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Abstract—We introduce a novel optimization method based on semidefinite programming relaxations to the field of computer vision

and apply it to the combinatorial problem of minimizing quadratic functionals in binary decision variables subject to linear constraints.

The approach is (tuning) parameter-free and computes high-quality combinatorial solutions using interior-point methods (convex

programming) and a randomized hyperplane technique. Apart from a symmetry condition, no assumptions (such as metric pairwise

interactions) are made with respect to the objective criterion. As a consequence, the approach can be applied to a wide range of

problems. Applications to unsupervised partitioning, figure-ground discrimination, and binary restoration are presented along with

extensive ground-truth experiments. From the viewpoint of relaxation of the underlying combinatorial problem, we show the superiority

of our approach to relaxations based on spectral graph theory and prove performance bounds.

Index Terms—Image partitioning, segmentation, graph cuts, perceptual grouping, figure-ground discrimination, combinatorial

optimization, relaxation, convex optimization, convex programming.
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1 INTRODUCTION

1.1 Motivation and Overview

OPTIMIZATION problems occur in almost all fields of
computer vision and pattern recognition. One of the

most important design decisions concerns the compromise
between the adequacy of the optimization criterion and the
difficulty in computing the solution. An inadequate optimi-
zation criterion will not solve the application problem, no
matter how easy it is to compute the optimum. Conversely,
sophisticated criteria that can only be optimized after
elaborate parameter tuning or with sufficient a priori knowl-
edge (e.g., a good starting point) are useless in practice as
well. For this reason, optimization approaches are attractive
which help in making a “good” compromise in this sense.

In thispaper,we introduceanoveloptimization technique,
which is based on semidefinite programming relaxations, to the
field of computer vision and apply it to minimize quadratic
functionalsdefinedoverbinarydecisionvariablesandsubject
to linear constraints.Numerousproblems in computervision,
including partitioning and grouping, lead to combinatorial
optimization problems of this type. In contrast to related
work, no specific assumptions are made with respect to the
functional form besides a symmetry condition. As a con-
sequence, our approach covers graph-optimization pro-
blems, unsupervised and supervised classification tasks,
and first-order Markov random field estimates without
depending on specific assumptions or problem formulations.
Therefore, it can be utilized for a wide range of applications.

The combinatorial complexity of the optimization task is
dealt with in two steps: First, the decision variables are

lifted to a higher-dimensional space where the optimization
problem is relaxed to a convex optimization problem.
Specifically, the resulting semidefinite program comprises
a linear objective functional that is defined over a cone in
some matrix space and a number of application-dependent
linear constraints. Second, the decision variables are
recovered from the global optimum of the relaxed problem
by using a small set of randomly computed hyperplanes.

Using this optimization technique amounts to a compro-
mise as follows. Advantageous properties are:

þ The original combinatorial problem is transformed to an
optimization problem which is convex. As a consequence,
the global optimum of the transformed problem can be
computed under mild conditions.

þ Using an interior-point algorithm, an �-approximation to
this global optimum can be numerically determined in
polynomial time.

þ No tuning parameters are necessary.

þ In contrast to spectral relaxation, no choice of a suitable
threshold value is necessary. This makes our approach
especially suited for unsupervised classification tasks.

On the negative side, we have:

� The number of variables of the optimization problem is
squared.

This limits the application to problems with up to several
hundred variables, which is, however, sufficient for many
problems related to image partitioning and perceptual
grouping. Furthermore, the increase in the problem dimen-
sion is necessary in order to approximate an intricate
combinatorial problem by a simpler convex optimization
problem! Intuitively, nasty combinatorial constraints in the
original space are lifted to a higher-dimensional matrix
space where these constraints can be better approximated
by convex sets that, in turn, are more convenient for
numerical optimization. Hence, we add:

þ High-quality combinatorial solutions can be computed by
solving an appropriate convex optimization problem.

1364 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 11, NOVEMBER 2003

. The authors are with the CVGPR-Group, Department of Mathematics and
Computer Science, University of Mannheim, D-68131 Mannheim, Ger-
many. E-mail: {jkeuchel, schnoerr, cschelle, cremers}@uni-mannheim.de.

Manuscript received 29 Apr. 2002; revised 28 Jan. 2003; accepted 6 May
2003.
Recommended for acceptance by M.A.T. Figueiredo, E.R. Hancock, M. Pelillo,
and J. Zerubia.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 118619.

0162-8828/03/$17.00 � 2003 IEEE Published by the IEEE Computer Society



“High-quality” means that the solutions obtained are not
far from the unknown global optimum (the computation of
which is NP-hard and, thus, intractable) in terms of the
original optimization criterion.

The absence of any specific assumptions about the
objective criterion as well as the “þ-properties” listed above
motivated this investigation.

1.2 Partitioning, Grouping, and Restoration

In this section, we illustrate three problems that lead to

different instances of the class of optimization problems

considered in this paper. By this,wewould like to indicate the

significance of this problem class for computer vision and to

exemplify some nontrivial specific problems. More formal

problem definitions will be given in the following sections.
Fig. 1 shows two images taken from the VisTex-database

atMIT [61].A commongoal of low-level computer vision is to

partition such images in an unsupervised way into coherent

groups based on some locally computed features (color,

texture, motion, ...). To this end, the representation of images

by graph structures has recently attracted the interest of

researchers [58], [35], [26], [10]. We will show that, when

using our approach, some of the assumptions made in the

literature concerning admissible objective criteria can be

dropped. Moreover, we study in detail the unsupervised

bipartitioning of images by constrained minimal cuts of the

underlying graphs and show that, from the optimization

point of view, our convex approximation provides a tighter

relaxation of the underlying combinatorial optimization

problem than recently suggested methods which are based

on spectral graph theory.

Fig. 2a shows a section of an office table from the top.
Probably most human observers focus on the (partially
occluded) keyboard first. A typical problem of computer
vision is to model such global decisions by solving an
optimization problem defined in terms of locally extracted
primitives [55], [33], [63]. In this context, the optimization
criterion is considered as a saliency measure with respect to
decision variables indicating which primitives belong to the
foreground or background, respectively. We will show that
quadratic saliency measures which have been considered as
difficult [63] due to their combinatorial complexity can
conveniently be dealt with using our approach.

Fig. 2b shows a noisy map of Iceland. The restoration of
such images has a long history, in particular in the context
of Markov random fields [29], [28], [64], [43]. We will show
below that such binary restoration problems can be
modeled under less restrictive conditions than those used
by previous approaches.

1.3 Related Work

1.3.1 Optimization Approaches in Computer Vision

Many energy-minimization problems in computer vision
like image labeling and partitioning, perceptual grouping,
graph matching, etc., involve discrete decision variables
and, therefore, are intrinsically combinatorial by nature.
Accordingly, optimization approaches to efficiently com-
pute good minimizers have a long history in the literature.

An important class of optimization approaches is based on
stochastic sampling which was introduced by Geman and
Geman [29] and has been widely applied in the Markov
random field (MRF) literature [43], [64]. As is well-known,
corresponding algorithms are very slow due to the annealing
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Fig. 1. (a) A color scene and (b) a gray-value scene comprised of some natural textures. How can we partition such scenes into coherent groups in
an unsupervised way based on pairwise (dis)similarities between local measurements?

Fig. 2. (a) Section of an office table shown from the top. The keyboard probably first attracts the attention of the observer. How can we compute this
figure-ground discrimination (global decision) based on pairwise (dis)similarities between local measurements? (b) A noisy binary image (map of
Iceland) to be restored.



schedules prescribed by theory. Nevertheless, there has been

a renewed interest during the last years in conjunction with

Bayesian reasoning [40] and complex statistical models (e.g.,

[71], [68]). For further aspects, we refer to [23].
To speed up computations, approaches for computing

suboptimal Markov random field estimates like the ICM-
algorithm [5], the highest-confidence-first heuristic [11],
multiscale approaches [32], and other approximations [67],
[9] were developed. A further important class of approaches
comprises continuation methods like Leclerc’s partitioning
approach [42], the graduated-non-convexity strategy by
Blake and Zisserman [6], and various deterministic (ap-
proximate) versions of the annealing approach in applica-
tions like surface reconstruction [27], perceptual grouping
[33], graph matching [31], or clustering [54], [34].

Apart from simulated annealing (with annealing sche-

dules that are unpractically slow for real-world applications),

none of the above-mentioned approaches can guarantee to

find the global minimum and, in general, this goal is elusive

due to the combinatorial complexity of these minimization

problems. Consequently, the important question concerning

the approximation of the problem arises: How good is a

computed minimizer relative to the unknown global opti-

mum? Can a certain quality of solutions in terms of its

suboptimality be guaranteed in each application? To the best

of our knowledge, none of the approaches above (apart from

simulated annealing) seems to be immune against getting

trapped in some poor local minimum and, hence, does not

meet these criteria.
A further problem relates to the algorithmic properties of

these approaches. Apart from simple greedy strategies

[5], [11], most approaches involve some (sometimes

hidden) parameters on which the computed local minimum

critically depends. A typical example is given by the

artificial temperature parameter in deterministic annealing

approaches and the corresponding iterative annealing sche-

dule. It is well-known [56] that such approaches exhibit

complex bifurcation phenomena, the transitions of which

(that is, which branch to follow) cannot be controlled by the

user.Furthermore, theseapproachesinvolvehighlynonlinear

numerical fixed-point iterations that tend to oscillate in a

parallel (synchronous)updatemode (see [33,p. 906] and [50]).
Our approach belongs to the mathematically well-under-

stood class of convex optimization problems and contributes
to both of the problems discussed above. First, there exists a
global optimum under mild assumptions that, in turn, leads
to a suboptimal solution of the original problem, along with
clear numerical algorithms to compute it. Abstracting from
the computational process,we can simply think of amapping
taking the data to this solution. Thus, evidently, no hidden
parameter is involved. Second, under certain conditions,
bounds can be derived with respect to the quality of the
suboptimal solution. At present, these bounds are not tight
with respect to the much better performance measured in
practice. Yet, it should be noted that, for alternative
optimization approaches, performance bounds and a corre-
sponding route of research seem to be missing.1

1.3.2 Graph Partitioning, Clustering, Perceptual

Grouping

As illustrated in Section 1.2, there is awide range of problems
towhich our optimization approach can be applied.While an
in-depth discussion of all possible applications is not
possible, we next briefly discuss work that relates to the
applications we use to illustrate our optimization approach.

Graph partitioning. Approaches to unsupervised image
segmentation by graph partitioning have been proposed by
[46], [58], [26], and references therein. Images are represented
by graphs GðV ;EÞ with locally extracted image features as
vertices V and pairwise (dis)similarity values as edge-
weights w : E � V � V ! IRþ

0 (Fig. 3). A classical approach
for the efficient computation of suboptimal cuts is based on
the spectral decomposition of the Laplacian matrix [21]. This
approachhas foundapplications inmanydifferent fields [46].
Accordingly, Shi and Malik [58] propose the “normalized
cut” criterion which minimizes the weight of a cut subject to
normalizing terms to prevent unbalanced cuts. The resulting
combinatorial problem is relaxed using methods from
spectral graph theory. For a survey of further work in this
direction, we refer to [62]. Based on [37], Gdalyahu et al. [26]
suggest to compute partitions as “typical average” cuts of the
underlying graph using a stochastic sampling method.
Although this approach is very interesting, it does not
directly relate to an optimization criterion and, therefore,
will not be further discussed.

It has been criticized in [26] thatmethods based on spectral
graph theory are not able to partition highly skewed data
distributions and noncompact clusters. We will show below,
however, that a straightforward remedy is to base the
similarity measure on a suitable path metric. Furthermore,
our approach yields a tighter relaxation of the underlying
combinatorial problem and, hence, most likely better sub-
optimal solutions.

Recent approaches to supervised graph partitioning
(image labeling) include [35], [10] and references therein.
These authors consider the case of nonbinary labels xi and
the following class of optimization criteria:X

i2V
DiðxiÞ þ

X
ði;jÞ2E

Pi;jðxi; xjÞ: ð1Þ

While Boykov et al. [10] require Pi;jð�; �Þ to be a semi-metric,
Ishikawa [35] makes the stronger assumption Pi;jðxi; xjÞ ¼
P ðxi � xjÞ,withP beingconvex. In thispaper,weconsider the
case of binary labels and do not make any assumptions with
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Fig. 3. Representing image partitions by graph cuts: The weights of all
edges cut provide a measure for the (dis)similarity of the resulting
groups.

1. A recent notable exception with respect to a more restricted class of
optimization problems is [10].



respect to pairwise interaction terms Pi;j. Unlike a semi-
metric, for example, Pi;j may not vanish for xi ¼ xj or can be
negative.

Clustering. The approaches to unsupervised image
partitioning discussed above may also be understood as
clusteringmethods, of course. In this paper,we focus indetail
on image bipartitioning by computing constrained minimal
cuts of the underlying graph. Consecutive partitions thus
lead to a hierarchical clustering method (cf. [38]).

An important issue, in this context, is cluster normal-
ization inorder toavoid toounbalancedpartitions. Ingeneral,
normalization criteria lead to rational nonquadratic terms of
the cost functional [19], [34] to which our optimization
approach cannot be directly applied. Below, however, we
investigate cluster normalization by imposing various linear
constraints, as introduced by Shi and Malik [58] as a
relaxation of their specific nonquadratic normalization
criterion. Recently, the (natural) use of path-metrics for
(dis)similarity-based clustering was also advocated in [22].

Perceptual grouping. There is a vast literature on
perceptual grouping in vision. For a survey, we refer to [55]
and, e.g., [36], [1], and references therein. In this paper, we
merely focus from an optimization point-of-view on the
quadratic saliency measure of Herault and Horaud [33], the
application of which has been considered difficult due to its
combinatorial complexity [63]. We show below that this
grouping criterion can conveniently be optimized using our
approach.

1.3.3 Mathematical Programming

Optimization methods based on semidefinite programming
are relatively novel techniques that have been successfully
applied to optimization problems in such diverse fields as
nonconvex and combinatorial optimization, statistics, or
control theory. For a survey, we refer to [65].

The method used in this paper for relaxing combinatorial
constraints goes back to the seminal work of Lovász and
Schrijver [44]. Concerning interior-point methods for convex
programming, we refer to numerous textbooks [48], [66], [69]
and surveys [59], [65].

To recover a combinatorial solution from the global
optimum of the relaxation, we adopt the randomized hyper-
plane techniquedevelopedbyGoemansandWilliamson [30].
For a classical optimization problem from combinatorial
graph theory (max-cut), these authors were able to show that
suboptimal solutions cannotbeworse than14percent relative
to the unknown global optimum. Besides the convenient
algorithm design based on convex optimization, this fact has
motivated our work.

1.4 Organization of the Paper

In Section 2, we formally define three optimization problems
related to unsupervised partitioning (Section 2.1), perceptual
grouping, or figure-ground discrimination (Section 2.2), and
binary image restoration (Section 2.3). The mathematical
relaxation of the corresponding combinatorial problem class
is the subject of Section 3. We explain the derivation of a
corresponding semidefinite program (Section 3.1), its feasi-
bility (Section 3.2), related algorithms (Section 3.3), perfor-
mance bounds (Section 3.4), and the superiority of convex
relaxation to spectral relaxation (Section 3.5). In Section 4, we
discuss numerical results for real scenes and ground-truth
experiments. We conclude and indicate further work in
Section 5.

1.5 Notation

The following notation will be used throughout the paper.
For basic concepts from graph theory, we refer to, e.g., [18].

e: vector of all ones: e ¼ ð1; . . . ; 1Þ>.
DðxÞ: diagonal matrix with vector x on its diagonal:Dii ¼ xi.

DðXÞ: matrix X with off-diagonal elements set to zero.

I: unit matrix I ¼ DðeÞ.
Sn: space of symmetric n� n matrices X> ¼ X.

Sn
þ: set of matrices X 2 Sn which are positive semidefinite.

X � Y : standard matrix scalar product X � Y ¼ Tr½X>Y �.
GðV ;EÞ: undirected graph with vertices V ¼ f1; . . . ; ng

and edges E � V � V .

w: weight function of the graph G: w : E ! IRþ
0 .

wðSÞ: sum of edge-weights of the subgraph induced by the
vertex subset S � V .

�SS: complement V n S of the vertex subset S � V .

wð�SÞ: weight of a cut defined by the partition S; �SS.

W : weighted adjacency matrix of graph G : Wij ¼ wði; jÞ;
ði; jÞ 2 E.

L: Laplacian matrix of graph G: L ¼ DðWeÞ �W .

�kðLÞ: eigenvalues �1ðLÞ � . . . � �nðLÞ of the Laplacian
matrix L of graph G.

kxk: Euclidean norm of the vector x: kxk ¼ x>x.

2 PROBLEM STATEMENT: BINARY COMBINATORIAL

OPTIMIZATION

In this section, we formally define optimization criteria
according to the problems introduced in Section 1.2. These
criteria will turn out to be special instances of quadratic
functionals over binary decision variables subject to linear
constraints. Relaxations of these difficult combinatorial
problems for computing suboptimal solutions in polynomial
time will be studied in Section 3.

2.1 Unsupervised Partitioning

Consider a graph GðV ;EÞ with locally extracted image
features as vertices V and pairwise (dis)similarity values as
edge-weights w : E � V � V ! IRþ

0 . We would like to
compute a partition of the set V into two coherent groups
V ¼ S [ �SS, as depicted in Fig. 3. Representing such
partitions by an indicator vector x 2 f�1;þ1gn, the weight
of a cut is given by (cf. Section 1.5):

wð�SÞ ¼
X

i2S;j2 �SS

wði; jÞ ¼ 1

8

X
i;j2V

wði; jÞðxi � xjÞ2 ¼
1

4
x>Lx: ð2Þ

If the weight function w encodes a similarity measure
between pairs of features, then coherent groups correspond
to low values of wð�SÞ.

In order to avoid unbalanced partitions which are likely
when minimizing wð�SÞ, Shi and Malik [58] suggested the
following normalized objective function:

wð�SÞ
wðSÞ þ wð�SÞ þ

wð�SÞ
wð �SSÞ þ wð�SÞ

:
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Since this optimization problem is intractable, they derived
the following relaxation (normalized cut):

inf
x

x>Lx

x>DðWeÞx ; e>DðWeÞx ¼ 0; x 2 f�b; 1gn; ð3Þ

where the number b is not known beforehand. Hence, this
integer constraint is dropped in practice. Writing D as a
shorthand forDðWeÞ and y ¼ D1=2x, (3) becomes:

inf
kyk¼1

y> ~LLy; e>D1=2y ¼ 0;

with ~LL ¼ D�1=2LD�1=2. Since e is the eigenvector of the
LaplacianmatrixLwith eigenvalue 0, so isD1=2ewith respect
to the normalized Laplacian matrix ~LL. Consequently, x ¼
D�1=2y solves (3) (without the integer constraint), where y is
the eigenvector of ~LL corresponding to the second smallest
eigenvalue. Finally, the integer constraint is taken into
account by thresholding the eigenvector using some suitable
criterion [58].

The approach (3) is close to following the classical
partitioning approach from spectral graph theory (see, e.g.,
[46] for a survey):

inf
x
x>Lx; e>x ¼ 0; x 2 f�1;þ1gn: ð4Þ

Criterion (4) has a clear interpretation: Determine a cut with
minimal weight (cf. (2)) subject to the constraint that each
group has an equal number of vertices: e>x ¼ 0. Similarly,
dropping the normalization in (3) and setting x 2 f�1;þ1gn,
the interpretation of (3) is: Determine a cut with minimal
weight such that both parts have the same sum of vertex-
degrees.2 In the context of image partitioning, this may be
more appropriate than the constraint in (4) and, thus, explains
the success of Shi and Malik’s approach.

The foregoing discussion raises some natural questions:
Which other constraints are useful for unsupervised image
partitioning? How do we take into account the integer
constraint with respect to xi, i ¼ 1; . . . ; n, for deriving an
appropriate relaxation of the combinatorial optimization
problem (as opposed to doing that afterwards just by
thresholding)? To investigate different constraints, we define
the following criterion for unsupervised image partitioning:

inf
x
x>Lx; c>x ¼ 0; x 2 f�1;þ1gn; ð5Þ

and focus on an appropriate relaxation of the integer
constraint in Section 3. The vector c in (5) is an application-
dependent constraint vector defining what we mean by a
“balanced cut.” In Section 3.2, we will provide exact
conditions on this vector c which result in feasible
relaxations of (5). Examples will be given in Section 4.2.

Remark 1. We note that (5) does not conform with
optimization problems of the form (1) and corresponding
assumptions.

2.2 Perceptual Grouping and Figure-Ground
Discrimination

Hérault and Horaud [33] investigated the combinatorial
problem of minimizing the following functional in terms of
binary labels p 2 f0; 1gn for figure-ground discrimination
and perceptual grouping of n primitives:

EsaliencyðpÞ þ �EconstraintðpÞ; � 2 IRþ; ð6Þ

where EsaliencyðpÞ ¼ �
P

i;j wði; jÞpipj and EconstraintðpÞ ¼P
i pi

� �2
. The interaction coefficientswði; jÞ encode similarity

measures between pairs of primitives like cocircularity,
smoothness, proximity, or contrast (see [33]). Accordingly,
the first term in (6) measures the mutual reinforcement
between pairs of primitives i; j labeled as foreground:
pi ¼ pj ¼ 1. The second term in (6) penalizes primitives that
do not receive much “feedback” from other primitives and
probably do not belong to some coherent group.

Hérault and Horaud investigated various annealing
approaches in order to find good minimizers of (6). The
disadvantages of this class of optimization approaches were
discussed in Section 1.3.1. Accordingly, in a recent compar-
ison [63], the combinatorial complexity involved has been
considered as a decisive disadvantage of using this
approach as a saliency measure for perceptual grouping.

Wewould like to showbelow that a goodminimizer for (6)
can be conveniently computed with our approach. To this
end, we transform the 0=1-variables p to 	1-variables x ¼
2p� e and obtain the following problem formulation (up to
constant terms):

inf
x

1

4
x>ð�ee> �WÞxþ 1

2
e>ð�nI �W Þx; x 2 f�1;þ1gn;

ð7Þ

with matrix entries Wij ¼ wði; jÞ. The formulation (7) makes
more explicit the role of the global parameter � which acts
in a twofold way as a threshold parameter: Primitives i; j

reinforce each other if their similarity value Wij is larger
than � (first term) and each primitive i is (additionally)
favored if its average degree (similarity value) ðWeÞi=n is
larger than � (second term). Both terms together result in a
meaningful global measure of “coherency” based on
pairwise comparisons of locally computed primitives.

Remark 2. We note again that (7) does not conform with
optimization problems of the form (1) and corresponding
assumptions.

2.3 Restoration

Consider some scalar-valued feature (gray-value, color
feature, texture measure, etc.) g 2 IRn which has been locally
computed within the image plane. Suppose that, for each
pixel i, the feature-value gi is known to originate from either
of two prototypical values u1; u2. In practice, of course, g is
real-valued due to measurement errors and noise.

To restore a discrete-valued image function given by the
vector x 2 f�1;þ1gn from the measurements g, we would
like to minimize the following functional:

zðxÞ ¼ 1

4

X
i

�
ðu2 � u1Þxi þ u2 þ u1 � 2gi

�2
þ �

2

X
hi;ji

ðxi � xjÞ2 :

ð8Þ

Here, the second term sums over all pairwise adjacent
pixels on the regular image grid.

Functional (8) comprises two terms familiar from many
regularization approaches [4]: A data-fitting term and a
smoothness term modeling spatial context. However, due to
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the integer constraint xi 2 f�1; 1g, the optimization problem
considered here is much more difficult than standard
regularization problems.

Up to constant terms, (8) leads to the following
optimization problem:

inf
x

1

4
x>Qxþ 1

2
b>x; x 2 f�1;þ1gn; ð9Þ

with bi ¼ ðu2 � u1Þðu2 þ u1 � 2giÞ and matrix entries Qij ¼
�2� for adjacentpixels i; jandQij ¼ 0otherwise.Note that, in
contrast to the problems introduced in the previous sections,
in this case, the problem matrix Q is very sparse, which is
advantageous from the computational point of view.

Remark 3. We are well aware that (9) does conform with
optimization problems of the form (1) and, thus, can be
solved to optimality using the methods presented in [35],
[10]. However, depending on the application considered,
it might be useful to modify the terms in (8) to model
properties of the imaging device (data-fitting term) or to
take into consideration a priori knowledge about spatial
regularities (smoothness term; see, e.g., [8], [64]). These
modifications would lead to other entries for Q and b,
which could violate the assumptions for (1) but would not
affect the applicability of our approach. Exploring these
possibilities, however, is beyond the scope of this paper.

3 OPTIMIZATION BY MATHEMATICAL RELAXATION

In this section, we introduce the optimization approach to
solvethedifferentproblemspresentedintheprevioussection.
To this end, note that both the perceptual grouping problem
(7) and the restoration problem (9) can be written in the form
(5) introduced for the unsupervised partitioning problem. In
fact, the objective functions of (7) and (9), which are both
special cases of a general quadratic functional x>Qxþ 2b>x,
can be homogenized in the following way:

x>Qxþ 2b>x ¼ x
1

� �>
L

x
1

� �
; L ¼ Q b

b> 0

� �
:

Hence, both problems are special instances of (5) with c ¼ 0
and size nþ 1, if L is generalized to be a symmetric matrix
which is subject to no further constraints. Indeed, we do not
needL to be the Laplacianmatrix of a graph for the following
relaxation. Therefore, in this section,wewill only assume that
L 2 Sn andwewill always refer to (5). The results then apply
to all three problems from Section 2 unless stated otherwise
by a special choice of the constraint vector c.

The relaxation approach now consists of lifting the
problem variables into a matrix space (Section 3.1), solving
the resulting convex optimization problem by using interior
point techniques and, finally, recovering a corresponding
combinatorial solution (Section 3.3).

3.1 Semidefinite Relaxation

In order to relax (5), we first replace the linear and integer
constraint, respectively, by quadratic ones: ðc>xÞ2 ¼ 0 and
x2
i � 1 ¼ 0; i ¼ 1; . . . ; n. Denoting the Lagrangian multiplier

variables with yi, i ¼ 0; . . . ; n, the Lagrangian of (5) reads:

x>Lx� y0ðc>xÞ2 �
Xn
i¼1

yiðx2
i � 1Þ

¼ x>�L� y0cc
> �DðyÞ

�
xþ e>y:

This results in the following Lagrangian relaxation:

sup
y0;y

inf
x
x>�L� y0cc

> �DðyÞ
�
xþ e>y:

Since x is unconstrained now, the inner minimization is
finite-valued if and only if L� y0cc

> �DðyÞ is positive
semidefinite. Hence, we arrive at the relaxed problem:

zd :¼ sup
y0;y

e>y; L� y0cc
> �DðyÞ 2 Sn

þ: ð10Þ

The important point here is that (10) is a convex optimiza-
tion problem! The set Sn

þ is a cone (i.e., a special convex set)
which also is self-dual, so that it coincides with its dual cone
ðSn

þÞ

 ¼ fY : X � Y � 0; X 2 Sn

þg [48].
To obtain a connection to our original problem, we

derive the Lagrangian dual of (10). Choosing a Lagrangian
multiplier X 2 Sn

þ, similar reasoning as above yields:

zd ¼ sup
y0;y

inf
X2Sn

þ
e>yþX �

�
L� y0cc

> �DðyÞ
�

� inf
X2Sn

þ
sup
y0;y

e>yþX �
�
L� y0cc

> �DðyÞ
�

¼ inf
X2Sn

þ
sup
y0;y

L �X �DðyÞ � ðX � IÞ � y0cc
> �X:

Here, the inner maximization of the last equation is finite
only if DðXÞ ¼ I and cc> �X ¼ 0. Hence, we obtain the
following problem dual to (10):

zp :¼ inf
X2Sn

þ
L �X; cc> �X ¼ 0; DðXÞ ¼ I; ð11Þ

which again is convex.
This final semidefinite relaxation (11) can also be

obtained intuitively in a direct way from the original
problem (5) by rewriting the objective function as
infx x>Lx ¼ infx L � xx>. Note that the matrix xx> is
positive semidefinite and has rank one. The relaxation (11)
then consists of replacing xx> by an arbitrary matrix X 2
Sn
þ (i.e., dropping the rank one condition) and lifting the

constraints to the higher-dimensional space accordingly.
In order to illustrate how the convex relaxation (11)

approximates the combinatorial, nonconvex problem (5), let us
consider the case n ¼ 3. In this case, the matrix X in (11) has
six unknowns due to symmetry (the upper (or lower)
triangular part). The intersection of the convex set Sn

þ with
the three hyperplanes defined by DðXÞ ¼ I yields the
convex set fX 2 Sn

þjDðXÞ ¼ Ig, which is shown in Fig. 4. It
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Fig. 4. The set of feasible solutions fX 2 Sn
þjDðXÞ ¼ Ig for the convex

problem relaxation (11), for n ¼ 3 and c ¼ 0. The subset of feasible

combinatorial solutions only contains the four extreme points. For c 6¼ 0,
this set additionally has to be intersectedwith the hyperplane cc> �X ¼ 0.



looks like a polytope with four vertices (which correspond
to the combinatorial solutions of the unrelaxed problem)
but with nonlinear faces. The set of feasible solutions for
(11) is now obtained by additionally intersecting this set
with the hyperplane cc> �X ¼ 0. This shows that the
original combinatorial problem (5) only has a feasible
solution if at least one of the extreme points of fX 2
Sn
þjDðXÞ ¼ Ig lies on this hyperplane. Nevertheless, the

relaxed solution can always be determined by minimizing
numerically the linear functional L �X over the feasible set,
provided that this is not empty (see Section 3.2). The nearest
extreme point may then be considered as the combinatorial
solution of (5) or at least as the combinatorial solution
which best approximates the constraint c>x ¼ 0.

This simple example illustrates a fundamental fact:
Intricate constraints can be represented by simpler sets in
higher-dimensional spaces. This fact is well-known in
other fields like pattern recognition and statistical learning
[13], [60], [17].

3.2 Duality and Feasibility

Both optimization problems, primal (11) and dual (10),
belong to the class of positive semidefinite programs. The
elegant duality theory corresponding to this class of convex
optimization problems can be found in [48]. The following
duality theorem is also provided there:

Theorem 1 (Strong duality for positive semidefinite
programming). If (11) and (10) both are feasible and there
is a strictly interior point for either (11) or (10), then optimal
primal and dual solutions X
; ðy
0; y
Þ exist and the corre-
sponding optimal values are the same, i.e., they yield no
duality gap: zp � zd ¼ L �X
 � ety
 ¼ 0.

The convex optimization problems considered in this
paper are known to be “well-behaved” according to this
theorem. A strictly interior point for the dual problem (10)
can always be found by setting y0 ¼ 0 and y ¼ �ae with a
large enough. For the primal problem (11), a feasible solution
is given by X ¼ I for c ¼ 0 and by X ¼ n

n�1 I � 1
n�1 ee

> for
c ¼ e. Otherwise, it may be possible that no feasible solution
for the primal problem exists if the vector c is chosen
inappropriately. This situation is illustrated by the following
example: For the case n ¼ 2, the constraints in (11) yield

X ¼ 1 a
a 1

� �

with a ¼ � c21þc22
2c1c2

. Additionally, �1 � a � 1 has to hold for X
to be positive semidefinite. Obviously, this is only valid for
c1 ¼ c2. Thus, for all other choices of c, the primal problem
(11) has no feasible solution in this case.

In general, it is possible to characterize exactly the
situations when the primal problem (11) is feasible. The
followingresult ismainlybasedonapropositiongiven in [41]:

Theorem 2. The problem (11) is feasible for a positive constraint
vector c (ci � 0; i ¼ 1; . . . ; n) if and only if c is balanced, i.e.,

ci �
X
j6¼i

cj for all i ¼ 1; . . . ; n:

Proof. As c � 0, the matrix cc> is positive semidefinite. The
balancing constraint yields 0 ¼ cc> �X ¼ Tr ½cc>X � ¼P

i �iðcc>XÞ. As X is also positive semidefinite, so is

cc>X and it follows immediately that cc>X has to be the
null-matrix. As this is equivalent to Xc ¼ 0, c must be
contained in the null space kerðXÞ ofX. Proposition 3.2 in
[41] now concludes the proof: The linear space generated
by c is contained in kerðXÞ for a matrix X 2 Sn

þ with
DðXÞ ¼ I if and only if c is balanced. The proof for this
proposition can be found in [15]. tu
Due to this result, we will only consider examples in

Section 4.2 where c is balanced.

3.3 Interior Point Algorithm and Randomized
Hyperplanes

To compute the optimal solutions X
 and ðy
0; y
Þ, a wide
range of iterative interior-point algorithms can be used.
Typically, a sequence of minimizers fX�; ðy0Þ�; y�g, para-
meterizedby aparameter �, is computeduntil theduality gap
falls belowsomegiven threshold �.A remarkable result in [48]
asserts that, for the family of self-concordant barrier
functions, this can always be done in polynomial time, with
the complexity depending on the number of variables n and
the value of �.

Note that, due to the constraint cc> �X ¼ 0, the smallest
eigenvalue ofX has to be equal to 0 (cf. proof of Theorem2) so
that no strictly interior point for the primal problem (11)
exists. This observation led us to use the dual-scaling
algorithm from [3] for our experiments. This algorithm has
the advantage that it does not need to calculate an interior
solution for theprimalproblemduring the iterations, but only
for the dual problem.Moreover, it is capable of exploiting the
sparsity structure of a given problem better than other
methods. The primal solution matrix X
 is not computed
until the optimal dual solution ðy
0; y
Þ has been reached.

Based on this solution matrix X
 to the convex optimiza-
tion problem (11), we have to find a combinatorial solution x
to the original problem (5). To achieve this, we used the
randomized-hyperplane technique proposed by Goemans
andWilliamson [30]. To this end, the following interpretation
of the relaxation described in Section 3.1 is more convenient:
SinceX
 2 Sn

þ, we can computeX
 ¼ V >V ; V ¼ ðv1; . . . ; vnÞ
using the Cholesky decomposition. From the constraint
DðXÞ ¼ I, it follows that kvik ¼ 1; i ¼ 1; . . . ; n. Hence, the
relaxation step in Section 3.1 may also be interpreted as
associating, with each primitive xi, a vector vi on the unit
sphere in a high-dimensional space. Accordingly, the matrix
entries ðxx>Þij ¼ xixj are replaced by the matrix entries
Xij ¼ v>i vj.

Choosing a random vector r from the unit sphere, a
combinatorial solution vector x is calculated fromX
 ¼ V >V
by setting xi ¼ 1 if v>i r � 0 and xi ¼ �1 otherwise. This is
done multiple times for different random vectors, letting the
final solution xSDP be the one that yields the minimum value
for the objective function x>Lx. This technique may be
interpreted as selecting different hyperplanes through the
origin, identified by their normal r, which partition the
vectors vi; i ¼ 1; . . . ; n in two sets.

Remark 4. Of course, for c 6¼ 0, the solution xSDP obtained by
this technique does not need to be feasible for (5) as it is not
required to satisfy the constraint c>x ¼ 0. Thus, it may
yield an objective value zSDP ¼ x>

SDPLxSDP that is even
smaller than the optimal value of the semidefinite
relaxation zp. Therefore, some modifications of the
randomized-hyperplane technique have been proposed
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in the literature [24], [70], which, for the special case c ¼ e,
guarantee to finda feasible solution to theoriginalproblem
(5) and even give a performance ratio for the objective
value obtained. However, we stuck to the original
randomized-hyperplane technique as, for the applications
considered in this paper, it is not mandatory to find a
feasible solution: We are only interested in solutions that
shouldbequitebalanced,but theydonotneed tobeexactly
balanced cuts of the associated graph. Hence, the con-
straint c>x ¼ 0may rather be seen as a strong bias to guide
the search to a meaningful solution than as a strict
requirement, especially in cases when no feasible combi-
natorial solution exists!

3.4 Performance Bounds

If c ¼ 0 as in the examples of Sections 2.2 and 2.3, the
combinatorial solution xSDP obtained with the randomized-
hyperplane technique is feasible. Based on the results from
[30], the following suboptimality bound on the objective
value zSDP can be calculated in this case (see [39] for a proof):

Theorem 3. The expected value E½zSDP � of the objective function
z ¼ x>Lx calculated with the randomized-hyperplane techni-
que is bounded by

E½zSDP � � �zp þ ð1� �Þ
X
i;j

jLijj;

where � ¼ min
0� ���

2
�

�
1�cos � � 0:878.

A drawback of this bound is that it contains the problem-
dependent constant

P
i;j jLijj. This cannot be omitted as L

may contain negative entries.
Another bound which allows for L having negative

entries was given by Nesterov [47], who extended the
results of Goemans and Williamson [30] to maximization
problems of the form (5) with c ¼ 0. His results can easily be
reformulated for the minimization problems considered in
this paper, giving:

E½zSDP � � z


z
max � z

� �

2
� 1 � 4

7
;

with z
 denoting the optimal value of (5) and z
max denoting
the maximum value of the objective function subject to the
integer constraint. However, this relative bound also
depends on the problem instance as it employs the
difference between the maximum and minimum values of
the objective function, which usually cannot be estimated in
advance. Finally, observe that the following relations
between the different mentioned values of the objective
function always hold true for c ¼ 0:

zd ¼ zp � z
 � zSDP � z
max:

It should be mentioned that the bounds presented above are
not tight with respect to the much better performance
measured in practice (cf. Section 4.1). However, for most
alternative optimization approaches applicable to the
general problem class considered here, performance
bounds are lacking completely.

3.5 Relation to Spectral Relaxation

In this section, we will compare the convex relaxation
approach with spectral relaxation approaches. The results
will show that convex relaxation always compares favorably

with the computation of the so-called “Fiedler vector,”which
is often used for the segmentation of graphs [21], [46].

First of all,we reformulate the semidefinite relaxation from
Section 3.1 as an eigenvalue optimization problem. This idea
dates back to Delorme and Poljak [16]. Starting from the dual
problemformulation (10),weparameterizey ¼ �e� v,where
e>v ¼ 0. Then, theconstraintL� y0cc

> �DðyÞ ¼ L� y0cc
> þ

DðvÞ � �I 2 Sn
þ is equivalent to �min

�
L� y0cc

> þDðvÞ
�
� �,

which results in the following representation of (10):

zd ¼ sup
y0;y

e>y ¼ sup
y0;�

n� ¼ sup
y0;e>v¼ 0

n�min

�
L� y0cc

> þDðvÞ
�
:

ð12Þ

Aspectral relaxation approach to (5) is based on the idea of
keeping the constraint c>x ¼ 0 out of the Lagrangian for-
mulation of the problem and, instead, using it in the
minimizing process. Parameterizing y as above, standard
Lagrangian relaxation then, finally, leads to the following
spectral relaxation:

zSR :¼ sup
e>v¼0

n�min

�
V >�LþDðvÞ

�
V
�
; ð13Þ

where V 2 IRn�ðn�1Þ contains an orthonormal basis of the
complement c?, i.e., V >c ¼ 0, V >V ¼ I.

This formulation is a straightforward generalization of the

special case c ¼ e, for which it was first provided by Boppana

[7] andRendl andWolkowicz [53], independently. Poljak and

Rendl [51] showed the equivalence of the spectral relaxation

(13) and the semidefinite relaxation (12) for this case by

investigating the broader class of general graph bisection

problems. Their result can be extended to the general case

c 6¼ e considered here (for a proof, see [39]):

Theorem 4. The semidefinite relaxation (10) yields the same lower
bound on the objective function as the spectral relaxation (13):

zd ¼ sup
e>v¼ 0

n�min

�
V >�LþDðvÞ

�
V
�
:

Note that, if (11) is not feasible, both values (12) and (13)
become unbounded!

We now want to derive a comparison of the semidefinite
relaxation approach to the computation of the so-called
“Fiedler vector.” To this end, let’s take a closer look at the
following weaker spectral relaxation of (5):

zSR2 :¼ min
x2IRn

x>Lx; x>x ¼ n; c>x ¼ 0; ð14Þ

i.e., the combinatorial constraint x 2 f�1;þ1gn is directly
relaxed to kxk2 ¼ n.

The following lemma holds:

Lemma 1. Let V 2 IRn�ðn�1Þ denote the matrix defined in (13).
Then,

zSR2 ¼ n�minðV >LV Þ ð15Þ

and the solution of (14) is given by x
 ¼ ffiffiffi
n

p
V w0, where w0 is

the eigenvector corresponding to the smallest eigenvalue of
V >LV with the norm kw0k ¼ 1.

Proof. Let P ¼
�

1
kck c; V

�
and u ¼ P>x ¼ ð0; wÞ>; w ¼ V >x.

Then, P is orthonormal and x>Lx ¼ u>P>LPu ¼
w>V >LVw attains its minimum for w ¼ �w0 being
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proportional to the smallest eigenvector w0; kw0k ¼ 1 of

V >LV . Hence, x
 ¼ Pu ¼ �V w0, where � follows from

the calculation: n ¼ ðx
Þ>x
 ¼ �2w>
0 V

>V w0 ¼ �2. The

value for zSR2 follows immediately by inserting x
 into

the objective function. tu
For the special case of c ¼ e, this spectral relaxation

corresponds to the computation of the “Fiedler vector,” i.e.,

the eigenvector x
 to the second smallest eigenvalue �2ðLÞ of
thematrixL. This followsdirectly from (15) by observing that

�2ðLÞ ¼ �2ðP>LP Þ ¼ �2

1ffiffi
n

p e>L 1ffiffi
n

p e 1ffiffi
n

p e>LV

V >L 1ffiffi
n

p e V >LV

 !

¼ �2

0 0

0 V >LV

� �
¼ �minðV >LV Þ

for c ¼ e and P defined as in the proof of Lemma 1. The
following fact shows the superiority of the convex relaxation
approach; it follows immediately by comparing the result of
Lemma 1 with (13):

Corollary 1. For c ¼ e, the following inequality on the lower
bounds for (5) is valid:

zSR2 � zSR ¼ zd:

Apart from this fact of being less tight concerning thevalue
of the objective function, the spectral relaxation with the
Fiedler vector x
 has another disadvantage: To obtain the
corresponding combinatorial solution x of (5), a threshold
value t is used to set the entries xi ¼ 1 for x


i > t and xi ¼ �1
otherwise. This raises the question for an appropriate choice
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Fig. 5. Signal x0 comprising multiple spatial scales.

Fig. 6. A representative example illustrating the statistics shown in
Fig. 7. (a) Noisy input signal. (b) Optimal solution x
. (c) Suboptimal
solution xSDP .

Fig. 7. Average relative errors�z and�z0 of the objective function for the
suboptimal solution xSDP in comparison to the optimal signal x
 and the
synthetic signalx0, respectively, for different values of the scale parameter
�. Also shown is the average percentage of misclassified pixels for the
suboptimal solution xSDP compared to the optimal solution x
.

Fig. 8. (a) A skewed data distribution with two spiral-shaped groups. (b) Level lines of a Parzen estimate of the data distribution. (c) Application of a
metric scaling technique [14] yields a Euclidean approximation in 2D-space of the weighted-path distances (many points project to almost equal
locations): As compared to (a), the two spiral-shaped groups form more compact clusters. (d) The shortest Euclidean path within the Delaunay-graph
between two points of the same group, using the original data distribution from (a). (e) and (f) Weighted shortest paths using the density from (b):
Compared to the Euclidean distance used in (d), within-group paths have become shorter (e). Nevertheless, the partition problem is still not trivial
since shortest paths between points of the same group do not always lie within this group (f).



of this threshold value. Two natural approaches seem to be
promising: To set t ¼ 0 (because of the original +1/–1-
constraint on x) or to set t equal to the median of x
 (to meet
the balancing constraint e>x ¼ 0). However, we will show
belowthat anunsupervisedchoiceof the thresholdvaluemay
fail completely. On the other hand, of course, it must be
mentioned that the computational effort for solving the
spectral relaxation with the Fiedler vector is smaller than for
the semidefinite relaxation, which allows for tackling larger
problem instances.

4 EXPERIMENTS AND DISCUSSION

In this section, we investigate the performance of the convex
relaxation approach experimentally. In Section 4.1, we start
with reporting the statistical results for ground-truth
experiments for restoration problems as described in
Section 2.3, using noisy one-dimensional signals. The
application of the convex relaxation approach to different
real scenes from all problem types mentioned in Section 2
will be presented in Section 4.2. Furthermore, a brief
discussion of different aspects of the semidefinite relaxation
approach will be given in Section 4.3.

4.1 Ground-Truth Experiments

Tobeable toanalyze theperformanceof theconvex relaxation
approach described in Section 3 statistically, ground truth
data (the global optimum) has to be available for the problem
under consideration. Therefore,wedecided to investigate the
restoration of noisy one-dimensional signals using the
functional (8) as, in this case, the global optimum can be
easily computed using dynamic programming.

For our experiments, we took the synthetic signal x0

depicted in Fig. 5, which involves transitions at multiple
spatial scales, and superimposed Gaussian white noise with
a standard deviation of 	 ¼ 1:0. Fig. 6a shows an example of
such a noisy signal. Then, both the global optimum x
 of (8)
and the combinatorial solution xSDP obtained from the
convex relaxation (11) were computed from this noisy input
signal and compared to each other. A representative
example of the restoration is given in Fig. 6.

To derive some significant statistics, this experiment was
repeated 1,000 times for varying values of � and different
noisy signals. For each �-value, we then calculated the
following quantities:

�z: The sample mean of the gap �z ¼ zðxSDP Þ � zðx
Þ
(measured in percent of the optimum) with respect to the
objective function values of the suboptimal solution xSDP

and the optimal solution x
.

	�z: The sample standard deviation of the gap �z.

�z0: The sample mean of the gap �z0 ¼ jzðxSDP Þ � zðx0Þj
(measured in percent of the optimum) with respect to the
objective function values of the suboptimal solution xSDP

and the synthetic signal x0.

	�z0 : The sample standard deviation of the gap �z0.

Moreover, we also calculated the samplemean of the number
of misclassified pixels in comparison with the optimal
solution.

The results are shown in Fig. 7. They reveal the accuracy
of the suboptimal solutions obtained with the semidefinite
relaxation: The average relative error for both the objective
function value and the number of correctly classified pixels
is below 2 percent compared to the optimum values of the
objective function. The corresponding measures for 	�z lie
between 0.12 percent and 1.33 percent. This shows that, in
practice, the performance of the semidefinite relaxation
approach is much better than the bounds presented in
Section 3.4.

Concerning the restoration of the original signal x0, it
should be mentioned that x0 is not the best solution of the
functional (8), which results in �z < �z0. This indicates that
moreappropriate criteria shouldbeused for the restorationof
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Fig. 9. Point set clustering for Fig. 8a, using distances based on
weighted paths (method 2). (a) Convex relaxation computed the correct
partition. (b) Partition computed with the Fiedler vector thresholded at 0.
Correct separation is still not possible due to the less tight relaxation of
the underlying combinatorial problem.

Fig. 10. Point set clustering. (a) Input data with 160 points, weights calculated using method 1 with 	 ¼ 0:0025. (b) Solution computed with convex
optimization, using c ¼ e. (c) Solution computed with the Fiedler vector, thresholded at the median value: Spectral relaxation fails!

Fig. 11. The Fiedler vector for the example in Fig. 10.



signals, e.g., by incorporating suitablepriorswith respect tox0

(cf. [8]). The derivation of such criteria is not the objective of
this paper. However, the performance is still remarkably
good (cf. Fig. 7): For values of the scale parameter � � 2, the
average relative error for the objective function value �z0 is
below 3 percent, with the corresponding measures for 	�z0

lying between 1.95 percent and 2.69 percent. The high error
rates for � < 2 can be explained with the dominating larger
spatial scales in the signal x0.

4.2 Real Scenes

In this section, we present the results of the semidefinite
relaxation approach by applying it to problems from the
different fields presented in Section 2. For the unsupervised
partitioning examples, we also compare the results with the
segmentation obtained by thresholding the Fiedler vector.

4.2.1 Preliminary Remark (Similarity Measures)

Recall that theobjective inunsupervisedpartitioning is tosplit
a graph with some extracted image features as vertices into
two coherent groups. To this end, the edge-weights wði; jÞ
building the similarity matrix are computed from distances
dði; jÞ between the extracted image features i and j as

wði; jÞ ¼ e�
dði;jÞð Þ2

	 ;

where dði; jÞ and 	 are chosen application dependent. We
studied two different methods to calculate the similarity
measures:

1. Compute wði; jÞ for all feature pairs ði; jÞ directly,
thus including no spatial information.

2. Compute wði; jÞ only for neighboring features and
derive the other edge-weights by calculation of a
path connecting them. This is done by computing
the shortest paths for the graph derived from G by
changing the similarity weights to dissimilarities
and transforming them back afterward. This results
in a similarity measure that favors spatially coherent
structures.

To motivate the latter method 2, consider Fig. 8a, which
shows a set of points with the shape of two spirals. It was
critically observed in [26] that spectral methods fail to
partition such “skewed” coherent groups. Indeed, Fig. 8d
shows that, in the corresponding Delaunay-graph, the short-
est Euclidean path between two points of the same group

traverses the other group.As a consequence, a direct pairwise
comparisonofEuclideandistances ormoregeneral, theuse of
method 1 above, which ignores spatial context, is not
appropriate.

Method 2 provides a simple remedy in this situation (cf.
[22]). Apart from “location,” additional attributes, like color,
texture, etc., are typically used to define pairwise distances/
similarities as edge-weights. As a result, by using weighted
paths as a distancemeasure, spatial coherency is exploited in
the appropriate way and results in shorter paths within a
group. For the example shown in Fig. 8a, we simulated such
an additional attribute by a Parzen estimate [25] of the spatial
data distribution (Fig. 8b). Fig. 8c visualizes the resulting
distances by approximating them with Euclidean distances
within 2D-space using a classical metric scaling technique
[14]. This result shows that points of a coherent group have
becomemore similar to each other.Accordingly, the partition
task has become more well-defined but not trivial, of course:
Weighted paths within groups have been shortened (Fig. 8e),
but the shortest paths between two points of the same group
still do not always lie within this group (Fig. 8f).

As, in this paper, we aremainly interested in the results of
the semidefinite relaxation approach from an optimization
point of view, we did not work on more elaborate computa-
tions of the wði; jÞ-values. For a survey of numerous other
(dis)similarity measures, see [52].
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Fig. 12. Color image partitioning, using method 1. (a) Input image (298� 141 pixels), yielding 209 clusters (	 ¼ 8 � 2552). (b) and (c) Segmentation
computed with convex optimization, using c ¼ e: Similar colors are grouped together. (d) and (e) Segmentation computed with the Fiedler vector
thresholded at the median. Thresholding at 0 just separates one pixel from the rest of the image.

Fig. 13. Color image partitioning for the image from Fig. 12a, using
method 2. (a) and (b) Segmentation computed with convex optimization,
using c ¼ e: Spatially coherent structures are favored. (c) and
(d) Segmentation computed with the Fiedler vector thresholded at the
median: The requirement that both parts have the same size influences
the result negatively.



4.2.2 Unsupervised Partitioning

Point sets. Fig. 9 shows the partitions computedwith convex
(Fig. 9a) and spectral (Fig. 9b) relaxation, respectively, for the
examplegiven in theprevious section (Fig. 8a).Asbothspirals
have the same number of points, we used c ¼ e for this
experiment, with each point defining a vertex in the
corresponding graph. Although the similarity weights
wði; jÞ are calculated using the path-metric from method 2,
spectral relaxationwith theFiedlervector still fails tocompute
the correct cut, whereas convex relaxation does. This reflects
the theoretical results of Section 3.5, showing the superiority
of the convex relaxation approach fromanoptimizationpoint
of view. Another particularly relevant disadvantage of
spectral relaxation in the unsupervised case is that it is not
known beforehand which heuristic for thresholding the
eigenvectormight yield the desired result. On the other hand,
note that convex relaxation works without any threshold.

Another situation is depicted in Fig. 10a. This point set
comprises a dense cluster in the middle and equally
distributed background clutter, both containing 80 points.
The similarity weights wði; jÞ are now computed directly
from the Euclidean distances dði; jÞ between all points
(method 1). The results for this example (Figs. 10b and 10c)
again show the superiority of the convex optimization
approach: While it successfully separates the dense cluster
from the background, the spectral relaxation only achieves
an unsatisfactory partition. This is due to the fact that the
Fiedler vector does not give a clear cut-value (cf. Fig. 11).
Also note that, for the solution obtained from the convex
relaxation, the balancing constraint e>x ¼ 0 is not enforced:
In accordance with the visual impression, the two parts
contain 78 and 82 points, respectively.

Color images. To study thepartitioning of large realworld
images, we first computed an oversegmentation by applying
themean shift technique [12] at a fine spatial scale in order not
to destroy any perceptually significant structure. Instead of
usingthousandsofpixels, thegraphverticesareformedbythe
obtained clusters and dði; jÞ is computed as the color
difference of two clusters in the perceptually uniform
LUV space. We applied both methods 1 and 2 for the color
image shown in Fig. 12a and used the constraint vector c ¼ e.

The results approve the wide range of applicability and the

success of the semidefinite relaxation approach:Whereas the

similarity measure from method 1 groups together pixels of

similar colors (see Figs. 12b and 12c), method 2 yields a

segmentation into two reasonable, spatially coherent parts

(see Figs. 13a and 13b). For this example, the results obtained

by thresholding the Fiedler vector at itsmedian value are also

quite reasonable (see Figs. 12d and 12e, 13c and 13d), but a

crucial point is that this threshold value does not emerge

naturally: Looking at the Fiedler vector in more detail shows

that basically one cluster is separated from the rest of the

image as only one entry has a large positive value,whilemost

of the others contain small negative values. Note once more

that, on the other hand, no choice of a threshold value is

necessary for the semidefinite relaxation approach!
Choice of c. So far, the size of the clusters had no influence

on the similarity weights. This may yield unsatisfactory
separation results. Fig. 14 gives an example: Here, the sky
accounts for nearly half of the image (approximately
44 percent), but the oversegmentation puts all of its pixels
into one cluster. As for c ¼ e, all clusters are of the same
importance no matter how large they are, the semidefinite
relaxation approach segments the image into two parts by
cutting the city, which contains many small clusters (see
Figs. 14b and 14c). To derive a segmentationwhich takes into
account the different sizes of the clusters, the balancing

KEUCHEL ET AL.: BINARY PARTITIONING, PERCEPTUAL GROUPING, AND RESTORATION WITH SEMIDEFINITE PROGRAMMING 1375

Fig. 14. Color image partitioning, using method 2. (a) Input image (512� 404 pixels), yielding 408 clusters (	 ¼ 8 � 2552). (b) and (c) Segmentation

computed with convex optimization, with c ¼ e: The image is cut in two coherent parts. (d) and (e) Segmentation computed with convex optimization,

with constraint vector entries ci equal to the number of pixels in cluster i: The largest cluster is separated from the rest of the image.

Fig. 15. Segmentation computed with the Fiedler vector thresholded at

the median for the image from Fig. 14a: Separation into spatially

coherent parts fails completely.



constraint can be changed in the followingway: Calculate the
number of pixels mi contained in each cluster i and set the
constraint vector entries ci ¼ mi instead of ci ¼ 1. Thus, we
now search for a segmentation which partitions the image in
two coherent parts with each containing approximately the
samenumberofpixels insteadof the samenumberof clusters.
Theresult, showninFigs.14dand14e,approvesthevalidityof
this approach: Now, the sky is separated from the rest of the
image, giving a segmentation in accordance with our
balancing constraint (but without enforcing it exactly). Note
that, for this example, the Fiedler vector fails completely to
giveameaningful separation (seeFig. 15): Thresholdingat the
median value yields no coherent segmentation, whereas
thresholding at 0 only separates three clusters from the city
from the rest of the image.

Texture. The final experiment for binarypartitioningdeals
with gray-scale images comprising somenatural textures.An
example is shown in Fig. 16a. To derive a texture measure for
this image, we subdivided it into 24� 24 pixel windows and
calculated local histograms for two texture features within
these windows. Each window then corresponds to a graph
vertex and dði; jÞ is computed as the 
2-distance of the
histograms for all window pairs ði; jÞ, thus using method 1.
Considering the simplicity of this texture measure, the
segmentation result obtained in this way is excellent (see
Figs. 16b and 16c). In order to yield a satisfactory result, the
Fiedler vector had to be thresholded at 0 for this example. The
median thresholddoes notmake sense here as the imagedoes
not contain two parts of the same size. Again, we note that, in
the unsupervised case, this is not known beforehand.

4.2.3 Perceptual Grouping and Figure-Ground

Discrimination

Fig. 17 depicts the result computed by minimizing (7) using
the convex relaxationapproach.As inputdata,weuseda line-
finder developed by the group of Professor Förstner [20].
Fig. 17b shows a few hundred line-fragments computed for
the scene depicted in Fig. 17a. As similarity measure wði; jÞ
between two primitives (line-fragments) i and jwe used the
relative angle between these primitives. Correspondingly, as
the graph of w shows in Fig. 17c, two lines are similar if their
relative angle is close to a multiple of �=2. We refer to [33] for
more elaborate similarity measures which, however, are not

essential for testingour approach from theoptimizationpoint

of view.
We note that several groups exist in Fig. 17b which are

coherent according to the similarity measure w. The mini-
mizer of (7) shown in Fig. 17d determines the keyboard as the
“most coherent” group, as expected from a visual inspection
of the scene.

4.2.4 Restoration

In Section 4.1, we already presented the results of the

convex relaxation approach with respect to the restoration

of noisy one-dimensional signals. The result concerning the

restoration of a two-dimensional binary image is shown in

Fig. 18. Considering that the desired object comprises

structures at both large and small spatial scales, the

restoration result is fairly good.

4.3 Discussion

Combinatorial optimization. The experimental results de-

monstrate that our approach is a versatile tool for solving a
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Fig. 16. Grayscale-texture partitioning. (a) Input image (720� 456 pixels), yielding 570 vertices of 24� 24-pixel windows (	 ¼ 1), similarity weights

computed with method 1. (b) and (c) Segmentation computed with convex optimization, using c ¼ e: Note that the two parts do not have the same

size as the balancing constraint is not enforced. (d) and (e) Segmentation computed with the Fiedler vector, using the threshold value 0.

Fig. 17. Perceptual grouping. (a) Section of an office table shown from
the top. (b) Output of a line finder. (c) The similarity measure wði; jÞ as a
function of the angle between two line fragments. Two fragments are
most similar if they are (nearly) orthogonal or parallel to each other.
Several coherent groups of different cardinality exist in (b). (d) The
minimizer of (7) determines the “most coherent” group of line fragments
and suppresses the other groups.



broad range of difficult combinatorial problems in a
convenient way. For example, the user can focus on how to
choose a constraint vector appropriate for the application he
is interested in, rather than worrying about heuristics and
technical details in order to avoid bad local minima. Across
several different application fields, we obtained meaningful
solutions according to the criterion that was optimized. The
optimization problem (7) suggested by Herault and Horaud
[33], for instance, is a useful saliency measure for perceptual
grouping, but has gained only a mixed reputation in the
literature [63] due to the combinatorial complexity involved.
Our approach considerably mitigates this latter problem.

Convex versus spectral relaxation. We have shown in
Section 3.5 that convex relaxation always provides a tighter
relaxation of the underlying combinatorial problem in
comparison to spectral relaxation. In fact, this improvement
often can be made explicit by representing the convex
optimum as solution to an eigenvalue optimization problem
in terms of the multiplier variables.3 In many cases, this
theoretical result also turned out to be significant in
practice: Spectral relaxation may yield a solution that
doesn’t make sense in respect of the chosen optimization
criterion. Furthermore, spectral relaxation has a decisive
disadvantage in the case of unsupervised classification: The
suitability of the criterion for thresholding the eigenvector
often depends on the particular data being processed.

Again, we note (cf. Section 2.1) that alternative improve-
ments of spectral relaxation techniques exist [58], [62].
Concerning the normalized cut criterion (3), we suppose
that the choice of a different constraint vector improves the
classical spectral approach of Fiedler. In this respect, we
have considerably generalized the approach by taking into
account arbitrary constraint vectors. The effect of normal-
izing the Laplacian matrix in (3) on the tightness of the
relaxation and the thresholding problem are difficult to

analyze and left as an open problem. For very recent work
based on the normalized cut criterion, we refer to [45].

Computational complexity. The price for the convenient
propertiesofouroptimizationapproach listed inSection1.1 is
the squared number of variables of the semidefinite relaxa-
tion. Although the approach of Benson et al. [3] is able to
exploit a sparseproblemstructure verywell, the computation
time quickly grows with the number of variables such that
problems with several ten thousand variables cannot be
solved. While this is not a problem for the perceptual
grouping of a couple of hundred primitives, it prevents, at
present, the application to large-scale problems like, for
instance, combinatorial image restoration (cf. Table 1).

An interesting theoretical result in this context concerns
bounds which have been derived for the maximal rank r of a
matrix X solving a semidefinite program [2], [49]. Applying
this result to the program (11), we obtain the bound
1
2 rðrþ 1Þ � nþ 1, hence r <

ffiffiffiffiffiffi
2n

p
for large n. This means

that, in principle, the large number ofn2 problemvariables can
be reduced by setting n� r rows of the matrix V in the
decomposition X ¼ V >V to zero (cf. Section 3.3). The future
will showwhetheralgorithmswill comeupwhichexploit this
property along with a considerable saving of memory and
speed-up of computation.

5 CONCLUSION AND FURTHER WORK

We worked out a semidefinite programming framework
applicable to a broad class of binary combinatorial optimiza-
tion problems in computer vision. In our opinion, the major
contribution of this work is to introduce a fairly general and
novel optimization technique as an alternative to established
techniques, which is particularly attractive because of sound
underlying mathematical principles and the absence of
tuning parameters.

So far, the focus of our work was primarily on mathema-
tical optimization: convex relaxation, the existence of feasible
constraints/solutions, and performance bounds. Although
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Fig. 18. Restoration. (a) Binary noisy original image (map of Iceland). (b) Suboptimal solution computed by convex optimizationwith � ¼ 2:0. (c) Original
before adding noise.

TABLE 1
Sizes and Computation Times for the Experiments from Section 4

The results were obtained by running the dual-scaling algorithm [3] on a 700 MHz Pentium III Linux PC.

3. From the computational viewpoint, however, this representation is
less convenient than the underlying convex optimization problem.



we demonstrated the applicability of the approach for three

differentnontrivial problems,wedidnot spendmuch timeon

working out tailor-made similarity measures for specific

applications. Accordingly, in futurework, our focuswill shift

to the related and general problem of learning suitable

metrics for classification. Furthermore, we will investigate

the case of nonbinary classification and more intricate

constraints such as those of relational graph matching.
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Christoph Schnörr received the Dipl.-Ing.
degree in electrical engineering (1987), the
Dr.rer.nat. degree in computer science (1991),
both from the Technical University of Karlsruhe,
and the Habilitation degree in computer science
(1998) from the University of Hamburg, Ger-
many. He held positions from 1987 to 1992 as a
researcher at the Fraunhofer Institute for In-
formation and Data Processing (IITB), Karls-
ruhe, and from 1992 to 1998 as a researcher

and assistant professor within the Cognitive Systems Group at the
University of Hamburg. During 1996, he was a visiting researcher at the
Computer Vision and Active Perception Laboratory at KTH (Stockholm,
Sweden). Since 1999, he has been with the Department of Mathematics
and Computer Science at the University of Mannheim, where he set up
and is the head of the Computer Vision, Graphics, and Pattern
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