:

1. Compute a global minimizer u∗ of (4) on the convex set BV (IRd ; [0,1]).
2. Threshold the minimizer u∗ at any value µ ∈ (0,1) to obtain a binary solution of

the original shape optimization problem.
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. . .

0. order 1. order 2. order 3. order 4. order

’area’ ’centroid’ ’covariance’ ’skewness’ ’kurtosis’

Fig. 2 2D central moments of a shape. With increasing order of the moment more details of the

shape can be described.

3 Moment Constraints for Segmentation

In the following, we will describe the moment constraints presented in [14]. We

will successively constrain the moments of the segmentation and show how all

of these constraints give rise to nested convex sets. To this end we will represent

shapes in d dimensions as binary indicator functions u ∈ BV (Ω ;{0,1}) of bounded

variation on the domain Ω ⊂ IRd . We will denote the convex hull of this set by

B = BV (Ω ; [0,1]).
Figure 2 shows examples for the first five 2D central moments of a shape. The

first order moment describes the centroid of a shape, the second describes the co-

variance, i.e. the relation between width and height of an object. While with the

third order moment egg-shapes of shapes can be described, for the fourth order mo-

ments the effect on the shape already becomes less intuitive. The figure shows how

the higher the order of a moment, the more sophisticated properties can be imposed

on the corresponding shape. In the following, we will show how these moments can

be used to constrain properties of shapes for segmentation in a convex framework,

and how especially the lower order moments can constrain shape optimization in a

very intuitive way.

3.1 Area Constraint

We can impose that the area of the shape u to be bounded by a constant c ∈ IR+ by

constraining u to lie in the set:

C0 =

{

u ∈B
∣

∣

∫

Ω
udx = c

}

. (11)

In the case of a 3 dimensional domain Ω the constant c constrains the volume of a

shape.

Proposition 1. For any constant c≥ 0, the set C0 is convex.
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Proof. Let u1,u2 ∈ C0 be two elements from this set. Then for any convex combi-

nation uα = αu1 +(1−α)u2,α ∈ [0,1] of these elements we have:

∫

Ω
uα dx = α

∫

Ω
u1 dx+(1−α)

∫

Ω
u2 dx. (12)

As a consequence we have
∫

Ω uα dx = c such that uα ∈ C0.

In practice, we can either impose an exact area or we can impose upper and lower

bounds on the area with two constants c1 ≤ c2 and constrain the area to lie in the

range [c1,c2]
Alternatively, we can impose a soft area constraint by enhancing the functional

(4) as follows:

E0(u,λ0) = E(u)+λ0

(

∫

udx− c

)2

, (13)

which imposes a soft constraint with a weight λ0 > 0 favoring the area of the esti-

mated shape to be near c≥ 0. Clearly, the functional (13) is also convex.

3.2 Centroid Constraint

Assume that someone gave us some bounds about the centroid (center of gravity)

for the object we want to reconstruct. We can impose the centroid of the shape by

constraining the solution u to the set C1:

C1 =

{

u ∈B
∣

∣

∫

Ω xudx
∫

Ω udx
= µ

}

, (14)

where equality is to be taken point wise and µ ∈ IRd . Alternatively, we can impose

the centroid to lie between two constants µ1,µ2 ∈ IRd . For µ1 = µ2, the centroid is

fixed. C1 contains all shapes whose first order moment is µ . In probability theory

the first order moment is also called the expected value.

Proposition 2. For any constant µ ≥ 0, the set C1 is convex.

Proof. The equality constraint in (14) is equivalent to

∫

Ω
xudx = µ

∫

Ω
udx, (15)

which is clearly a linear constraint.

Reformulating the constraint equation in (14) leads to

∫

Ω
(µ− x)udx = 0, (16)

allowing us to impose the centroid as a soft constraint by minimizing the energy:
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E1(u,λ1) = E(u)+λ1

(

∫

Ω
(µ− x)udx

)2

. (17)

Energy (17) is also convex in u. Interestingly this soft constraint does not minimize

the quadratic difference to the specified center µ; the latter would not be convex. In

contrast to the hard constraint, this soft constraint unfortunately exhibits a prefer-

ence toward smaller shapes as it vanishes with decreasing object size:

(

∫

Ω
(µ− x)udx

)2

=

(

µ−

∫

Ω xudx
∫

Ω udx

)2

b2, (18)

where b =
∫

udx denotes the size of the object.

3.3 Covariance Constraint

The proposed concept can be generalized to moments of successively higher order,

where we shall focus on so-called central moments (i.e. moments with respect to a

specified centroid). In particular, the respective structures will generally be tensors

of higher dimension. One can impose the covariance structure by considering the

following convex set:

C2 =

{

u ∈B
∣

∣

∫

Ω (x−µ)(x−µ)⊤udx
∫

Ω udx
= A

}

, (19)

where the equality constraint should be taken element wise. Here µ ∈ IRd denotes

the center and A ∈ IRd×d denotes a symmetric matrix. Alternatively, we can impose

the covariance to lie in a range between two symmetric matrices A1,A2 ∈ IRd×d

such that A1 ≤ A2 element-wise. Constraining the covariance, i.e. the second order

moment, we are able to constrain the relation between width and height of an object.

This constraint is particularly meaningful if one additionally constrains the centroid

to be µ , i.e. considers the intersection of the set (19) with a set of the form (14).

Proposition 3. For any constant A≥ 0, the set C2 is convex.

Proof. The proof is analogous to that of proposition 2.

We can derive the corresponding soft constraint on the covariance matrix by

adding a respective term to the original energy:

E2(u,λ2) = E(u)+λ2

(

∫

Ω

(

A− (x−µ)(x−µ)⊤
)

udx

)2

. (20)

Note that this allows, in particular, to constrain the scale σ of the object, because:

σ2 =

∫

Ω (x−µ)2udx
∫

Ω udx
= tr

∫

Ω (x−µ)(x−µ)⊤udx
∫

Ω udx
. (21)
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(a) (b) (c) (d) (e) (f) (g) (h)

Input no constr. 0th order up to 1st up to 2nd up to 3rd up to 6th up to 12th

Fig. 3 Segmentation results with higher order moment constraints: By imposing constraints of

increasing order (up to 12th order) more and more fine scale details of the shape are restored.

From the constraint in (19) it follows that:

tr(A1)≤ σ2 ≤ tr(A2). (22)

Here, tr denotes the trace of a matrix.

3.4 Higher Order Moment Constraints

In general, we can impose constraints on moments of any order k ∈ N:

Ck =

{

u ∈B
∣

∣

∫

Ω (x1−µ1)
i1 · · ·(xd−µd)

id udx
∫

Ω udx
= ai1..id

}

, (23)

where i1 + · · ·+ id = k and ai1..id can be chosen arbitrarily to constrain the moment

tensor of order k. Here xi and µi denotes the i-th component of x and µ respectively.

Proposition 4. For all i1, . . . , id ∈ N and for any constants ai1..id ≤ bi1..id , the set

Ci1...id is convex.

Proof. The proof is analogous to that of proposition 2.

The above properties allow to impose various constraints on the shape associated

with the indicator function u. Imposing more and more constraints of increasingly

higher order leads to a smaller and smaller intersection of the associated convex sets

as a feasible domain of the shape and a corresponding hierarchy of shape details

being imposed in the segmentation. How much shape detail can one impose in this

manner?

Proposition 5. Similarity to any given shape can be imposed at arbitrary detail by

imposing convex moment constraints of increasingly higher order.

Proof. According to the uniqueness theorem of moments [21], the function u is

uniquely defined by its moment sequence.

Figure 3 shows an example of segmentations with high order moment constraints:

While the higher-order moments allow to recover fine-scale shape details, the shape
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improvements due to higher order constraints are fairly small. Furthermore impos-

ing moments of higher order is not very practical: Firstly the user cannot estimate

these moments visually. Secondly the user cannot transmit respective higher-order

tensors through a simple mouse interaction. Instead, having the image data deter-

mine the shape’s fine scale structure turns out to be far more useful.

Fig. 3 (a) shows the manually segmented input shape which is used to compute

color histograms for foreground and background, as well as the moments that con-

strain the subsequent image segmentation. 3 (b) shows that color-only segmentation

based on color histograms for foreground and background is not sufficient in this

example image to correctly segment one red pepper from the others. Fig. 3 (c)-

(e) show that the first three moment constraints – area, centroid and covariance –

are able to substantially improve segmentations, however are in this hard case, not

enough for an exact segmentation. In Fig. 3 (f)-(h) we can see how with increasing

order of moment constraints more and more fine scale details of the shape can be re-

constructed. Even the 12th order moment constraint still results in an improvement

of segmentation.

In the example of Fig. 3 the respective higher order moment constraints have

been learned from a training shape. For interactive applications however the higher

order moments are too less intuitive to be applicable. Therefore, for the application

we consider – namely interactive image segmentation – we shall in the following

limit ourselves to imposing moments up to 2nd order (area/volume, center of mass,

scale and covariance).

4 Shape Optimization with Moment Constraints

Shape optimization and image segmentation with respective moment constraints can

now be done by minimizing convex energies under respective convex constraints.

Let C be a specific convex set containing knowledge about respective moments

of the desired shape – given by an intersection of the above convex sets. Then we

can compute segmentations by solving the convex optimization problem

min
u∈C

E(u), (24)

with E(u) given in (4). In this work we solve the Euler-Lagrange equation:

0 = div

(

g
∇u

|∇u|

)

− f . (25)

The equation system can be solved using gradient descent, or the lagged diffusivity

approach that was presented in [16]. We use the latter because in our experiments it

achieves a speed up of computation times of a factor of ∼5. An update step for u at

pixel i and time step k yields
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u
l,k+1
i = (1−ω)ul,k

i +ω

ν ∑
j∈N (i), j<i

g ·gl
i∼ ju

l,k+1
j +ν ∑

j∈N (i), j>i

g ·gl
i∼ ju

l,k
j − fi

ν ∑
j∈N (i)

g ·gl
i∼ j

,

(26)

where gl
i∼ j is the diffusivity between pixel i and j, and N (i) is the 4-connected

neighborhood around i. The method converges for overrelaxation parameters ω ∈
(0,2). We obtained the fastest convergence rate for ω = 1.85.

In the case of segmentation without moment constraints, there is only the con-

straint that u ∈B, where we project u such that u ∈ [0,1]. This constraint can be

enforced by clipping the values of u at every point x after each iteration:

u(x) =











0 if u(x)< 0

u(x) if 0≤ u(x)≤ 1

1 if 1 < u(x).

(27)

4.1 Minimization with Soft Constraints

Soft constraints are implemented by adding additional terms to the cost function, as

has been done in (13), (17) and (20). Minimization is then performed by computing

the corresponding Euler-Lagrange equations with the additional terms. This leads to

solutions that prefer shapes that fulfill the constraints, but do not necessarily exactly

fulfill them.

For the area constraint the corresponding Euler-Lagrange equation is computed

by derivation of (13). We obtain the equation system:

0 = div

(

g
∇u

|∇u|

)

− f −2λ0

(

∫

Ω
u−

c

|Ω |
dx

)

. (28)

Note that the area update term for u is equal for all points in Ω since the last term

is completely independent of x. A positive value is added in the case that the area of

the current segmentation is smaller than the desired area constraint, and a negative

value in the case that it is greater. The term is zero in the case that the constraint

is exactly fulfilled. The constraint parameter c is divided by the size of the image

domain
∫

Ω dx = |Ω | in order to equally distribute the update value over all points.

The centroid soft constraint (17) yields an Euler-Lagrange equation where the

update term for the centroid constraint is dependent on the location of x:

0 = div

(

g
∇u

|∇u|

)

− f −2
d

∑
i=1

λ1i

(

∫

Ω
(µi− xi)udx(µi− xi)

)

, (29)

where µi and xi denote the i-th elements of vectors µ and x. Note that it yields d

additional terms to the equation system, as well as d additional optimization param-

eters λ11, . . . ,λ1d .
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Similar functions can be derived for the soft covariance and higher order mo-

ment constraints. The corresponding Euler-Lagrange term for an arbitrary moment

of order k gives the following more general formulation:

0 =−2
d

∑
i1=1

. . .
d

∑
ik=1

λki1ik

[

∫

Ω

(

ai1...ik −
k

∏
l=1

(

µil − xil

)

)

udx

(

ai1...ik −
k

∏
l=1

(

µil − xil

)

)]

In this formulation some terms appear multiple times. This is due to the fact that for

all permutations σ of i1 . . . ik we have ai1...ik = aσ(i1)...σ(ik)
, because of the symmetry

of the constraint tensors.

For all soft constraints the additional parameters λk1, . . . ,λkd have to be opti-

mized, with k being the order of the respective moment.

4.2 Computing Projections to Moment Constraint Sets

The moment hard constraints can be implemented by projecting onto the constraint

sets during optimization. In our implementation we prefer the projection method

over soft constraints, because firstly the constraints can be fulfilled exactly, and

secondly there are no additional parameters that need to be optimized.

In the case of moment hard constraints we enforce all constraints during the

optimization by back-projecting the current segmentation onto the constraint set

after every iteration. Segmentations u are projected onto the intersection of two

convex sets:

1. the convex set [0,1] and

2. the intersection of the respective moment constraints.

Since all moment constraints presented in this chapter are linear in u an orthogonal

projection can be directly computed for all combinations of moment constraints.

Hence, iterative projections are needed between two sets only – independent of the

order or the number of moment constraints. In the following we will show how

these projections can be easily computed and implemented. A special case arises in

the case of the area constraint, because the projection can be computed in a single

step. In all other cases we use the algorithm of [2] to iteratively project onto the

intersection of the convex sets.

4.2.1 Projection to Area Constraint

The projection onto the range [0,1] and onto the area constraint in (11) can be com-

bined in one step.

For any u0 ∈ B, the projection u onto those constraints has to solve the convex

program
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u = argmin
v∈B

1

2
‖v−u0‖

2
2

s.t. v(x)−1≤ 0 ∀x

−v(x)≤ 0 ∀x

‖v‖1− c = 0

By means of the Karush-Kuhn-Tucker conditions for convex problems, if we can

find the functions u, ξ1, and ξ0 and a scalar ν that fulfil the following conditions

u(x)−u0(x)+ξ1(x)−ξ0(x)+ν = 0 ∀x (30)

u(x)≤ 1∧ξ1(x)≥ 0 ∀x (31)

u(x)≥ 0∧ξ0(x)≥ 0 ∀x (32)

ξ1(x) = 0∨u(x) = 1 ∀x (33)

ξ0(x) = 0∨u(x) = 0 ∀x (34)

‖u‖1 = c, (35)

then u is the correct projection.

With the following method we can find a solution for the conditions above:

1. Set u := u0,ξ1 := 0,ξ0 := 0,ν := 0

2. On all positions where u(x)> 1, set u(x) := 1,ξ1(x) := u0(x)−1

3. On all positions where u(x)< 0, set u(x) := 0,ξ0(x) :=−u0(x)

All constraints but the area constraint are now fulfilled.

Without loss of generality, let the projection of u0 to [0,1] have a smaller norm

than c. If not, set u2(x) := 1−u(x) and c2 := ‖Ω‖−c, switch ξ0 and ξ1, perform the

projection onto the volume c2 as described in the following, and afterwards again

reflect u2 at 1 and switch ξ0 and ξ1.

To fulfill the area constraint (35), we can now raise the sum u(x)+ξ1(x)−ξ0(x)
by the same amount in all pixels, and adjust ν such that equation (30) is fulfilled. If

0 < u(x)< 1, raise u(x), if u(x) = 1, raise ξ1(x), if ξ0(x)> 0, lower ξ0(x).
Unfortunately, the difference ν is non-trivial, because the area constraint (35)

depends on u, not on u + ξ1 − ξ0. Therefore, we have to employ Algorithm 1:

Afterwards, we have to adjust the last iteration, if ∆c < 0. This algorithm com-

putes the desired projection and it does not require to explicitly store ξ0 and ξ1, as

the sum in (30) can be stored in one field u and the checks in the algorithm above

can be performed on u as well. Unfortunately though, the algorithm requires several

O(n) computations in the regression to find the minima and in the update steps.

However, if we sort the discrete pixel positions by their value u0, and remap them

after the projection, the projection can be performed very easily with Algorithm 2.

Let us assume now, that u0 is stacked to a vector and monotonically decreasing in x

from pixel x = 1 to pixel x = |Ω |.
Figure 4 demonstrates the input and output of Algorithm 2, assuming that u0 and

u are sorted in decreasing order. The optimal value ν that needs to be added to u0
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Algorithm 1 Simple Projection Algorithm

ν ← 0

∆c← c−‖u‖
while ∆c > 0 do

∆u←min
{

min{x∈Ω |ξ0(x)>0} {ξ0(x)} ,min{x∈Ω |u(x)<1} {1−u(x)}
}

∆k← 0

for all x ∈Ω do

if ξ0(x)> 0 then

ξ0(x)← ξ0(x)−∆u

else if u(x)< 1 then

u(x)← u(x)+∆u

∆k← ∆k +∆u

else

ξ1(x)← ξ1(x)+∆u

end if

ν ← ν +∆u

end for

∆c← ∆c−∆k

end while

Algorithm 2 Projection Algorithm with Sorting

ν ← 0

∆c← c−‖u0‖
x1←min{x|u0(x)< 1}
x2←min{x|u0(x)< 0}
while ∆c > 0 do

∆1← 1−u0(x1)+ν
∆2←−u0(x2)+ν
if ∆1 > ∆2 then

ν ← ν−min
{

∆2,
∆c

x2−x1

}

∆c← ∆c−min{(x2− x1)∆2,∆c}
x2←min{x|u0(x)−ν < 0}

else

ν ← ν−min
{

∆1,
∆c

x2−x1

}

∆c← ∆c−min{(x2− x1)∆1,∆c}
x1←min{x|u0(x)−ν < 1}

end if

end while

in order to fulfill both the area constraint
∫

udx = c and the constraint u ∈ [0,1], is

computed in one step of Algorithm 2.

After Algorithm 2 terminates, we simply subtract ν from u0(x) in every pixel to

get u, x, clamp u to [0,1] and put the difference into the (virtual) ξ0 and ξ1. Now

all KKT conditions are fulfilled and u is the desired projection. Note that every

assignment in the algorithm is performed at most 2n times and the algorithm only

requires constant memory. Therefore, its complexity is dominated by the sorting

algorithm.
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Fig. 4 Area of u before and after applying Algorithm 2. The gray area denotes the area before

the projection: neither the area constraint
∫

udx = c nor the constraint u ∈ [0,1] is fulfilled. The

shaded area shows the area of u after projection: both constraints are fulfilled after two steps of the

algorithm.

4.2.2 Projection to Higher Order Moment Constraints

For moments of an order higher than 0 we use the method of [2] to iteratively com-

pute projections of u onto the intersection of the convex set [0,1] and the linear

moment constraints. The algorithm of [2] projects to the intersection of convex sets

by alternatingly projecting to the respective sets. The correct solution is found by

remembering the previous projection for each step. This leads to an algorithm that

converges to the solution, although slow.

We can summarize all projections to an arbitrary number of moment constraints

in one projection step because all moment constraints are linear sets. Hence, we

project between the two sets [0,1] and the intersection of the moment constraints.

Centroid Constraint:

We will in the following show the projection formula for the centroid constraint.

An equivalent formulation of (14) is the constraint set

C1 =

{

u ∈B
∣

∣

∫

Ω
(µi− xi)udx = 0,∀1≤ i≤ d

}

. (36)

We are looking for the orthogonal projection m̂ that projects u to the nearest û in C1

s.t. û = u+ m̂. Since C1 is linear in u this projection is unique. We have

m̂ = arg min
m∈M
‖m‖ (37)

with M =

{

m ∈B
∣

∣

∫

Ω
(µi− xi)mdx =−

∫

Ω
(µi− xi)udx,∀1≤ i≤ d

}

. (38)
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The left-hand sides of the constraint equations in M are linear in m, and the right-

hand sides are constants (independent of m).

Then the following projection theorem [18] holds:

Theorem 2. The orthogonal projection m̂ (projection of minimum norm) to a set of

constraints (m,yi) = ci,∀1≤ i≤ d is given by

m̂ =
d

∑
i=1

βiyi (39)

where the coefficients βi ∈ IR are the solution to the linear equation system

(y1,yi)β1 + · · ·+(yd ,yi)βd = ci (40)

Proof. A proof can be found in [18].

In our case the yi and ci are given by

yi = µi− xi,ci =−
∫

Ω
(µi− xi)udx, ∀1≤ i≤ d, (41)

reducing the problem to solving a linear system of equations of the size d× d to

obtain the coefficients β1, . . . ,βd and the resulting projection is

m̂ =
d

∑
i=1

βi(µi− xi). (42)

This means in particular, that points that have a high distance to the constraint

centroid µ , get assigned a higher value to change. The reason is the orthogonal

projection that finds a projection where the smallest change in u is achieved that

fulfills the constraint. Points with a high distance to µ contribute higher values to

the sum (42).

Covariance Constraint:

Similarly, we can compute the projection to the covariance constraint which yields

m̂ =
d

∑
i=1

d

∑
j=1

βi j (ai j− (µi− xi)(µ j− x j)) , (43)

where ai j are the entries of constraint matrix A. Here we solve a d2× d2 system

of linear equations to obtain the coefficients βi j. If we exploit the symmetry of A

and merge terms that appear duplicate times in the sum, the number of coeffiences

reduces to

d′ =
d

∑
i=1

d

∑
j=i

1 =
1

2
d(d +1), (44)
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which is still in the same complexity class O(d2), however reduces the number of

coefficients that need to be computed by a factor of almost 2.

Moment Constraints of Arbitrary Order:

Higher order moment constraints and combinations of different order moment con-

straints can be computed in an analogous way.

The general projection for a moment of order k can be computed by

m̂ =
d

∑
i1=1

. . .
d

∑
ik=1

βi1...ik

(

ai1...ik −
k

∏
l=1

(µil− xil)

)

. (45)

The corresponding linear equation system has dk unknowns βi1...ik .

4.3 Optimality Bound

Unfortunately, the threshold theorem [4] guaranteeing optimality for the uncon-

strained binary labeling problem does not generalize to the constrained optimiza-

tion problems considered here. Nevertheless, we can prove the following optimality

bound:

Proposition 6. Let u∗ = argminu∈C E(u) be a minimizer of the relaxed problem and

Eopt the (unknown) minimum of the corresponding binary problem. Then any thresh-

olded version û of the relaxed solution u∗ is within a computable bound of the opti-

mum Eopt .

Proof. Since Eopt lies energetically in between the minimum of the relaxed problem

and the energy of the thresholded version, we have:

E(û)−Eopt ≤ E(û)−E(u∗). (46)

For all experiments in this paper this bound is on average around 5%. How to assure

that the binarized version still exactly fulfills the moment constraints remains an

open challenge.

5 Moment Constraints for Object Tracking

Object tracking over a sequence of images is the problem of finding the shape of

an object that was given in the first frame in the subsequent frames of the sequence.

This section shows how segmentation with moment constraints can be generalized

with a few modifications to a method for object tracking.
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Constraining the moments of a shape during a sequence of images leads – in

combination with the presented method for image segmentation – to a method for

object tracking. Given the moments of the shape in the first frame, we can constrain

these moments for all subsequent frames as well. u is now a function defined on the

image plane Ω evolving over time T ⊆ IR+, i.e. u : Ω ×T → [0,1].
Firstly, we will show how the area constraint can be used to track an object over

time: We assume that the area of the shape should not change over time, and there-

fore constrain the area of a shape at time t to be equal to the area of the shape in the

previous frame t−1:

min
u∈B

E(u) s.t.

∣

∣

∣

∣

∫

Ω
u(x, t)dx− ct−1

∣

∣

∣

∣

= 0, ∀t ∈ T, (47)

where ct−1 is the area of the shape in time frame t−1 and we define c−1 as the area

of the ellipse drawn by the user in the first frame.

Alternatively, we can allow for a small change of area and thereby model motion

of the object towards or away from the camera (or the camera towards/away from

the object) by replacing the = 0 in equation (47) by≤ v with a constant value v∈ IR.

Here, v corresponds to the the amount that the area of the shape is allowed to change

from one frame to the next, i.e. dependends on the velocity of the motion.

Equally, we can impose a constraint that the object should not move too far from

one frame to the other: The centroid of the shape should not change more than a

given value v which corresponds to the velocity of the object:

min
u∈B

E(u) s.t.

∣

∣

∣

∣

∫

Ω xu(x, t)dx
∫

Ω u(x, t)dx
−µt−1

∣

∣

∣

∣

≤ v, ∀t ∈ T, (48)

where v corresponds to the maximum length of the vector between the centroid

in one frame and the centroid in the next frame, and µt−1 is the centroid of u in the

previous frame. Again, we define µ−1 as the centroid of the ellipse drawn by the

user in the first frame in order to obtain an initialization for t = 0.

Similar constraints can be imposed on the covariance and higher order moment

constraints. For the covariance constraint, for example, rotation of the object can be

constrained by assuming that the covariance matrix should not change more than a

given value.

Optimization can be performed with the same method as explained in Section 4

while the respective moment constraints are updated in each frame.

6 Experimental Results

In this section we present a qualitative and quantitative evaluation of the proposed

method on medical imagery and other real-world images and videos. For all ex-

periments we use g(x) = 1 and f (x) = log
(

pbg(I(x))/pob j(I(x))
)

with input im-

age I : Ω → R. We compute the likelihoods pob j and pbg using color or gray-scale
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histograms from inside and outside regions defined by the user input. Respective

moment constraints on centroid, area or covariance structure are easily imposed by

simple mouse interactions. Solutions to the constrained convex optimization prob-

lems are computed on the fly. In all experiments shown moment constraints are en-

forced by iteratively projecting solutions to the respective constraint sets after each

iteration of optimization. Typical run-times on the GPU are around 1 second for an

image of the size 300×400.

6.1 Quantitative Evaluation on Medical Images

We evaluate segmentations with and without moment constraints on a set of medical

images and quantitatively compare the results to a manually labelled ground truth.

6.1.1 Area and Centroid Constraints

Figure 5 shows a comparison of segmentation with and without a constraint on

the area and centroid for a CT image of kidneys and spine: without constraints no

shape information is taken into account for the segmentation, resulting in a seg-

mentation that includes many different regions. Enabling the area and centroid con-

straints leads to segmentations that prefer the center and the size of the circle that

was clicked by the user. This leads to substantial improvements of the segmentations

without affecting the fine-scale boundary estimation.

6.1.2 Higher Order Constraints

More sophisticated structures can be specified with higher order moments. Since co-

variance matrices can be represented by ellipsoids, an intuitive user input is achieved

by clicking an ellipse with the mouse. The axes of the ellipse define the entries of the

corresponding covariance matrix, while the center and area of the ellipse define the

centroid and area constraints. Figures 6 and 7 show segmentations with and without

constraints resulting from user defined ellipses describing the approximated size,

location and shape of the desired object.

6.1.3 Quantitative Performance Evaluation

Clearly, the user-specified moment constraints allow to visibly improve the segmen-

tation. To quantify this improvement, Table 1 shows average relative errors (i.e. the

percentage of incorrectly labeled pixels per image) with standard deviations for an

evaluation of the segmentation without constraint, with area constraint only, and

with area and centroid and covariance constraint, respectively. Some of the images
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(17.8% error) (0.24% error)

(15.58% error) (0.14% error)

(7.36% error) (0.23% error)

User input
Segmentation

without constraint

with area and

centroid constraint

Fig. 5 Segmentation of a CT image with kidneys and spine. The centroid and area constraints

enable the user to specify the approximate location and size of the desired object that should be

segmented. Imposing these moment constraints during optimization leads to drastic improvements

in the segmentation.

that were used for the tests and their segmentations are shown in Figures 5, 6 and 7.

The table shows that the use of these rather simple and easy to transmit constraints

yield a reduction of incorrectly classified pixels by a factor of about 10.

6.2 Computation Times for Moment Constraint Projections

Figure 9 shows run times in seconds for projections onto the presented moment hard

constraints. We computed the number of seconds that were needed on a 3.4 GHz

Intel Core i7-2600 CPU to compute one projection onto all moment constraints of

order 0 to k for k ∈ {0, . . . ,30} using the projection formula (45). The respective
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(6.93% error) (0.76% error)

(8.24% error) (0.26% error)

User input No Constraints Moment Constraints Ground Truth

Fig. 6 Tumor extraction in brain MR images using segmentation with and without constraints

on covariance and area. While the algorithm does not require any local boundary information,

constraining its second order moments by a simple user interaction suffices to generate the desired

segmentation.

Average relative error

Segmentation without constraint 12.02 % ± 0.89%

with area constraint 2.36 % ± 0.11%

with area and centroid constraint 0.41 % ± 0.05%

with area, centroid and covariance 0.35 % ± 0.09%

Table 1 Average relative errors with standard deviations for segmentation without and with mo-

ment constraints.

constraints were obtained by computing the moments of the manually segmented

reference shape shown in Fig. 3 (a). While projections onto the lower order moment

constraints are computed in just a few milliseconds, the figure implies exponentially

growing run time for an increasing number of constraints.

We conclude that segmentation with moment constraints is applicable to real-

time tasks for the lower order moments, whereas higher order moments that can

theoretically constrain arbitrary shapes, are applicable only to off-line tasks.



22 Maria Klodt et al.

(6.14% error) (1.41% error) (1.04% error)

User input
Segmentation

without constraints

Segmentation with

area constraint

with covariance

and area constraint

Fig. 7 Segmentation without and with constraints for a CT image of the neck. Constraining the area

yields a segmentation which prefers the size of the ellipse that was clicked by the user, resulting in

less incorrectly labeled pixels, compared to the segmentation without constraints. The covariance

constraint additionally considers the dimensions of the ellipse yielding an even more accurate

segmentation. Again, the convex constraints merely constrain respective moments of the solution

leading to drastic improvements of the segmentation results.

6.3 Segmentation of Real-World Images

Figure 8 shows how moment constraints can improve segmentation of non-medical

images. Here the data term is based on RGB histograms. The purely color-based

segmentations without moment constraints shown in the second column demon-

strate that the color distributions of respective objects are not sufficiently differ-

ent to discriminate the objects of interest. The third column of Figure 8 shows the

segmentation results with constraints on area, centroid and covariance. All moment

constraints are extracted from the user-specified ellipse, allowing a deviation of 10%

for each constraint to handle imprecise user input. The moment constraints allow to

quickly disambiguate the color information leading to substantial improvements of

the segmentation.

6.4 Optimality Bounds

The threshold theorem [4] states that in the unconstrained case the thresholded ver-

sion is a globally optimal solution of the binary energy (4). Since this is not the

case when we impose additional moment constraints on the segmentation, we anal-

ysed the distance of the continuous result to the thresholded version. To this end, we

compute the relative energy bound

E(û)−E(u∗)

E(u∗)
, (49)

where u∗ is the continuous solution before thresholding and û is the solution after

thresholding. Figure 10 shows segmentation results for u before thresholding. The
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(a) User Input (b) No Constraints (c) Moment Constraints

Fig. 8 Segmentation of real world images without and with moment constraints. (a) The user

marks an ellipse at the approximate size and location of the object with two mouse clicks. Color

histograms for foreground and background are determined from the inside and outside of the el-

lipse, respectively. (b) Segmentation results without constraints using only the histograms. (c) Seg-

mentation results with constraints on area, centroid and covariance. Parameters of the constraints

are derived from the ellipse marked by the user.
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Fig. 9 Run time (in seconds) vs. number of moment constraints k in projection. The plot shows

the number of seconds needed to compute a projection onto the moments of order 0 to k. While

lower order moment constraints are computed in a few milliseconds, computation times appear to

grow exponentially for increasing numbers of constraints. Fortunately, for interactive segmentation

applications one is mostly interested in constraining the low-order moments only, leaving the fine-

scale details to be determined by the image data.

percent values below the images refers to the energy bound (49). In all four exper-

iments that are shown in the figure the distance to the thresholded version is below

1%. In our experiments, we further observed that the more constraints are imposed

on a segmentation, the larger the distance to the thresholded version increases.

6.5 Comparison to Segmentation with User Scribbles

Many interactive segmentation methods that utilize manual input from the user im-

plement scribbles to obtain initial values for the histograms that generate the data

term f . Scribbles in this context are arbitrary pixels marked by the user with the

mouse while different labels are used for foreground and background pixels. The

methods are implemented in discrete, for example [22], or continuous, for example

[24], settings.

Figure 11 shows a comparison of two segmentation methods with priors on color

and location from user input: first the presented method with moment constraints

and second a segmentation method based on user scribbles. The purpose of this

experiment was to compare the effort that needs to be brought in by the user in order

to sufficiently segment the respective object of interest from the background. For the

scribble segmentation the user draws mouse strokes in two different colors: blue for

foreground and green for background. Histograms for the data term f are computed

from these marked pixels. Segmentation results with user scribbles were computed

by minimizing functional (4), using the same method and same parameters as in the

case of the moment constraints, except that the moment constraints were replaced
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0.61%

0.31%

0.17%

0.14%

(a) Input Image (b) Ellipse as (c) Segmentation (d) Result before

(Close-up) User Input after Thresholding Thresholding

Fig. 10 Segmentation with the convex moment constraints converges to nearly binary solutions,

making the method robust to the chosen threshold. The percentage below the images in (d) refers

to the distance between the continuous result and its corresponding thresholded version.
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(a) Input Ellipse for (b) Segmentation with (c) User (d) Segmentation

Moment Constraints Moment Constraints Scribbles with Scribbles

Fig. 11 Comparison of segmentation with moment constraints and user scribbles: Segmentation

with user scribbles needs more mouse interaction to obtain similar results, since the implementation

with moment constraints needs just two mouse clicks for drawing the respective ellipse.

by a constraint that all pixels that were marked as foreground by the user belong

to the segmented region, and that the background pixels are not contained by the

segmented region.

The figure shows that segmentations with user scribbles need much more mouse

interaction compared to segmentation with moment constraints and therefore are

able to substantially simplify the task of image segmentation for the user.
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6.6 Tracking with Moment Constraints

Figures 12 and 13 show how the proposed method can be applied to tracking objects

in videos. As can be seen in Figure 13, the purely color-based segmentation does

not suffice to correctly segment object from background in the case of non-unique

color distributions.

We impose shape information by constraining the low order moments (area, cen-

troid and covariance) throughout the entire image sequence. As can be seen in the

first image of each sequence, the user initializes the method with two mouse clicks:

an ellipse of the approximate size and location of the object is drawn on the first

frame of the sequence. This is sufficient user input, since histograms and moment

constraint parameters are derived from the ellipse: again, histograms for foreground

and background are computed from the inside and outside of the ellipse, respec-

tively, and the constraint parameters for area, centroid and covariance are derived

from the ellipse’s area, center point and principal axes. The subsequent frames of

the video use the histograms and moment constraints from the first frame, allowing

a small deviation of the centroid from each frame to the next, which corresponds

to a constraint on the maximum velocity. Since no previous learning of shapes is

neccessary, the approach naturally applies to arbitrary object shapes.

Fig. 12 Moment constraints for object tracking. The user initializes the tracking by clicking an

ellipse in the first frame, the moments of which constrain the segmentation in subsequent images.

A small deviation of the centroid is allowed to track the moving object. Note that this approach is

generic, as no shapes have to be previously learned.

7 Conclusion

In this chapter, we proposed the use of moment constraints in a convex shape op-

timization framework. In particular, we showed that for an entire family of con-

straints on the area, the centroid, the covariance structure of the shape and respec-

tive higher-order moments, the feasible constraint sets are all convex. While we

cannot guarantee global optimality of the arising segmentations, all computed solu-

tions are independent of initialization and within a known bound of the optimum. In

both qualitative and quantitative experiments on interactive image segmentation, we

demonstrated that respective moment constraints are easily imposed by the user and

lead to drastic improvements of the segmentation results, reducing the average seg-
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Fig. 13 Moment constraints for object tracking. The user initializes the tracking in form of an

ellipse in the first frame (left), from which histograms and constraint parameters are derived. The

first row shows results with moment constraints, where a deviation of the centroid is allowed from

each frame to the next one to account for the object’s motion. The second row shows results of

histogram based tracking without constraints. This comparison shows that moment constraints can

realize acceptable real-world object tracking with no previous learning of shapes.

mentation error from 12% to 0.35%. In contrast to existing works on shape priors in

segmentation the use of low-order moment constraints does not require shape learn-

ing and is easily applied to arbitrary shapes since the recovery of fine scale shape

details is not affected through the moment constraints. Efficient GPU-accelerated

PDE solvers allow for computation times of about one second for images of size

300×400, making this a practical tool for interactive image segmentation.
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