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Abstract

This master’s thesis presents a robust, dense visual odometry method applicable to the
stabilization of quadrocopters. In contrast to previous approaches using only sparse visual
feature points in the image, the motion of the camera is estimated by aligning consecutive
images based on the photo-consistency assumption using all image information. A novel
RGB-D camera providing color and depth information is used. Robustness is achieved
by embedding the motion estimation in a Bayesian framework. The involved probability
distributions are modeled based on empirical data. In extensive experiments on synthetic
and real datasets the superior performance in terms of accuracy and speed in comparison
to previous implementations is validated. Furthermore, experiments on a quadrocopter
demonstrate the suitability of the approach for stable motion estimation in realtime control
loops.
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1. Introduction

In recent years unmanned aerial vehicles (UAVs) have increasingly been used in several
application areas like surveillance, mapping, disaster monitoring, industrial inspection
and aerial photography.

Quadrocopters are one kind of UAVs, which are capable of flying at low speed and to
hover. Additionally they offer high manoeuvrability making them ideally suited for flying
in space restricted environments like buildings. Recent examples of UAVs being deployed
to inspect damaged buildings are the following: A quadrocopter with cameras is used to
explore a damaged church in northern Italy [1]. Figure 1.1 shows the quadrocopter during
flight in the church. Similarly, a consumer grade Parrot AR.Drone has been deployed to in-
spect a cathedral in New Zealand, which was damaged during an earthquake [20]. A third
example is the inspection of the destroyed nuclear reactors in Fukushima, Japan by an UAV
[18]. In all these examples the quadrocopters have been remotely controlled by human pi-
lots. Remote control requires a stable connection to transmit the control commands and
the video streams from on-board cameras. Alternatively to video streams, the operator has
to maintain a line of sight to the quadrocopter. These requirements limit the applicability
of such systems. Therefore, quadrocopters which autonomously hold position and avoid
obstacles providing shared autonomy to the pilot would be a great enhancement. Then,
the pilots main task is to select new positions to get the best possible view of the situation.

Autonomous quadrocopters are challenging technical systems, because they are inher-
ently unstable due to the fact that they are only flying with the lift created by their rotors.
For stable flight quadrocopters require controllers running at high update rates adapting
the speed of the different rotors to hold position or fly at a given speed. The need for fast
controllers imposes the requirement to run most of the related computations on-board. In
contrast, due to their size and payload restrictions only a limited amount of computational
resources can be carried on-board.

For precise control a measurement of the position relative to a fixed coordinate system is
required. In outdoor applications the Global Positioning System (GPS) or similar satellite-

Figure 1.1.: Quadrocopter with RGB-D camera inspecting a church damaged during an
earthquake (left). The quadrocopter is entirely controlled by human operators (right). [2].
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1. Introduction

based systems can be used. When flying in buildings or other GPS-denied areas different
sensors have to be used for position estimation.

In case the robot carries all the sensors used for this position estimation, it is called
odometry. One possible type of sensor are cameras. The ego motion can be estimated
from the camera image stream. This odometry method is named visual odometry. Sev-
eral systems exist either using monocular or stereo cameras. The problem simplifies with
a stereo camera, because the absolute depth of the scene is known. The standard ap-
proaches reduce the amount of data to process by extracting feature points from the im-
ages. Afterwards, the motion is estimated from feature correspondences between two or
more images. Those approaches are called sparse visual odometry. Recently, with the ad-
vent of more powerful computing resources, several dense visual odometry methods have
been proposed. Another enabling technology are novel commodity stereo cameras pro-
viding accurate color and depth information at relatively high resolutions. The cameras
are known as RGB-D cameras. The dense methods have the advantage that they are more
accurate and that the processing pipeline is simpler. While sparse visual odometry meth-
ods have already been used to stabilize and control quadrocopter, this has not been done
using dense approaches.

1.1. Research Question

The main research question assessed in this master’s thesis is, whether it is possible to im-
plement a dense visual odometry approach using images from RGB-D cameras to stabilize
and control the position of a quadrocopter. The main challenge is to make the method
robust enough to be used in real world environments, i.e. provide accurate estimates over
a long time. A second requirement is to optimize the method so it can run in realtime
on-board a quadrocopter.

1.2. Outline

Chapter 2 introduces the hardware platform and basic theoretical concepts used in this the-
sis. In particular, the employed quadrocopter platform and RGB-D camera are described.
Furthermore, the models for the image formation process in the camera and for the motion
representation are detailed. The chapter closes with an introduction to the least squares
technique used for parameter estimation. The following chapter 3 gives an overview of
existing sparse and dense visual odometry systems and their limitations. Chapter 4 de-
scribes the approach developed in this thesis. Afterwards, chapter 5 presents the results of
an extensive set of experiments assessing the performance on different datasets and during
flight on the quadrocopter. A third group of experiments is carried out to determine the
influence of different parameters and their optimal values. Finally, chapter 6 summarizes
the achievements and provides an outlook on possible extensions and future research.
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2. Background

This chapter introduces the main hardware components. Further, the theoretic concepts
applied in this thesis are explained.

2.1. Quadrocopter

A small, unmanned quadrocopter is the main hardware platform used in the course of
this thesis. Quadrocopters are an emerging platform used for example for surveillance,
inspection, mapping and aerial photography. This section introduces the basic concepts of
quadrocopters and describes the employed Ascending Technologies Pelican quadrocopter
in detail.

2.1.1. General

Quadrocopter are rotary wing aircraft with four rotors [59]. The speed of the rotors solely
controls the lift and attitude. This is in contrast to helicopters, which change the config-
uration of the blades of the main rotor through a mechanical construction. Therefore, a
quadrocopter has less moving parts, which simplifies its construction and maintenance.
In contrast, the precise control of the rotation speed of the rotors, c.q. stabilization is more
difficult. As all rotor aircraft quadrocopter can take off vertically, hover and fly at low
speeds.

Figure 2.1 depicts the setup of the rotors and a convenient option to choose the local
coordinate system, albeit the coordinate frame can be attached arbitrarily. Two opposite
rotors form a pair rotating in the same direction. The other pair rotates in the opposing
direction. To change height the speed of all four rotors is increased simultaneously or
decreased. Rotation around the x axis (roll) is achieved by reducing the speed of the left
rotor and increasing the speed of the right one, or vice versa. Similarly, different rotation
speeds of the front and rear rotor cause a rotation around the y axis (pitch). Differences in
the speed of the rotor pairs cause a rotation around the z axis (yaw).

2.1.2. Ascending Technologies Pelican

The Ascending Technologies (AscTec) Pelican is a medium sized quadrocopter with a
width and length of 72 cm and a height of 26 cm. Therefore, it is still small enough to
fly in indoor environments, but is able to carry a payload of 650 g [17]. Figure 2.2 shows a
side-view with all payload, which is required for the approach and experiments, mounted.
The Pelican is equipped with two processor boards, an inertial measurement unit (IMU),
a monocular grayscale camera, and an ASUS Xtion PRO LIVE RGB-D camera (see section
2.2).

3



2. Background

x

y

z

Figure 2.1.: Rotor setup of a quadrocopter and exemplary coordinate system. Two rotors
form a pair rotating in the same direction. The other pair rotates in the opposite direction.
By adjusting the rotation speed of the rotors the quadrocopter can change height, rotate
around the x axis (roll), y axis (pitch), and z axis (yaw).
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2. Background

Figure 2.2.: AscTec Pelican quadrocopter with payload: the Autopilot Board, the Master-
mind Board, a monocular grayscale camera and an ASUS Xtion PRO LIVE RGB-D camera.

The upper processor board is the AutoPilot Board. It has two ARM based processors, the
so called HighLevel (HLP) and LowLevel processor (LLP). The LowLevel processor is a
closed system and runs basic data fusion and control algorithms. The HighLevel processor
is freely programmable. The lower processor board is the Mastermind. It is an embedded
x86 PC based on an Intel Core2Duo processor with 1.86 GHz and 4 GB RAM. The operating
system is a standard Ubuntu Linux distribution. A serial connection connects both boards
for communication and data exchange.

The inertial measurement unit comprises a three axes gyroscope and accelerometer mea-
suring the angular velocities and linear accelerations. The monocular grayscale camera is
looking upwards and is used to track augmented reality markers at the ceiling to obtain
an accurate, absolute position estimate for comparison and evaluation purposes.

For the control of the Pelican quadrocopter and on-board data fusion of multiple sensors
the driver framework provided by Weiss et al. [55] is used. The data fusion is based on an
extended Kalman filter (EKF), which estimates the full 6 degrees of freedom pose of the
quadrocopter, several other parameters such as gyroscope and accelerometer bias, inter
sensor pose, and scale.

The filtering framework consists of two main parts. One is the position control and
EKF prediction loop running at 1 kHz on the HighLevel processor. The EKF prediction
step integrates the IMU measurements. The second part of the framework runs on the
Mastermind board. It implements the EKF correction step and provides the integration
with the Robot Operating System (ROS) middleware. The EKF correction step corrects the
integrated IMU measurements with more precise external pose or position measurements,
however, only available at low rates (< 100 Hz). Such pose measurements can be obtained
from visual odometry or a tracking system. The fused information is used to stabilize the
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2. Background

quadrocopter in the air at a given position. The position of the Pelican can be changed by
commanding velocities or absolute positions.

2.2. RGB-D Cameras

RGB-D cameras refer to digital cameras providing color (RGB) and depth (D) information
for every pixel in the image. The depth information is obtained by different stereo vision
techniques.

2.2.1. General

An RGB-D camera comprises a digital camera taking color images and additional devices
measuring the depth of the scene. The color images are typically encoded in the RGB color
space, hence the name. For depth measurement different technologies are available. These
can be categorized as active or passive.

Stereo cameras are passive depth sensors. They consist of two RGB cameras with a
known transformation between each other. Correspondences between individual image
points are computed for each image pair. Using the different positions of a point in the
two images and the transformation between the cameras the depth of the point can be
computed [46].

Active technologies not only observe light reflected or emitted by the scene, but also emit
light into the scene. Therefore, they also work in environments with little or no external
light. Common active depth measuring devices providing a two-dimensional depth map
per measurement are based on either time of flight or a projective stereo approach.

Time of flight systems emit pulses of light and measure the time between emission and
return of the reflected light. Taking into account the speed of light, the distance of a point
to the sensor can be calculated [46].

Projective stereo based sensors operate similar to stereo cameras. However, instead of
a second camera, a projector is used. It projects a known pattern of points into the scene.
The pattern is observed by the camera and correspondences between the observed points
and the points of the pattern are computed. From the position of corresponding points
in the camera image and pattern, and using the known transformation between projector
and camera, the depth of every scene point can be estimated.

Active depth sensors often emit infrared (IR) light so it is not visible to humans. This
can lead to missing measurements in outdoor environments, because the sun is a major
source of infrared light blooming the projected pattern.

Lately, RGB-D cameras based on the projective stereo technology developed by Prime-
Sense, like the Microsoft Kinect and the ASUS Xtion PRO LIVE , have been used for visual
odometry on a quadrocopter [24], 3D reconstruction [40] and handheld SLAM [12]. They
are cheap, have low power consumption, and are light-weight compared to other stereo or
time of flight cameras. Another advantage is, that they perform the depth computation on
the camera.

These sensors have two cameras and a projector. Figure 2.3 depicts the ASUS Xtion PRO
LIVE showing the setup of the components. One of the cameras gathers the RGB images.

6



2. Background

1 2 3

Figure 2.3.: ASUS Xtion PRO LIVE camera: À IR projector Á RGB camera Â IR camera
[26]

Figure 2.4.: RGB image, registered depth image and IR image of a scene obtained with an
ASUS Xtion PRO LIVE .

The other one is an infrared camera observing the infrared light pattern emitted by the
projector.

Figure 2.4 shows examples of an RGB image, a depth image and an IR image with the
projected pattern. In the depth image brighter pixels indicate points further away, darker
pixels points closer to the camera. Black pixels indicate missing depth values. These in-
valid pixels occur if no depth can be determined, e.g. the infrared pattern is not visible on
reflective surfaces.

2.2.2. ASUS Xtion PRO LIVE

The ASUS Xtion PRO LIVE (see figure 2.3) is based on the projective stereo technology
developed by PrimeSense. It provides RGB and depth images with VGA resolution (640×
480 pixels) at a rate of 30 frames per second. A higher frame rate of 60 frames per second
can be obtained by reducing the resolution to QVGA (320× 240 pixels) [26].

The depth values are encoded as 16 bit unsigned integer values representing the depth
in millimeters. According to the specification [26] the depth values range from 0.8 m to
3.5 m. In experiments measurements in the range of 0.7 m up to 9.5 m have been obtained.
A detailed discussion of the data accuracy and calibration of PrimeSense RGB-D cameras,
in particular the Kinect, is given in [29].

Compared to the Microsoft Kinect the ASUS Xtion PRO LIVE has the following advan-
tages. The RGB and depth images are time synchronized and can be registered to each
other on-board the camera. Furthermore, the camera has only a weight of ~150 g (Mi-
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Figure 2.5.: Pinhole camera model [22].

crosoft Kinect ~440 g) and only needs the USB connection as power supply.
Depth registration causes invalid pixels at the border of the depth image (cf. figure 2.4),

because the depth image has to be transformed into the viewpoint of the RGB camera to
associate every color pixel with a depth pixel.

2.3. Camera Model

The camera model describes the mapping of points in the three-dimensional world to the
two-dimensional image created by the camera [22]. This mapping π from 3D coordinates
to 2D coordinates is named projection, and denoted by

π : R3 → R2. (2.1)

In this thesis the simple pinhole camera model, depicted in figure 2.5, is used. It abstracts
the whole camera structure to an infinitely small hole, the pinhole, and an image plane.
The projection described by the model is known as perspective projection. Only light rays
falling through the hole and intersecting with the image plane get projected. The location
of the pinhole is the optical center C of the camera. The distance between optical center
and image plane is the focal length f .

In reality the image plane is located behind the optical center and not in front of it, in the
model this can be neglected without loss of generality. Every 3D point, whose connection
line to the optical center intersects the image plane gets represented in the image. The 3D
coordinates (X,Y, Z) of the point X are related to its 2D image point x with coordinates
(x, y) by the following equations:

π(X,Y, Z)→ (x, y) (2.2)

x =
X · fx
Z

+ ox (2.3)

y =
Y · fy
Z

+ oy (2.4)

Since the pixels on the sensor chip do not have to be quadratic, two different focal
lengths fx and fy are used. They are obtained through different scaling factors sx and
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2. Background

sy in the respective direction, thus fx = sx · f and fy = sy · f . The offsets ox and oy ac-
count for the fact that the optical center C does not coincide with the origin of the image
coordinates.

If the depth Z and the camera parameters are known the 3D point of an image point x
can be reconstructed using the inverse of equation 2.2.

π−1(x, y, Z) 7→ (X,Y, Z) (2.5)

X =
x− ox
fx

Z (2.6)

Y =
y − oy
fy

Z (2.7)

Z = Z (2.8)

The intrinsic parameters (fx, fy, ox, oy) can be obtained by a standard camera calibration
procedure [61]. During calibration further parameters like sensor skew or radial distortion
coefficients are determined. The sensor skew accounts for a sensor not mounted parallel
to the camera lens. The radial distortion coefficients model the distortion of the image due
to the lens. Before the camera images are processed by the presented algorithms, these
effects are removed. Therefore, the pinhole camera model holds.

2.4. Rigid Body Motion

This section covers the properties and representation of the motion of rigid bodies in three-
dimensional space. The motion of a rigid body in three-dimensional Euclidean space pre-
serves the distance and orientation between any pair of points on the object.

More formally a rigid body motion is a map g

g : R3 → R3; x 7→ g(x) (2.9)

preserving the distance and the orientation between two points p and q

‖p− q‖ = ‖g(p)− g(q)‖ ∀ p, q ∈ R3, (2.10)

g(p)× g(q) = g(p× q) ∀ p, q ∈ R3. (2.11)

Such a map is called a special Euclidean transformation. The collection of all these trans-
formations in three-dimensional Euclidean space forms the special Euclidean group SE(3).

The properties of distance and orientation preservation can be used to represent the
motion of a rigid body in a compact way. The transformation of one point having an
attached coordinate frame is sufficient to specify the motion of the whole object.

This transformation is always with respect to some reference coordinate frame and can
be decomposed into a rotational and a translational part. The rotation changes the orien-
tation of the object coordinate frame and the translation moves it in space. A rigid body
motion has six degrees of freedom in total, three degrees for rotation and three degrees for
translation.

For the rotational part of a transformation various representations exist [10]. A very
common representation is a 3 × 3 orthogonal matrix R, the rotation matrix. All rotation

9



2. Background

matrices belong to the special orientation group SO(3). Other frequently used representa-
tions are quaternions, and a combination of a rotation angle and axis. The translation is
represented as vector t ∈ R3. The components of t specify the translation along the x, y
and z axis. A rigid body motion g is a combination of a rotation matrix from SO(3) and a
translation vector from R3. It can be expressed as a 4× 4 matrix G

G =

[
R t
0 1

]
(2.12)

its inverse being

G−1 =

[
RT −RT t
0 1

]
. (2.13)

The transformation of a point p with homogenous coordinates (x, y, z, 1)T using g can be
expressed as matrix multiplication

g(p) = g(G,p) = G · p =


r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1



x
y
z
1

 (2.14)

i.e. with p′ = g(p) = (x′, y′, z′, 1)T

x′ = r11x+ r12y + r13z + tx,

y′ = r21x+ r22y + r23z + ty, (2.15)
z′ = r31x+ r32y + r33z + tz.

Multiple rigid body motions can be chained using the matrix representation and by
left multiplying consecutive transformations. The identity transformation, meaning no
motion, is given by R = I and t = 0, i.e. g identity(p) = p.

The translation representation as vector t is canonical, because the three components of
the vector are equal to the degrees of freedom. In contrast, the representation of a rotation
as matrix is not canonical. It has nine parameters but only three degrees of freedom. The
remaining parameters are constrained due to the orthogonality requirement of the matrix
and the restriction to a norm equal to one for all row and column vectors. This imposes six
constraints leaving only three free parameters.

A minimal representation for a rigid body motion g can be obtained by using the pa-
rameters of its associated Lie algebra se(3). Such a minimal representation is useful when
determining the parameters through a numerical optimization algorithm. Every trans-
formation matrix in the Lie group SE(3) describing a rigid body motion has a represen-
tation in its associated Lie algebra with a 6 × 1 parameter vector ξ = (νT ,ωT )T where
ν = (ν1, ν2, ν3)T is the translational velocity and ω = (ω1, ω2, ω3)T the rotational velocity.

The rigid body motion g can be calculated from its Lie algebra parameters ξ using the
exponential map

exp: se(3)→ SE(3); ξ 7→ g, (2.16)

G(ξ) = eξ̂ (2.17)

10
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where ξ̂ is known as twist and is the following 4× 4 matrix

ξ̂ =

[
[ω]× ν
0 0

]
=


0 −ω3 ω2 ν1

ω3 0 −ω1 ν2

−ω2 ω1 0 ν3

0 0 0 0

 . (2.18)

The operator [x]× creates a 3× 3 skew symmetric matrix from a 3× 1 vector x = (x, y, z)T ,
i.e.

[x]× =

 0 −z y
z 0 −x
−y x 0

 . (2.19)

The matrix exponential eξ̂ has a closed form solution [38, 49]

eξ̂ =

[
e[ω]× V ν
0 1

]
=

[
R t
0 1

]
(2.20)

where e[ω]× is computed using Rodrigues’ formula

e[ω]× = I +
sin(‖ω‖)
‖ω‖

[ω]× +
1− cos(‖ω‖)
‖ω‖2

[ω]2× (2.21)

and V is

V = I +
1− cos(‖ω‖)
‖ω‖2

[ω]× +
‖ω‖ − sin(‖ω‖)

‖ω‖3
[ω]2×. (2.22)

The inverse to the exponential map is called the logarithm map

log : SE(3)→ se(3); g 7→ ξ, (2.23)

ξ = log(G). (2.24)

The identity transformation is obtained for ξ = 0.

2.5. Least Squares

Least squares is a common technique to estimate parameters of a model from noisy obser-
vations. The following sections describe the general idea and formulas, how these can be
derived from a probabilistic point of view and the extension to the weighted least squares
method.

2.5.1. General

Least squares fits a model f(x,θ) with a fixed set of parameters θ (θ0, θ1, . . . , θm−1)T for all
x (x0, x1, . . . , xn−1)T to observations f̂ (f̂0, f̂1, . . . , f̂n−1)T by minimizing the squared error
between the observations and the model. The error is not guaranteed to be zero, because
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the observations typically do not exactly fit the model due to noise or a simplified model.
This can be formalized as

ELS(θ) = (f̂ − f(x,θ))T (f̂ − f(x,θ)) =
n∑
i

(f̂i − f(xi,θ))2 =
n∑
i

(ri(θ))2 (2.25)

where ri(θ) = f̂i − f(xi,θ) is the ith residual. The best parameters θLS are obtained by
solving

θLS = arg min
θ

ELS(θ). (2.26)

The minimum is found by calculating the partial derivatives ofELS and setting them equal
to zero.

∂ELS(θ)

∂θ
=

n∑
i

∂ri(θ)

∂θ
2ri(θ) = 0 (2.27)

There have to be at least as many observations as unknowns in θ to find a solution. In
practice, there are much more observations than unknowns leading to an overconstrained
equation system.

In the special case where f(xi,θ) is linear in the parameters θ, i.e. flin(xi,θ) = A(xi)
Tθ,

solving equation 2.26 is called linear least squares. A(xi) is an arbitrary function of xi
of dimension m. The solution for linear least squares can be obtained in closed form.
Plugging flin(xi,θ) into equation 2.27 leads to

n∑
i

A(xi)
T
(
f̂i −A(xi)θ

)
= 0. (2.28)

This equation can be rearranged to

n∑
i

A(xi)
TA(xi)θ =

n∑
i

A(xi)
T f̂i (2.29)

and rewritten in matrix notation

A(x)TA(x)θ = A(x)f̂ . (2.30)

The parameter vector θ is the solution to these normal equations.
For models f(xi,θ) with non-linear dependence on θ the technique is called non-linear

least squares. To obtain a linear dependence on the parameters θ, ri(θ) has to be linearized
using a first order Taylor expansion at a point αwhere θ = α. The linearized residual is

rlin,i(θ)
∣∣
θ=α

= ri(α) +
∂ri(θ)

∂θ

∣∣∣∣
θ=α

(θ −α) = ri(α) + Ji(α)(θ −α), (2.31)

its derivative is
∂rlin,i(θ)

∂θ

∣∣∣∣
θ=α

= Ji(α). (2.32)

Because equation 2.31 is only an approximation of ri(θ) at θ = α the solution has to be
obtained iteratively. In each iteration k an increment ∆θ to the solution is computed. The

12
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solution at a certain iteration k + 1 is given as θk+1 = θk + ∆θ. At every iteration the
residual is re-linearized around the last solution

rlin,i(θk+1)
∣∣
θ=θk

= ri(θk) + Ji(θk)(θk+1 − θk) = ri(θk) + Ji(θk)∆θ. (2.33)

The increments are calculated by plugging equation 2.33 and equation 2.32 with α = θk
into equation 2.27 and solving the resulting equation system

n∑
i

Ji(θk)
T 2
(
ri(θk) + Ji(θk)∆θ

)
= 0, (2.34)

n∑
i

Ji(θk)
TJi(θk)∆θ = −

n∑
i

Ji(θk)
T ri(θk). (2.35)

Putting this into matrix notation the normal equations (cf. equation 2.30) of non-linear least
squares are obtained

J(θk)
TJ(θk)∆θ = −J(θk)

Tr(θk) (2.36)

where J(θk) is the n×m Jacobian matrix with the Ji(θk) as row vectors. The optimization
technique of iteratively solving the normal equations for increments and re-linearizing the
error at the new estimate is known as Gauss-Newton method. It takes advantage of the
squared error term. Therefore, only first order approximations to the residuals ri(θ) are
required. The product of the transposed Jacobian with itself (JTJ) is, in fact, an approxi-
mation to the matrix of second order derivatives (Hessian matrix).

The Gauss-Newton algorithm only converges to the closest local minimum or might
even diverge. The initial parameter estimate θ0 should therefore be close to the true so-
lution. There are extensions to the algorithm, like the Levenberg-Marquardt algorithm,
improving the performance. Throughout this thesis only Gauss-Newton optimization is
used.

2.5.2. Bayesian Derivation

From a Bayesian perspective the least squares approach can be derived by maximizing the
a posteriori probability of the parameters θ given the observations f̂

θMAP = arg max
θ

p(θ | f̂). (2.37)

After applying Bayes’ rule this becomes

θMAP = arg max
θ

p(f̂ | θ)p(θ)

p(f̂)
. (2.38)

p(f̂) can be neglected, because it does not depend on θ. Assuming a uniform distribu-
tion for p(θ), i.e. meaning all possible parameter vectors are equally likely, equation 2.38
simplifies to

θMAP = arg max
θ

p(f̂ | θ). (2.39)

13
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Further assuming that all observations are independent and identically distributed (iid.)
equation 2.39 can be written as

θMAP = arg max
θ

n∏
i

p(f̂i | θ). (2.40)

Instead of maximizing the likelihood the negative log-likelihood is minimized, because it
simplifies calculation if an exponential term is present,

θMAP = arg min
θ

n∑
i

− log(p(f̂i | θ)). (2.41)

In case p(f̂i | θ) is normal distributed N (f̂i, µ, σ) with mean µ = f(xi,θ) and standard
deviation σ equation 2.41 reduces to

θMAP = arg min
θ

n∑
i

1

2σ2

(
f̂i − f(xi,θ)

)2
= arg min

θ

n∑
i

1

2σ2

(
ri(θ)

)2
, (2.42)

being equivalent to equation 2.26, because the constant scale factor 1
2σ2 can be dropped.

The same formulation can be obtained by using p(ri | θ) = N (ri(θ), 0, σ) instead of p(f̂i |
θ) = N (f̂i, f(xi,θ), σ).

In equation 2.38 prior knowledge about the parameters θ can be incorporated with the
distribution p(θ). If p(θ) = N (θ,θprior, σprior) equation 2.42 turns into

θMAP = arg min
θ

(
n∑
i

1

2σ2

(
ri(θ)

)2
)

+
1

2σ2
prior

(
θ − θprior

)2
. (2.43)

The extended normal equations (cf. equation 2.36) with prior on the parameters are(
J(θk)

TJ(θk) + λI
)

∆θ = −J(θk)
Tr(θk) + λ(θprior − θk) (2.44)

where λ = 1/σ2
prior is a hyper-parameter controlling how close the solution will be to the

prior. If the least squares problem is solved iteratively, estimates from previous iterations
have to be subtracted from the prior.

2.5.3. Weighted Least Squares

The standard least squares formulation introduced so far has one drawback: Large val-
ues in r(θ) heavily influence the parameter estimates, because of the quadratic term in
equation 2.25. Often, these residuals are outliers caused by observations which cannot be
explained by the model. To address this problem the quadratic term x2 is replaced with a
robust error function ρ(x)

θWLS = arg min
θ

EWLS(θ) = arg min
θ

n∑
i

ρ(ri(θ)). (2.45)

14



2. Background

Comparing equation 2.45 to equation 2.41 yields that ρ(x) should be the negative loga-
rithm of the error probability distribution. In the robust statistics literature various robust
error functions ρ(x) have been proposed [25].

The minimum of equation 2.45 is found by deriving it with respect to θ and setting the
derivative equal to zero

∂EWLS(θ)

∂θ
=

n∑
i

∂ri(θ)

∂θ
ψ(ri(θ)) = 0 (2.46)

where ψ(x) is the derivative of the robust error function known as influence function.
Using the following alternative formulation with ω(x)x = ψ(x)

x x

∂EWLS(θ)

∂θ
=

n∑
i

∂ri(θ)

∂θ
ω(ri(θ))ri(θ) = 0 (2.47)

it becomes apparent that equation 2.46 is also the minimizer of the iteratively re-weighted
least squares (IRLS) formulation [52]

EIRLS(θ) =

n∑
i

ω(ri(θ))
(
ri(θ)

)2
. (2.48)

Comparing equation 2.47 to equation 2.27 it is obvious that each weight ωi = ω(ri(θ))
is just a scaling factor for the corresponding residual ri(θ). Therefore, the weights can be
incorporated into the normal equations (cf. equation 2.36) using a diagonal n × n matrix
W with the diagonal elements wii = ωi

J(θk)
TWJ(θk)∆θ = −J(θk)

TWr(θk). (2.49)

The computation of weights and new parameter estimates is repeated until convergence.
In case p(ri | θ) = N (ri(θ), 0, σ) the robust error function ρ(x) = 1

2(xσ )2, its influence
function ψ(x) = x

σ2 , and the weight function ω(x) = 1
σ2 . When the distribution p(ri | θ)

has a scale parameter σ, which cannot be factored out of the weight function (in contrast
to the normal distributed case), it has to be estimated as well. One problem is that the
outliers also influence the scale estimate. Therefore, robust methods have to be used for
the estimation of σ [25].

A common robust estimator for the scale is the Median Absolute Deviation (MAD). It is
defined as:

σMAD(x) = c ·median(|x−median(x)|) (2.50)

where c = 1.4826 is a scaling factor. In case the elements in x are drawn from a normal
distribution, but also contain outliers, this scaling factor makes σMAD an approximation of
the standard deviation of the distribution.
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Visual odometry refers to odometry using measurements from optical devices. Odome-
try is the estimation of the motion of a moving sensor from its data. It can be used for
robot control and localization, when no external reference systems are available. In visual
odometry the camera motion is estimated from the images gathered by the camera.

Camera motion estimation is a widely studied field and has various application areas.
The variety of approaches can be split in two major categories sparse and dense visual
odometry. Sparse visual odometry refers to approaches only using a part of the avail-
able image data, e.g. small patches at certain points in the image. Dense visual odometry
in contrast uses the whole image data. Dense approaches became feasible in recent years
with the advent of faster computational resources. Especially general-purpose comput-
ing on graphics processing units (GPGPU) allowing parallel processing of large datasets
enabled many algorithms to run at high frame rates.

The following sections give an overview of state of the art sparse and dense visual odom-
etry approaches.

3.1. Sparse Visual Odometry

Sparse visual odometry approaches have successfully been used to control a variety of
robots, such as ground vehicles [42, 32] and more recently quadrocopters [24, 11, 56]. En-
gel et al. [11] and Weiss et al. [56] use the Parallel Tracking and Mapping (PTAM) system
[31]. Huang et al. [24] use a similar system, but assess different options for each compo-
nent of the processing pipeline and choose the best based on the trade-off between accu-
racy and runtime. All have in common that the visual odometry estimates are fused with
measurements from the IMU mounted on the quadrocopter.

The typical pipeline in a sparse visual odometry system is the following: First, feature
points are extracted from the new image using detectors like FAST [43] or Harris [21]. Af-
terwards, correspondences between the new features and features from the previous frame
are established. This can be done by comparing small patches around the feature points.
A match is assumed if the error between two patches is minimal. Instead of patches fea-
ture descriptors like SIFT [35] or SURF [4] can be used. These descriptors are computed
from the surrounding pixels of a feature point and represented as vectors. While being
more robust to mismatches than image patches, these descriptors are more expensive to
compute. Finally, the transformation between two images is computed by minimizing the
reprojection error between every pair of matched feature points. Various sophisticated
techniques can be implemented to ensure correct feature association and improving the
accuracy of the motion estimate. Besides a detailed overview of the visual odometry re-
search in the past decades Fraundorfer and Scaramuzza [45, 13] provide a discussion of
the various feature extractors and descriptors, and matching techniques for sparse visual
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odometry.
To estimate the rigid body motion of the camera the depth of the points has to be known,

otherwise it is only possible to estimate a homography aligning the images. In case only
a monocular camera is used, like in PTAM, at the beginning a stereo initialization has to
be performed giving the depth for the first feature points. The depth of new points can
subsequently be calculated by triangulation, when the camera motion is estimated from
points with already known depth. Still the depth of the points cannot be determined in
metric values, but just up to a scale factor. Engel et al. [11] and Weiss et al. [56] use the
measurements from the IMU and an extended Kalman filter to simultaneously estimate
the unknown scale. Using RGB-D cameras (as in [24]) the absolute depth is known, and
the problem is simplified.

As complementary steps the detected features and camera poses can be integrated into
a global map. Using global optimization techniques the map and the camera trajectory
can be further tuned to obtain position estimates with higher precision and compensate
the drift over time. These approaches are named simultaneous localization and mapping
(SLAM).

3.2. Dense Visual Odometry

Dense visual odometry approaches, in contrast to sparse approaches, use the whole image
data. They estimate the camera motion by aligning consecutive images through minimiza-
tion of an error metric.

One of the first dense visual odometry methods was proposed by Comport et al. based
on stereo image pairs [8]. Steinbrücker et al. [47] and Tykkälä et al. [54] recently proposed
similar dense methods using the data from RGB-D cameras. All three approaches mini-
mize the photometrical error between two images. This can be seen as extension of the
2D Lucas-Kanade image alignment algorithm [37] to 3D. In their article series Baker and
Matthews [3] discuss various optimizations and extensions to the Lucas-Kanade algorithm
in detail.

Alternatively, the geometrical error between 3D surfaces can be minimized instead of
the photometrical error between images. These are so called iterative closest points (ICP)
algorithms. Various variants exist [44]. One drawback is that they require structured 3D
surfaces. Another disadvantage is that they involve a computationally expensive nearest
neighbor search to create point correspondences. For small displacements this can be over-
come using the projective lookup algorithm [7]. If the 3D surfaces are represented as 2D
depth maps, the correspondence for one point in a second depth map is found by apply-
ing the rigid body motion and projecting it to 2D coordinates. These coordinates allow to
simply look up the correspondence in the depth map by computing the memory address.

For speedup Henry et al. [23] extract features from the color images and perform ICP
on the feature points and their corresponding 3D points computed from the depth map.
Stückler et al. [50] transform every RGB-D image into a surfel octree where every node
contains a Gaussian distribution modeling the color and point distribution. Feature de-
scriptors are computed for all octree nodes. The alignment is done by establishing point
correspondences between the features in two octrees and afterwards applying ICP. The
octree representation naturally supports a coarse to fine alignment scheme over multiple
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Figure 3.1.: The photo-consistency assumption: a point p is present in two images I1 and
I2. The point is projected to the pixel x in I1. Given the rigid body motion of the camera
ξ the warping function w(x) computes the pixel coordinates in I2. The intensity values
should be the same given the correct ξ, i.e. I1(x)− I2(w(x)) = 0.

resolutions. These approaches are similar to the described sparse approaches (cf. 3.1).
In general, all odometry methods that accumulate the motion estimates between con-

secutive frames suffer from long-term drift [27]. Therefore, KinectFusion [40] and Dense
Tracking and Mapping (DTAM) [41] build, parallel to tracking the camera, a global model
of the environment. The camera is tracked by registering the current image to synthe-
sized views generated from the model. Each new frame is incorporated into the model.
In DTAM only a monocular camera is used and the model is required to estimate the 3D
structure of the scene [41]. While KinectFusion [40] employs a variant of the ICP algorithm
to align surfaces obtained from a RGB-D camera to the model, DTAM [41] utilise a pho-
tometrical error similar to Steinbrücker et al. Realtime performance of these model based
approaches is achieved through general-purpose computing on GPUs.

So far, none of the dense approaches has been applied on a quadrocopter for stabilization
and position control. In this thesis an approach build upon the recent work of Steinbrücker
et al. and Tykkälä et al. utilizing the data from an RGB-D sensor is employed for the control
of a quadrocopter, because it is:

• highly accurate compared to sparse, feature-based and ICP-based methods,

• much simpler than feature-based approaches involving many intermediary steps
and fine tuning,

• fast to compute on a CPU and therefore suited for the limited computational re-
sources available on a quadrocopter in contrast to model based approaches.

The general idea behind these approaches is that a point on a 3D surface observed
by multiple cameras has the same intensity in all images, which is the so called photo-
consistency assumption. In case the rigid body motion between the cameras is known,
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(a) first image I1 (b) second image I2

(c) residuals before warping I2 (d) residuals after warping I2

Figure 3.2.: Two consecutive RGB images (a, b) and the photometrical error between them
before warping the second image I2 towards I1 (c) and after warping it with the correct
transformation (d).

the image of a point in one camera can be transformed into the image from the point of
view of another camera. The error between the two images of point p should be zero. This
idea is illustrated in figure 3.1. In practice the error over all image points will not be zero,
because of occlusions, dynamic objects, illumination changes, and sensor noise. Never-
theless, the correct rigid body motion should lead to the lowest overall error. Figure 3.2
shows two consecutive images and two error images. The first error image (see figure 3.2c)
is calculated without warping the second image. The second error image (see figure 3.2d)
has been computed after warping the second image with the correct transformation. The
transformation has been obtained from a precise external tracking system.

Using this principle the unknown rigid body motion between two known camera im-
ages can be found as the one minimizing the error between the images. As preliminary
experiments showed the approach of Steinbrücker et al. has some limitations:

• wrong estimates when dynamic objects, like persons, move through the scene,

• occasional jumps in the estimated trajectory,

• execution speed still not sufficient for application on quadrocopters.

In this thesis, these limitations are overcome by employing methods from robust and
Bayesian statistics [25, 15]. Further, an effective minimization scheme and the use of SIMD
instructions accelerate the implementation.
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3.3. RGB-D Benchmark

The RGB-D benchmark developed by Sturm et al. [51] provides a method to evaluate al-
gorithms utilizing RGB-D images, e.g. visual odometry, SLAM, or 3D reconstruction ap-
proaches. The benchmark consists of several RGB-D image sequences. One set of se-
quences contains ground truth data of the camera motion obtained by a precise external
tracking system. A second set intended for validation has no publicly available ground
truth data. The sequences are grouped into different categories corresponding to differ-
ent application scenarios, e.g. SLAM from a handheld camera or a wheeled robot, object
reconstruction, and robustness against dynamic objects.

Additionally, the RGB-D benchmark contains different tools to compute quality metrics
for an estimated trajectory in comparison to the ground truth. These metrics are the ab-
solute trajectory error and the relative pose error. The absolute trajectory error measures
the distance between the true and the estimated endpoint. This is useful to evaluate the
performance of SLAM algorithms. The relative pose error computes the translational or
rotational drift of the estimate with respect to the ground truth over a certain temporal
distance, i.e. the drift per frame or the drift per second. This metric is suitable for the eval-
uation of the performance of visual odometry approaches. For each metric the Root Mean
Square Error (RMSE), mean, median, standard deviation, minimum, and maximum value
can be computed. A drawback of these diverse options is that no standard metric has been
established yet, i.e. different authors measure the median drift per frame and others the
RMSE drift per second.

Using the RGB-D benchmark for evaluation has the advantage that it facilitates the ob-
jective comparison of different approaches. The large number of datasets with varying
scene content ensures a good generalization of the tested approach. It also frees authors
from the tedious task of recording real world datasets with ground truth.
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4.1. Overview

The approach is based on the photo-consistency assumption between images captured
by the camera. Given the correct motion of the camera between two images they can be
transformed into the same viewpoint and the intensity difference over all pixels is zero
under the Lambertian assumption. In reality the difference, or error, will never be zero,
because of occlusions, dynamic objects, sensor noise and other effects. Still the error is
supposed to be minimal between the images given the correct camera motion.

Applying this principle the unknown camera motion (with parameters ξ∗) can be found
by minimizing the intensity error between two images. This can be formalized as

ξ∗ = arg min
ξ

(I2(w(ξ,x))− I1(x))2 (4.1)

with w(ξ,x) being the warping function defined as

w(ξ,x) = π(g(G(ξ), π−1(x, Z1(x)))). (4.2)

It transforms the reconstructed 3D point of x obtained by π−1(x, Z1(x)) (cf. equation 2.5)
with the rigid body motion G(ξ). Afterwards, it projects the transformed point (see equa-
tion 2.2) onto the image plane of the second camera, again.

Equation 4.1 can be solved using the least squares approach (see section 2.5), because it
has the form of equation 2.26 with θ = ξ and ELS(ξ) = (I2(w(ξ,x))− I1(x))2, i.e.

ξ∗ = ξLS = arg min
ξ

ELS(ξ) = arg min
ξ

(I2(w(ξ,x))− I1(x))2. (4.3)

This is a non-linear least squares problem, because w(ξ,x) is non-linear. Nevertheless,
the error function often has a distinct global minimum as shown by the plots of the error
in figure 4.1. The error plots are created by computing the error between I1 (see figure
3.2a) and the warped I2 (see figure 3.2b). For figure 4.1a I2 is warped separately along
the x (red), y (green) and z (blue) axis by varying the corresponding value ν while fixing
the other values in ξ to zero. The translation is in the range of ±5 cm. Similarly, I2 is
warped by separately rotating around the x (red), y (green) and z (blue) axis by changing
the respective ω value for figure 4.1b. The rotation is between ±0.05 rad (±2.9◦).

The error graphs for translation along x and y axis, and respectively rotation around
these axis, are very steep. In contrast the error for transformation with respect to the z axis
is flat.

Figure 4.2 shows the error for translation along the different axis computed at different
resolutions of the two images, ranging from 640× 480 to 80× 60 pixels. At all resolutions
there is only one distinct minimum per error curve and it is at the same position. A notable
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(a) ELS after translation of I2
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(b) ELS after rotation of I2

Figure 4.1.: ELS after I2 is warped by varying the components of ξ corresponding to trans-
lation and rotation around x, y and z axis. Although, the warping function is non-linear
the graphs have distinct minima. The graphs are only convex close to the minima.

difference between the resolutions is, that the area around the minimum flattens out at
lower resolutions. While the optimization is faster at lower resolutions the solution is
more precise at higher resolutions.

4.2. Linearization

The error term in equation 4.3 is not linear which gives rise to a non-linear least squares
problem. As described in section 2.5 such problems can be solved by linearizing them
around a point using Taylor expansion and solving the resulting linear least squares prob-
lem. This is repeated using the latest estimate until it converges to a solution. Figure 4.3
visualizes the different components of the Jacobian computed for linearization. The values
of the Jacobian indicate the change of the error when translating along or rotating around
the respective component of ξ . Baker and Matthews showed that multiple equivalent for-
mulations for the linearization of image alignment problems exist [3]. In the following,
two linearization variants are described to solve equation 4.3.

The first variant re-linearizes around the last estimate at every iteration and is the appli-
cation of the general equations from section 2.5 to equation 4.3. Baker and Matthews name
this the Forward Additive Algorithm [3].

The second variant only requires linearization around one fixed point, typically the iden-
tity. This is achieved by restarting the algorithm after every iteration just updating the input
images with the last estimate. Therefore, only linearization around the initial point is re-
quired. This saves computational cost and simplifies the analytical Jacobians. Baker and
Matthews call this the Forward Compositional Algorithm [3].
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(a) ELS for 640× 480 pixels
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(b) ELS for 320× 240 pixels
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(c) ELS for 160× 120 pixels
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(d) ELS for 80× 60 pixels

Figure 4.2.: The error ELS computed for translations of I2 at different resolutions. The
overall shape and the minima of the graphs are the same on all resolutions. The convex
area grows for lower resolutions.
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(a) Jacobian for ν1 (b) Jacobian for ν2 (c) Jacobian for ν3

(d) Jacobian for ω1 (e) Jacobian for ω2 (f) Jacobian for ω3

Figure 4.3.: Jacobians for the different components of ξ. The values indicate the change of
the error when modifying the respective component. The medium gray ( ) represents 0,
brighter pixels positive values and darker pixels negative values. Black pixels are invalid.

4.2.1. Forward Additive Algorithm

The Forward Additive Algorithm solves the non-linear image alignment problem by itera-
tively computing estimates of the transformation parameters ξ. The parameter increments
∆ξ are concatenated with the previous estimate using ξk+1 = log(exp(ξk) · exp(∆ξ)) =
ξk � ∆ξ. The incrementally solved error function is:

ri(ξk+1) = I2(w(ξk � ∆ξ,xi))− I1(xi). (4.4)

At every iteration the function is re-linearized around the last estimate ξk. Plugging θ = ξ
and α = ξk into the formula of the linearized residual (cf. equation 2.33) results in

rlin,i(ξk+1)
∣∣
ξ=ξk

= ri(ξk) + Ji(ξk)∆ξ. (4.5)

The residual ri(ξk) is given as

ri(ξk) = I2(w(ξk,xi))− I1(xi). (4.6)

The 1 × 6 Jacobian Ji(ξk) contains the partial derivatives of the ith pixel with respect to ξ
evaluated at ξ = ξk. Applying the chain rule, it is calculated from I2(w(ξ,xi)). Therefore,
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it can be decomposed into a product of Jacobians, i.e.

Ji(ξk) = JIJw (4.7)
= JIJπJgJG (4.8)

=
∂I2(x)

∂π

∣∣∣∣
x=π(g(G(ξk),pi))

· ∂π(p)

∂g

∣∣∣∣
p=g(G(ξk),pi)

·

∂g(G,p)

∂G

∣∣∣∣
G=G(ξk), p=pi

· ∂G(ξ)

∂ξ

∣∣∣∣
ξ=ξk

(4.9)

where pi = (x, y, z)T = π−1(xi, Z1(xi)) is the 3D point corresponding to the ith pixel. JI
is the 1 × 2 matrix of the image derivatives in x and y direction. Jπ is the 2 × 3 matrix of
derivatives of the projection function with respect to the point coordinates. Jg is the 3× 12
Jacobian of the rigid body transformation with respect to its twelve parameters. JG is the
12× 6 Jacobian matrix of the exponential map (cf. equation 2.16) with respect to ξ.

The definitions of the four Jacobians are

JI =
∂I2(x)

∂π

∣∣∣∣
x=π(g(G(ξk),pi)

=
(
∇I2,x ∇I2,y

)
, (4.10)

Jπ =
∂π(p)

∂g

∣∣∣∣
p=g(G(ξk),pi)

=

(
fx

1
z′ 0 −fx x

′

z′2

0 fy
1
z′ −fy

y′

z′2

)
, (4.11)

Jg =
∂g(G,p)

∂G

∣∣∣∣
G=G(ξk), p=pi

=

x 0 0 y 0 0 z 0 0 1 0 0
0 x 0 0 y 0 0 z 0 0 1 0
0 0 x 0 0 y 0 0 z 0 0 1

 , (4.12)

JG =
∂G(ξ)

∂ξ

∣∣∣∣
ξ=ξk

=



0 0 0 0 r31 −r21

0 0 0 −r31 0 r11

0 0 0 r21 −r11 0
0 0 0 0 r32 −r22

0 0 0 −r32 0 r12

0 0 0 r22 −r12 0
0 0 0 0 r33 −r23

0 0 0 −r33 0 r13

0 0 0 r23 −r13 0
1 0 0 0 tz −ty
0 1 0 −tz 0 tx
0 0 1 ty −tx 0



(4.13)

where x′, y′, z′ are the transformed 3D coordinates of pi (see equation 2.15). The product
of the Jacobian matrices of the image and the warp function is:

JIJw =
(
∇I2,x ∇I2,y

)(fx 1
z′ 0 −fx x

′

z′2 −fx x
′·y′
z′2 fx(1 + x′2

z′2 ) −fx y
′

z′

0 fy
1
z′ −fy

y′

z′2 −fy(1 + y′2

z′2 ) fy
x′·y′
z′2 fy

x′

z′

)
. (4.14)

The residual ri(ξk) (see equation 4.6) and the Jacobian JI depend on the warped location
in the second image I2 and therefore have to be recomputed at every iteration. As stated in
equation 4.14 the Jacobian Jw changes at every iteration because the point pi reconstructed
from the first depth image Z1 is transformed with the latest estimate ξk.
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4.2.2. Forward Compositional Algorithm

The Forward Compositional Algorithm solves the image alignment problem iteratively, as
well. The main difference to the Forward Additive Algorithm is, that it chains the warping
of the pixel coordinates instead of concatenating the estimates. To formalize this, instead
of computing

ri(ξk+1) = I2(w(ξk � ∆ξ,xi))− I1(xi) (4.15)

in every iteration, the following modified formulation is used

ri(ξk+1) = I2(w(ξk, w(∆ξ,xi)))− I1(xi). (4.16)

In every iteration, this equation is linearized around ∆ξ = 0, which results in

rlin,i(ξk+1)
∣∣
∆ξ=0

= ri(0) + Ji(0)∆ξ (4.17)

with the residual defined as

ri(0) = I2(w(ξk, w(0,xi)))− I1(xi) = I2(w(ξk,xi))− I1(xi) (4.18)

and the Jacobian being

Ji(0) = JIJw (4.19)
= JIJπJgJG (4.20)

=
∂I2(w(ξk,x))

∂π

∣∣∣∣
x=π(g(G(0),pi))=xi

· ∂π(p)

∂g

∣∣∣∣
p=g(G(0),pi)=pi

·

∂g(G,p)

∂G

∣∣∣∣
G=G(0)=I, p=pi

· ∂G(ξ)

∂ξ

∣∣∣∣
ξ=0

. (4.21)

For linearization around ∆ξ = 0 the evaluation points of the Jacobians simplify, because
G(0) is the identity transform I .
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Therefore, the definitions of the Jacobians become

JI =
∂I2(w(ξk,x))

∂π

∣∣∣∣
x=π(g(G(0),pi))=xi

=
(
∇I2,x ∇I2,y

)
, (4.22)

Jπ =
∂π(p)

∂g

∣∣∣∣
p=g(G(0),pi)=pi

=

(
fx

1
z 0 −fx xz2

0 fy
1
z −fy yz2

)
, (4.23)

Jg =
∂g(G,p)

∂G

∣∣∣∣
G=G(0)=I, p=pi

=

x 0 0 y 0 0 z 0 0 1 0 0
0 x 0 0 y 0 0 z 0 0 1 0
0 0 x 0 0 y 0 0 z 0 0 1

 ,

(4.24)

JG =
∂G(ξ)

∂ξ

∣∣∣∣
ξ=0

=



0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 −1 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0



(4.25)

The product of the Jacobian matrices of the second image and the warp function turns into

JIJw =
(
∇I2,x ∇I2,y

)(fx 1
z 0 −fx xz2 −fx x·yz2 fx(1 + x2

z2
) −fx yz

0 fy
1
z −fy yz2 −fy(1 + y2

z2
) fy

x·y
z2

fy
x
z

)
. (4.26)

From this equation its apparent, that Jw is constant because it only depends on the point
coordinates pi reconstructed from the first depth map Z1. Therefore, the Jacobian Jw does
not need to be recalculated at every iteration, in contrast to the Forward Additive Algo-
rithm.

For every iteration the warped second image I2(w(ξk,x)) and its derivative in x and y
direction (for JI see equation 4.22) have to be calculated. In [54] the Jacobian JI is ap-
proximated by the gradients computed in the first image I1 instead of the warped second
image.

4.3. Robustification

For stabilization and position control robust motion estimates are mandatory and gross
errors should be avoided. The term robust is used to describe that the estimation methods
are not influenced by outliers present in the sensor data. Outliers are all errors, which
cannot be explained by the model underlying the estimation method. The main problems
with the approach of Steinbrücker et al. [47] are sensitivity to outliers in the images and
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occasional jumps in the estimated trajectory. In the following, the reasons for outliers and
jumps are discussed and the implemented countermeasures are detailed.

The outliers have different causes, e.g. occlusions, dynamic objects moving through the
scene, illumination changes, or sensor noise. Especially dynamic objects, like persons,
moving differently than the camera induce a motion different from the true camera motion
leading to wrong estimates. Outliers are malicious in least squares estimation, because
they cause large residuals which have a huge influence on the estimate due to the quadratic
error term.

In general, there are two possibilities to deal with outliers. The first option is to model
the effects causing outliers and estimate their parameters, as well. For example, Black et
al. [6] model several effects causing outliers in images and simultaneously estimates the
parameters for all components. The second possibility is to suppress outliers. As Black et
al. still include a generic model for all outliers not represented by any of the specialized
models and only the estimate of the camera motion is of interest, the option suppressing
outliers is chosen.

From a Bayesian perspective, the robustness can be increased by choosing different
probability distributions for the residuals p(r | ξ) and the parameters p(ξ) (cf. section
2.5.2). Alternate models for the residual distribution are incorporated through different
weight functions in weighted least squares (cf. section 2.5.3). The distribution p(ξ) models
a prior on the motion and can be integrated as described in section 2.5.2.

In the following, the extension to a weighted least squares approach and the different
choices for the weight functions are discussed. Afterwards the options for priors on the
motion parameters are presented.

4.3.1. Iteratively Re-Weighted Least Squares

In section 2.5.3 the weighted least squares method was introduced as a mean to robustify
least squares problems against outliers. Robust error functions as introduced in robust
statistics literature [25, 19] have previously been used in computer vision [53, 48, 9, 30, 31].

Tykkälä et al. use weighting based on robust statistics. They choose the Tukey function
for weight calculation. The Tukey function requires a scale estimate of the error distribu-
tion, it is robustly computed using the Median Absolute Deviation (cf. equation 2.50). The
Tukey weight function ωTukey(x) is defined as:

ωTukey(x) =


(

1− x2

b2

)2
|x| ≤ b

0 else
(4.27)

where the hyper parameter b is chosen as 4.6851 to achieve 95% efficiency if the outlier-
free distribution is assumed to be Gaussian [60]. The weight wii for the ith residual ri in
the weight matrix W (cf. section 2.5.3) is computed as:

wii = ωTukey

(
ri

σMAD

)
. (4.28)

Figure 4.4a shows a plot of the Tukey weight function. It depicts, that the weights for large
residuals decrease to zero. Therefore, outliers are completely suppressed. While the Tukey
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weights successfully suppress outliers, like moving persons, the tracking performance is
degraded as well (see chapter 5).

Other researchers choose the Huber function [41, 57]. It gives small residuals quadratic
and large residuals only linear influence. In contrast to the Tukey function it is convex and
therefore does not introduce new local minima to the optimization. The Huber function is
defined as:

ωHuber(x) =

{
1 |x| ≤ k
k
|x| else

(4.29)

with k = 1.345 for a Gaussian distribution [60]. Figure 4.4a depicts a corresponding plot.
The Huber based weights do not degrade the tracking performance as the Tukey weights
do, but they are worse in supressing outliers. For a detailed evaluation refer to chapter 5.

As the two different weight functions do not provide satisfying results according to pre-
liminary experiments a different approach is selected. As shown in section 2.5.3 the weight
function is generically defined as ω(x) = φ(x)/x where φ(x) is the derivative of ρ(x). The
function ρ(x) is, in fact, the negative logarithm of the residual distribution p(r | θ). There-
fore, the weight function is directly dependent on the distribution of the residuals. Based
on this insight the distribution of the residuals is empirically determined and a suitable
analytical distribution is chosen. The weight function is derived from the analytical distri-
bution.

To obtain the empirical distribution of the residuals, the error between consecutive in-
tensity images of a whole sequence is computed. The errors of each image pair are accu-
mulated in a histogram. As every error is assumed to be drawn from the same distribution
(cf. iid. assumption section 2.5), the histogram is a representative of the underlying distri-
bution. Figure 4.5 shows several example histograms from different image sequences. To
increase the sample size (every image pair provides 640 · 480 = 307200 samples), the sin-
gle histograms are accumulated in one histogram for the whole image sequence. This is
done for several image sequences including self-recorded sequences and sequences from
the RGB-D benchmark [51]. The content of the sequences also varies from static to dy-
namic scenery. In figure 4.6 the accumulated histograms for three sequences (fr1/desk,
fr3/sitting halfsphere, fr3/walking halfsphere) are shown.

Different distributions are fitted to the accumulated histograms. Figure 4.7 shows the
histogram of the fr2/desk sequence with fitted normal distribution, robust normal distribu-
tion, and t-distribution. Several authors proposed the t-distribution for robust data fitting
[33, 15] and it has been applied successfully in computer vision problems [16, 36, 14]. For
all distributions the mean was fixed to 0. The standard deviation σ for the robust normal
distribution has been calculated using the MAD estimator (cf. equation 2.50). The param-
eters for the t-distribution have been obtained by their maximum likelihood estimators
[34]. As shown in the figure the normal distributions do not fit the histogram, while the
t-distribution fits nicely.

The t-distribution is defined as:

p(x | µ, σ, ν) =
Γ(v+1

2 )

Γ(ν2 )
√
πνσ2

(
1 +

1

ν

(x− µ)2

σ2

)− v+1
2

(4.30)

where µ is the mean, σ is the standard deviation and ν are the degrees of freedom [5].
The gamma function is Γ(x) = (x − 1)!. A plot of the probability density function of the
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Figure 4.4.: Different weight functions (a) control the influence of residual values (b) on the
optimization. Large residuals stem typically from outliers and are assigned low weights.
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Figure 4.5.: Histograms of the residuals of different image pairs from the fr1/desk, fr3/sitting
and fr3/walking sequences. The bin with the most elements is always 0 while the spread of
the histograms varies.
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Figure 4.6.: Accumulated residual histograms over all image pairs of the fr1/desk (a),
fr3/sitting (b) and fr3/walking (c) sequences. The shape of the histograms is similar and
resembles the probability densitiy function of the t-distribution.
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lying empirical distribution represented by the histogram. In contrast, the t-distribution
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t-distribution is depicted in figure 4.7 (blue). For ν →∞ the t-distribution approaches the
normal distribution.

Bishop interprets the t-distribution as an infinite mixture of Gaussian distributions [5].
In the context of least squares optimization this is a more flexible model than the iid. as-
sumption introduced in section 2.5.2. The residuals are still assumed to originate from
independent distributions, but not from identical distributions. Without the assumption
of an identical normal distribution the variance cannot be dropped in equation 2.42 and ev-
ery residual is weighted with its inverse variance. Distributions with high variance are the
source of outliers, which therefore get low weights. While the estimation of the variance
for every residual is intractable the t-distribution provides a feasible abstraction.

The weight function resulting from the t-distribution is given as:

ωt(x) =
ν + 1

ν + ( xσt
)2
. (4.31)

The degrees of freedom parameter is fixed to 5 based on experiments (see chapter 5). The
scale parameter is estimated in every iteration based on the current residuals using its
maximum likelihood estimator

σ2
t,k+1 =

1

n

n∑
i

ν + 1

ν + r2
i /σ

2
t,k
r2
i (4.32)

which has to be solved iteratively. The mean µ is dropped in equations 4.31 and 4.32,
because it is assumed to be 0. A plot of the t-distribution weight function is shown in
figure 4.4a.

In figure 4.8a a scene with a hand moving in the opposite direction of the camera is
shown. As displayed in the residual image (figure 4.8b) calculated after convergence, the
hand causes outlier pixels (white). The three images in figure 4.8 (e,c,d) show the weights
based on the different weight functions. Darker pixels indicate lower weights with a zero
weight being black. The hand generating outliers gets downweighted by all three func-
tions. The book covers and the shirt clearly show the lower or zero weights from the
Tukey function.

Chapter 5 gives a detailed evaluation of the performance of the different weight func-
tions. Based on these results the t-distribution based weight function was chosen to robus-
tify the least squares problem.

4.3.2. Motion Priors

Knowledge about the camera motion can be integrated into the estimation to regularize the
equation system and to provide a better initialization for the optimization. The following
assumptions are valid with respect to the camera motion:

• it is not entirely random, no matter whether it is handheld or mounted on a quadro-
copter, but follows a smooth trajectory,

• it has to be small, otherwise the optimization might not converge to the correct solu-
tion.
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(a) scene (b) residuals

(c) Tukey (d) Huber (e) t-distribution

Figure 4.8.: In this experiment a hand moves in the opposite direction than the camera (a).
In the residual image computed after convergence the hand still causes outliers (b). All
weight functions assign small weights to the outliers caused by the moving hand. The
functions vary in the weighting of inlier pixels. For example, the book covers and the shirt
show that the Tukey weight function assigns in general more small weights (c), in contrast
to the Huber (d) and t-distribution (e) function.
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Furthermore, the quadrocopter caries additional sensors, e.g. an IMU, which also provide
motion information.

Every prior gives parameters ξprior. To express the smooth trajectory assumption the
prior is set to the motion estimate between the last image pair, i.e. ξprior = ξt−1. For the
small motion assumption ξprior is chosen to be the identity: ξprior = 0. When using an
additional sensor ξprior can be set to this motion estimate, e.g. ξprior = ξIMU.

Independent of the choice ξprior there are two possibilities to incorporate it into the op-
timization. The first one is to use the initial estimate to initialize the optimization, i.e.
ξ0 = ξprior. The second option is to incorporate the prior through the prior distribution
p(ξ) (see equation 2.38) into the equations.

The integration as initial guess can accelerate the convergence of the optimization and
guide it to the correct minimum. Bad choice of ξ0 can slow down the algorithm or cause
convergence to a wrong minimum.

In contrast, the integration through the prior distribution always affects the solution,
because the normal equations are modified (cf. equation 2.44). The influence can be con-
trolled through the inverse variance σ−2

prior or in the multivariate case through the inverse
covariance matrix Σ−1

prior.
The regularization using the identity prior is known as Tykhonov regularization [5]. A

challenge when using the estimates of the IMU as prior is that precise inter-sensor cali-
bration in terms of relative pose to each other and time synchronization is required. The
effects of incorporating the different priors are discussed in chapter 5.

4.4. Implementation

Applied on board of the quadrocopter the visual odometry approach requires an efficient
implementation. Furthermore, it has to be integrated with the RGB-D camera drivers, the
control and the data fusion software.

The system is implemented on the Robot Operating System (ROS) middleware. The
main reasons for this choice are that the driver framework for the AscTec Pelican (see
section 2.1.2) is implemented in ROS, and the availability of drivers for the RGB-D camera.

Figure 4.9 depicts the overall structure of the software components and their communi-
cation paths. The openni driver component integrates the ASUS Xtion PRO LIVE drivers
and provides the RGB-D images to the camera tracker. The camera tracker implements the
presented visual odometry approach. The distributed EKF framework uses the pose esti-
mates to correct the state predictions. These predictions are calculated from the IMU data
at 1 kHz on the Autopilot Board of the Pelican. Finally, the position controller uses the
state estimate of the EKF, which includes the fused data from the visual odometry and the
IMU, to stabilize the quadrocopter.

The main contribution of this thesis is the camera tracker component. It implements the
camera motion estimation from an RGB-D image pair using the theoretical foundations de-
scribed in section 4.2 and 4.3. The pseudo code of the core function is given in algorithm 1.
It applies a coarse to fine scheme, also used in [47], to estimate the camera motion. Starting
with a low resolution version of the images allows to compensate for larger motions and
accelerates computation. At every level l multiple iterations are performed. In every iter-
ation k the Jacobian matrix J , the weighting matrix W and the residuals r are computed.
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Mastermind Board

AutoPilot Board

openni_driver

camera_tracker

EKF

ssf_updates

external_poseestimated_pose

rgbd_images

rgbd_images

state_propagationstate_correction

state_correction state_propagation

Position
Control

fused_posecurrent_pose

Figure 4.9.: The software components and their integration on the Pelican quadrocopter.
The openni driver provides the RGB-D images. The camera tracker implements the pre-
sented visual odometry approach. The distributed EKF uses the estimated pose from the
visual odometry to correct its state estimate.
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In case the error e decreased with the last increment, it is incorporated into the current
estimate. Afterwards, the new increment is calculated by solving the normal equations.
Iterating at the current level is stopped when the error increases, the error decrement is
below a user defined threshold, or the maximum number of iterations is exceeded.

Algorithm 1 Camera motion estimation from an RGB-D image pair
1: function ESTIMATECAMERAMOTION(I1,pyr, Z1,pyr, I2,pyr, ξinitial)
2: ξ ← ξinitial
3: ∆ξ ← 0

4: for l = CoarsestLevel→ FinestLevel do
5: e← 0
6: elast ← inf
7: k ← 0

8: while (elast − e) > ε and kmax > k do
9: J,W, r ← ComputeJacobianAndError(I1,pyr(l), Z1,pyr(l), I2,pyr(l), ξ � ∆ξ)

10: elast ← e
11: e← 1

nr
TWr

12: if e > elast then . ensure error decreased
13: ∆ξ ← 0
14: else
15: ξ ← ξ � ∆ξ . incorporate increment
16: ∆ξ ← (JTWJ)−1JTWr . solve normal equations
17: end if

18: k ← k + 1
19: end while
20: end for

21: return ξ
22: end function

The integration of motion priors is not shown in algorithm 1. It requires modification of
line 16 according to equation 2.44. The most critical part in algorithm 1 is the computation
of the Jacobians, the weights and the residuals (see line 9). It implements the Forward
Compositional Algorithm (see section 4.2.2) and is shown in algorithm 2. The scale is es-
timated (line 4) either using the median absolute deviation or the maximum likelihood
estimator of the t-distribution depending on the weight function. The weights are calcu-
lated from the normalized residuals (line 5) using one of the weight functions introduced
in section 4.3. The derivatives of the warped second image I∗2 in x and y direction are
computed using central differences.

As the ComputeJacobianAndError function is called in every iteration and iterates over all
image pixels it is decisive for the performance of the whole implementation. Therefore,
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Algorithm 2 Computation of the Jacobian, weights and residual for all pixels according to
the Forward Compositional Algorithm (see section 4.2.2)

1: function COMPUTEJACOBIANANDERROR(I1, Z1, I2, ξ)
2: I∗2 ← I2(w(x, ξ))
3: r ← I∗2 − I1

4: σ ← ComputeScale(r)
5: W ← ComputeWeights(r/σ)
6: ∇I∗2,x,∇I∗2,y ← ComputeDerivatives(I∗2 )

7: for i = 0→ n do
8: J(i)← ComputeJacobian(π−1(x(i), Z1(i)),∇I∗2,x(i),∇I∗2,y(i))
9: end for

10: return J,W, r
11: end function

several optimizations have been applied. Most important is the use of Streaming SIMD
Extensions (SSE) instructions, where SIMD abbreviates Single Instruction Multiple Data.
They allow to apply the same operation to multiple values at the same time. This is ben-
eficial if the same calculations have to be performed on many values as is the case in the
presented algorithm. SSE instructions are available on all recent Intel CPUs, including the
Intel Core2Duo on the AscTec Mastermind board (cf. section 2.1.2). The caching of Jw as
suggested in section 4.2.2 has no significant impact on the performance. A further opti-
mization would be to parallelize the computations on multiple CPU cores. However, this
is not subject of this thesis.
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This chapter describes the experiments evaluating the performance of the proposed ap-
proach and presents the results. These experiments consist of three parts. The first part
evaluates the performance of the visual odometry algorithm on different simulated and
RGB-D benchmark datasets. Second, the integration on the quadrocopter and the position
control using the presented approach are evaluated. The last part evaluates the influence
of the different parameters and discusses based on these findings the optimal parameter
values for the application scenario.

5.1. Performance Comparison

The following experiments are conducted to evaluate the performance of the proposed
algorithm in comparison to the implementation of Steinbrücker et al., and to implementa-
tions using the Tukey and the Huber function for weight calculation. There are two groups
of experiments. The first group uses synthetic datasets with perfect ground truth and ideal
RGB-D images. The second group evaluates the performance on the RGB-D benchmark
[51].

5.1.1. Synthetic Datasets

The synthetic datasets are generated from an RGB-D image of the fr1/desk sequence by
warping it along a predefined trajectory. Two different trajectories are used. The first
simulates motion along a square with edge length of 10 cm with a displacement of 2 mm
between two images. This trajectory simulates a camera moving at 0.06 m/s with a fram-
erate of 30 Hz. The second trajectory is random. It translates the camera along the x and
y axis of the camera plane and rotates around the z axis of the camera. The translations
are sampled from a uniform distribution in the range of ±1 cm. The angle of rotation is
uniformly drawn from ±5◦. This virtual camera has an average speed of 0.3 m/s. Figure
5.1 visualizes the two trajectories and the point cloud of the scene. For each of the two
trajectories an additional dataset is generated by moving a small patch of the scene inde-
pendent from the camera. This moving patch represents a motion, which causes outliers.
Figure 5.1a depicts the patch and its motion vector.

On each of the four datasets the original implementation provided by Steinbrücker et
al. is executed as baseline for comparison. Afterwards the four different weighting vari-
ants (no weighting, Tukey, Huber, t-distribution) are run each with two sets of parameters.
The first parameter set uses the realtime parameters determined in section 5.3. The second
parameter set is tuned for maximum accuracy. Therefore, it uses a precision of ε = 10−12, a
large value for the maximum number of iterations kmax, and all resolutions up to 640×480
pixels. In total there are nine evaluation runs per dataset.
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(a) synthetic datatset along square trajectory (b) synthetic datatset along random trajectory

Figure 5.1.: Synthetic datasets with different trajectories created from an RGB-D image
of the fr1/desk sequence. The marked patch in (a) is moved independently of the virtual
camera to simulate outliers.

Tables 5.1 to 5.4 list the results for each dataset. The first column states the variant of the
algorithm — reference is the implementation of Steinbrücker et al. The second column in-
dicates the parameter set, either realtime or precision. The third column contains the RMSE
of the translational drift per second. The fourth column depicts the relative improvement
compared to the reference implementation, which is computed as

improvement(RMSE) =
RMSEreference − RMSE

RMSEreference
· 100 %. (5.1)

The last column shows the average runtime per RGB-D image pair in seconds.
For the square trajectory on a static scene all variants show an improvement over the

reference implementation (see table 5.1). With realtime parameters there is no significant
difference in performance. For the precision parameters all variants, except the Huber
weighting, improve around 10 %, but at cost of much higher runtimes. The t-distribution
weighting performs best for both parameter sets. The performance degradation of the
Huber weights with the high accuracy parameters stems from convergence to wrong so-
lutions. The error seems to keep decreasing, therefore the optimization does not stop, and
a large number of iterations is performed as can be seen from the high runtime. Since the
high accuracy parameter set has little relevance for the application on the quadrocopter,
this issue is not subject to further investigations.

The experiment on the square trajectory with a moving object shows significant perfor-
mance improvements for the weighted variants in contrast to ones without weighting (see
table 5.2). The unweighted version is worse than the reference implementation. This might
be a result of more iterations leading to convergence to a wrong estimate, whereas the ref-
erence implementation performs fewer iterations. The performance gain provided by the
precision parameters is around 50 % for the Tukey and t-distribution weighting function.
Again the t-distribution weights perform best.

The experiments for the random motion dataset with faster motion exhibit a decrease in
the performance of the reference implementation by factor two to three compared to the
slower square trajectory sequences. Without outliers the Huber and t-distribution weights
perform equally well for both parameter sets (see table 5.3). For the Tukey weights the drift
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Table 5.1.: RMSE of translational drift for the synthetic square motion sequence for dif-
ferent weight functions and parameter sets. Robust weighting with the Huber function
or t-distribution improves the performance even in the absence of gross outliers. The im-
provement for the precision parameter set is small compared to the increase in runtime.

Method Parameter Set RMSE [m/s] Improvement ∅Runtime [s]

reference 0.0344 0.0 % 0.035

no weights realtime 0.0151 56.1 % 0.023
Tukey weights realtime 0.0163 52.6 % 0.040
Huber weights realtime 0.0128 62.8 % 0.019
t-distribution weights realtime 0.0110 68.0 % 0.030

no weights precision 0.0079 77.0 % 0.126
Tukey weights precision 0.0133 61.3 % 0.196
Huber weights precision 0.0238 30.8 % 1.484
t-distribution weights precision 0.0078 77.3 % 0.305

Table 5.2.: RMSE of translational drift for the synthetic square motion sequence with out-
liers for different weight functions and parameter sets. The t-distribution weights clearly
outperform the Tukey and Huber weights in presence of outliers.

Method Parameter Set RMSE [m/s] Improvement ∅Runtime [s]

reference 0.0377 0.0 % 0.037

no weights realtime 0.0427 -13.3 % 0.022
Tukey weights realtime 0.0306 18.8 % 0.035
Huber weights realtime 0.0255 32.4 % 0.020
t-distribution weights realtime 0.0193 48.8 % 0.034

no weights precision 0.0401 -6.4 % 0.115
Tukey weights precision 0.0132 65.0 % 0.345
Huber weights precision 0.0254 32.6 % 1.312
t-distribution weights precision 0.0082 78.2 % 0.510
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Table 5.3.: RMSE of translational drift for the synthetic random motion sequence for dif-
ferent weight functions and parameter sets. On this dataset with comparably fast motion
but no outliers the improvement due to use of the Huber and t-distribution weights is
significant.

Method Parameter Set RMSE [m/s] Improvement ∅Runtime [s]

reference 0.0751 0.0 % 0.038

no weights realtime 0.0223 70.0 % 0.032
Tukey weights realtime 0.0497 33.8 % 0.050
Huber weights realtime 0.0134 82.2 % 0.025
t-distribution weights realtime 0.0142 81.1 % 0.043

no weights precision 0.0145 80.7 % 0.115
Tukey weights precision 0.0279 62.8 % 0.230
Huber weights precision 0.0125 83.4 % 1.287
t-distribution weights precision 0.0124 83.5 % 0.405

increases compared to the unweighted case. In the presence of outliers the t-distribution
and Tukey weights perform better than the unweighted and Huber variants. The drift for
the t-distribution estimates is still the smallest.

This set of experiments proves that the implementation developed in this thesis is su-
perior to the reference implementation of Steinbrücker et al. Furthermore, it shows that
robust weighting is beneficial in the presence of outliers. As well, the experiments confirm
the claims from section 4.3, that the Tukey weights degrade the tracking performance when
there are few outliers and that the Huber weights are less resistant to outliers. Finally, they
underpin the suitability and good performance of the t-distribution based weights.

5.1.2. RGB-D Benchmark Datasets

A second set of experiments assesses the performance on the RGB-D benchmark datasets.
From the different categories of datasets the following are selected: Testing and Debugging,
Handheld SLAM, Robot SLAM and Dynamic Objects. They reflect the typical scene contents
and application environments. As for the synthetic datasets the reference implementa-
tion of Steinbrücker et al. and the variants with different robust weighting schemes and
realtime parameters are evaluated. One additional variant uses the t-distribution weight
function and the temporal prior.

The tables in Appendix A present a detailed overview of the drift for all datasets. In the
following the results for each category are summarized.

On the datasets in the Testing and Debugging category all variants except the Tukey
weights perform equally well. They achieve an improvement of 40 % with respect to
the reference implementation. The Huber weights exhibit 1 mm/s less drift than the t-
distribution weights. On these simple datasets the proposed robust visual odometry has a
drift around 2.4 cm/s.

The datasets in the Handheld SLAM category provide similar results. The t-distribution
and Huber weights perform equally good, again. For the fast fr1/desk, fr1/desk2 and fr1/room
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Table 5.4.: RMSE of translational drift for the synthetic square motion sequence with out-
liers for different weight functions and parameter sets. On this sequence with fast camera
motion and outliers the t-distribution weights are superior to the other variants.

Method Parameter Set RMSE [m/s] Improvement ∅Runtime [s]

reference 0.1019 0.0 % 0.035

no weights realtime 0.0650 36.2 % 0.030
Tukey weights realtime 0.0382 62.5 % 0.056
Huber weights realtime 0.0572 43.9 % 0.024
t-distribution weights realtime 0.0296 71.0 % 0.047

no weights precision 0.0502 50.7 % 0.130
Tukey weights precision 0.0270 73.5 % 0.279
Huber weights precision 0.0457 55.2 % 0.935
t-distribution weights precision 0.0133 87.0 % 0.508

these weighted variants cause several centimeters per second less drift than the unweighted
one. For the rather slow and feature rich fr3/long office household sequence the reference im-
plementation provides the best result. The average drift per second of the t-distribution
weights is 4.2 cm/s and is slightly better than the one of the Huber weights and 1 cm/s
better than the unweighted version.

The Robot SLAM category contains datasets where all variants of the approach except
the one with temporal prior have a drift of more than 20 cm/s. The configuration with
temporal prior still exhibits a comparably high drift of 8 cm/s. One reason is that the
video shows a lot of sudden vertical shifts when the robot rolls over cables lying on the
floor. Another observation is that a part of the video is missing in the fr2/pioneer slam2
dataset.

The last category is Dynamic Objects. It contains datasets where persons move through
the scene with varying amount of motion and the camera follows different trajectories.
The movements of the person cause outliers. Therefore, these datasets are suited to test
the robustness of the approach. There are two groups of datasets. One where persons
are sitting at a table, talking and moving slightly. The second group contains persons
walking through the scene and obstructing large parts of the field of view. The sitting
datasets confirm that the t-distribution and Huber weighting work equally good. The
version with temporal prior has the least drift, on average. For the sitting datasets with
rotational motion (rpy) disabled weighting performs better. This indicates that weighting
suppresses rotational motion estimation, especially. The temporal prior compensates this
issue. Averaged over all sitting datasets the drift is in the order of 3–4 cm/s. For the walking
sequences all variants of the approach fail. Even the best version with the Tukey weight
function has an average drift of 26 cm/s. Accordingly, scenes with that many outliers
remain an open challenge for future research.

This set of experiments confirms the results of the previous section on realistic sequences.
However, the Huber weight function is on par with the t-distribution weight function in
these experiments. The implementation developed in this thesis always performs better or
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equally good as the previous one provided by Steinbrücker et al.

5.2. Flight Experiments

The next set of experiments evaluates the performance of the visual odometry approach
on the quadrocopter. As the previous experiments show the drift is at least 2–4 cm/s the-
oretically accumulating to 1.2–2.4 m/min. This renders flight for several minutes or flying
along trajectories infeasible. Thus, the drift while hovering at a fixed position is measured.

The experimental setup is as follows: The quadrocopter is equipped with the sensors
and computer boards as described in section 2.1.2. The grayscale camera tracks external
markers to obtain the ground truth trajectory and start the quadrocopter. Starting with
the external tracking system is necessary, because the Pelican tends to tilt due to unleveled
weight distribution. This tilt causes the RGB-D camera mounted on the lower part of
the quadrocopter to face the floor. Therefore, no depth can be measured anymore and
motion estimation becomes impossible. Once the quadrocopter is stable and reached its
hover point the dense visual odometry is enabled and substitutes the external tracking
system. Switching the tracking technique introduces further issues, for example, the visual
odometry algorithm estimates only relative poses and therefore needs to use the last pose
from the tracking system as initial pose. But switching requires a certain amount of time,
during which the quadrocopter already moves away from this initial pose. This effect
leads to a constant offset between true and estimated position.

Several other factors have negative influence on the flight performance. These are:

• Imprecise inter-sensor pose calibration of the RGB-D camera to the IMU. This results
in incompatible measurements from the different sensors.

• Incorrect sensor delay parameter. The EKF uses the delay to synchronize the different
sensors. Small, unavoidable imprecisions cause instability during flight.

• Fixed noise parameters determine how precise the visual pose estimate is. Wrong
values let the EKF give too much or too little influence to the measurements on the
state estimate. In practice the noise also varies between the measurements.

As the whole system is a closed loop errors in one component also effect the others. For
example, wrong state estimates of the EKF cause sudden reactions of the controller to com-
pensate for the error. These rapid attitude and position changes lead to worse estimates
from the visual odometry, which again degrade the EKF state estimates. Therefore, achiev-
ing stable flight of the quadrocopter is a challenging task.

To test the approach against different environments the scene is augmented with a vary-
ing number of objects introducing further color and structure information. In total three
scene setups are under investigation. Figure 5.2 shows exemplary images for each scene.
The first one is very cluttered and contains many color and depth cues (see figure 5.2a).
The second scene setup contains less objects and the planar, white fronts of the furniture
dominate (see figure 5.2b). In the third setup mostly textureless and planar cabinet doors
are visible (see figure 5.2c).

The pose estimation fails on the cabinet scene. This causes rapid drift of the quadro-
copter. Therefore, no reliable data for evaluation can be recorded. For the other two scenes
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(a) scene with many textural
and structural cues

(b) scene with normal texture
and structure

(c) mostly textureless and pla-
nar scene

Figure 5.2.: Different scenes used for flight experiments. The images show the area, which
is seen by the RGB-D camera and used for pose estimation. The scene content varies from
texture and structure rich (a) to texture less and planar (c).
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Figure 5.3.: Estimated vs. ground truth trajectory for a flight in the cluttered scene (see
figure 5.2a) over 48 s. While the x and y component exhibit only little drift, the drift in z
direction is severe.
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Figure 5.4.: Estimated vs. ground truth trajectory for a flight in the normal scene (see figure
5.2b) over 40 s. While the x and y component exhibit only little drift, the drift in z direction
is severe.

several trials are performed. Figure 5.3 and figure 5.4 show the trajectory of a representa-
tive flight on the two different scenes respectively. Every trajectory is split into separate
plots for the x, y and z component with a graph for the ground truth position (green) and
the estimated position (red). While there is a constant offset between ground truth and
estimate for the x and y component, there is only little drift over time. In contrast, the z
component exhibits severe drift in both experiments. For the texture rich scene the RMSE
of the translational drift is 0.0298 m/s over a duration of 48 s. The second scene setup
leads similarly to a RMSE translational drift of 0.0289 m/s. The length of this dataset is
40 s. These experiments validate the results of the evaluation on the synthetic and RGB-D
benchmark datasets (cf. section 5.1). Furthermore, they show that the visual odometry ap-
proach is applicable on the quadrocopter and can be integrated into the control loop for
position stabilization.
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5.3. Parameter Optimization

Several parameters control the optimization presented in algorithm 1. This section studies
the influence of these parameters on the performance. Using different configurations the
algorithm is executed on multiple datasets of the RGB-D benchmark [51]. Every run re-
sults in an estimated camera trajectory. Different tools provided by the RGB-D benchmark
calculate metrics for the estimated trajectory in comparison to the ground truth trajectory.
These metrics include the root mean square error (RMSE), mean, standard deviation, me-
dian, minimum, and maximum of the translational and rotational drift. The drift can be
absolute or relative. The absolute drift states how far the final camera pose is from the
final pose in the ground truth. The relative drift represents the deviation from the ground
truth in a certain time frame. The following comparisons apply the RMSE of the relative
translational and rotational drift per second.

The drift per second is a more reliable metric than the drift per frame used by other re-
searchers [47, 50], because the noise in the ground truth of the RGB-D benchmark datasets
has a similar order of magnitude [51]. For example, experiments, which simulate a static
camera, i.e. not moving during the whole sequence, have a lower drift per frame than algo-
rithms estimating the trajectory. Another difference to related publications is the use of the
RMSE instead of the median. The RMSE is more sensitive to gross errors in the estimated
trajectory than the median. Therefore, low RMSE values ensure good estimates over the
whole trajectory.

The main parameters are the coarsest level l0, the finest level lmax and the precision ε.
The maximum iterations parameter kmax is merely a safe guard to ensure the optimiza-
tion finishes after a maximum time. The coarsest level l0 defines the image resolution for
starting the optimization and the finest level lmax specifies the resolution at which the al-
gorithm terminates. In case l0 and lmax are equal, the optimization runs on one resolution
level only. A 2 × 2 block averaging filter extracts a coarser resolution from the next finer
one. The highest resolution is 640×480 pixels and 320×240, 160×120, 80×60 and 40×30
pixels are the derived resolutions.

5.3.1. Resolution vs. Drift

The first experiment evaluates the dependence of the drift on the resolution used for opti-
mization. The precision ε is fixed to 10−30 and the maximum number of iterations to 10000.
Therefore, the only stop condition for the optimization is the increase in the error (cf. algo-
rithm 1). Figure 5.5a shows the translational drift as a function of the resolution used for
four datasets. Respectively, figure 5.5b depicts the dependency of the rotational drift. In
both plots the error decreases with increasing resolution for the fr1/room and the fr2/desk
sequence, although there is only a minor improvement from 320 × 240 to 640 × 480. In
contrast, the drift has its minimum at 80×60 and 160×120 for the fr1/desk and fr1/desk2 se-
quences. For higher resolutions the drift increases again. One reason is the higher average
velocity in the fr1/desk (0.413 m/s) and the fr1/desk2 (0.426 m/s) sequences in comparison
to the fr1/room (0.334 m/s) and fr2/desk (0.193 m/s) sequences. The higher speed results
in larger displacement between two images than on slower sequences.
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Figure 5.5.: Drift per second when optimizing on different resolutions. The drift decreases
with increasing resolution on slow sequences, e.g. fr2/desk. On the contrary, the drift in-
creases for higher resolutions on fast sequences since the displacement between consecu-
tive images is larger.
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5.3.2. Coarse-to-Fine vs. Drift

The second experiment studies the effect of optimizing over multiple resolution levels.
The optimization starts at a low resolution and uses the estimate as initialization for the
optimization on higher resolutions. This exploits the previous result that lower resolutions
give good estimates for larger image displacements while higher resolutions provide esti-
mates with less drift. In the experiment the optimization always starts at a resolution of
80 × 60 pixels and the number of higher resolutions varies. The precision and maximum
iterations parameters are, as before, fixed to values not affecting the termination of the
optimization.

Figure 5.6a displays the translational drift depending on the number of levels in the
image pyramid, figure 5.6b depicts the rotational drift, respectively. The results for one
pyramid level are equivalent to those for the 80 × 60 resolution in figure 5.5. In contrast
to the previous experiment the drift reduces with the number of pyramid levels as higher
resolutions are included in the optimization. The improvement from three to four levels,
i.e. with and without 640× 480 images, remains small.

5.3.3. Precision vs. Drift

The next experiment evaluates the influence of the precision parameter ε. The parameter
is varied between 5 · 10−1 and 10−10. This is done at four different resolutions ranging
from 80× 60 to 640× 480. Figure 5.7 displays the translational and rotational drift for the
different values of ε and different resolutions on the fr1/desk sequence. The supplementary
figure 5.8 shows the average number of iterations with respect to the precision. In the
range from 5 · 10−1 to 5 · 10−3 the drift is constant around 0.4 m/s due to stopping after the
first iteration (see figure 5.8). Therefore, the error decrease attained by the first increment
has to be between 5 · 10−3 and 10−3. The drift decreases with higher precisions until it
plateaus for precisions beyond 10−6. In contrast, the number of iterations still increases up
to a precision of 10−9. Concluding, error decrements below 10−7 have only little influence
on the drift, but increase the computational load.

For lower resolutions fewer iterations are performed at a given precision. There are two
possible reasons for this behavior. Either the error decrement is below the precision after
fewer iterations, or the error increases stopping the optimization. Figure 5.9 shows the
percentage of aborts due to error decrements below the precision for different resolutions.
The complementary percentage is the amount of aborts due to error increase. It is dom-
inant for lower resolutions at bigger values of ε. Even at the highest resolution the error
increase is the only abort reason for ε ≤ 10−10. Therefore, ε = 10−10 is the smallest sensible
value.

5.3.4. Coarse-to-Fine and Precision vs. Drift

As the previous experiment shows, optimization over several resolution levels is beneficial
to increase the accuracy of the approach. The following experiment evaluates the influence
of the precision parameter on the number of iterations performed at each resolution and
the resulting drift. The experiment uses the fr1/desk dataset. Figure 5.10 shows the value
of ε and the respective average number of iterations when optimizing over four resolu-
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Figure 5.6.: Drift per second depending on the number of levels when optimizing over
an image pyramid with different resolutions. The lowest level has a resolution of 80 ×
60 pixels. A value of pyramid levels equal to one means optimization only on the lowest
resolution. For the value four the optimization uses all resolutions up to 640× 480 pixels.
As more pyramid levels are used the drift decreases even for fast sequences.
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Figure 5.7.: Drift per second on the fr1/desk sequence for different values of the precision
parameter ε and optimization using different resolutions. As the values get smaller the
drift decreases. For ε ≤ 10−6 there is only minor improvement.
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Figure 5.8.: The number of iterations required by the optimization for varying values of
the precision ε and different resolutions. With lower values of ε the number of iterations
increases. On higher resolutions more iterations are required until the optimization is
stopped.
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Figure 5.10.: The number of iterations required on the different resolutions when optimiz-
ing on an image pyramid to achieve a given precision ε. The qualitative trend of the RMSE
of the translational drift is superimposed.

tion levels. The qualitative trend of the RMSE of the translational drift is superimposed.
Setting ε = 10−5 requires only two iterations at higher resolutions. This indicates that the
error already decreased to this order of magnitude on the lowest resolution, because the
precision stop criterion requires at least two iterations (cf. algorithm 1). The lowest drift
is obtained at a precision of 10−8 and stagnates for lower values of ε. The experiment
proves that optimization over several resolutions not only improves the accuracy, but also
reduces the number of iterations required at higher resolutions. This is advantageous be-
cause the number of pixels increases at every higher resolution by factor four and so does
the number of computations.

5.3.5. T-distribution Degrees of Freedom vs. Drift

The degrees of freedom parameter ν of the t-distribution is determined by a parameter
search on several datasets. The experiment varies the parameter in the interval [1, 14] and
computes the RMSE of translational and rotational drift on several datasets from the RGB-
D benchmark. Figure 5.11 depicts the results. The x axis shows the value of ν and the y
axis the normalized RMSE. The normalization divides every RMSE value by the mean of
all RMSE values on the same data set but different ν values. Therefore, the shape of the
graph is not altered, but the graphs of multiple datasets are easier to compare. Addition-
ally, all normalized RMSE values corresponding to the same ν are averaged. The dashed
lines depict the normalized and averaged RMSE drift when no weighting is used. The

52



5. Evaluation

 

 

RMSE rotational drift w/o weighting
RMSE translational drift w/o weighting
RMSE rotational drift
RMSE translational drift

n
o
rm

al
iz
ed

R
M
S
E

degrees of freedom ν

2 4 6 8 10 12 14
0.9

1

1.1

1.2

1.3

1.4

1.5

Figure 5.11.: The averaged, normalized RMSE drift values of different sequences for dif-
ferent choices of the degrees of freedom parameter ν. The dashed lines indicate the drift
without weighting. The value ν = 5 is a good trade-off between robustness and small
drift.

plot shows that with ν ≥ 3 the weighted version performs better than the one without
weighting. The improvement for values of ν larger than 5 is small. Values larger than 10
begin to decrease performance again. For larger values of ν the RMSE graph approaches
the line, which represents the unweighted case. Outliers get more strongly downweighted
for smaller values of ν (c.f. equation 4.31) [33, 15]. Therefore, the degrees of freedom
parameter ν is fixed to 5 as this value ensures low RMSE drift and good robustness.

5.3.6. Priors vs. Drift

The parameters of the priors detailed in section 4.3.2 are determined in similar experiments
as the degrees of freedom parameter ν. For different values of the weighting parameters
the RMSE of the translational and rotational drift per second is calculated on a number of
RGB-D benchmark datasets. The parameter values vary in the interval [0, 1]. The RMSE
values are normalized and averaged for comparison.

Figure 5.12a shows the results for the temporal prior with parameter λ. The x axis de-
picts the values of λ and the y axis the corresponding, normalized, and averaged RMSE
value. For the translational drift the optimal λ is between 0.03 and 0.08. The rotational
drift is minimal for λ in the range 0.2 and 0.35. Both graphs intersect for λ = 0.16.

Figure 5.12b displays the same experiment for the identity prior with parameter µ. As
the drift monotonically grows with increasing µ it appears that the identity prior has no
positive effect on the RMSE. Therefore, it can be discarded.

Section 4.3.2 discusses the use of prior information only as initialization. The follow-
ing experiment evaluates the dependency of the drift on the initialization. It tests two
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Figure 5.12.: Rotational and translational drift for different weight factors of the temporal
prior (a) and identity prior (b). Incorporating the temporal prior with small values of λ
improves performance. The identity prior always increases the drift.

initializations. The first initialization is the identity and the second is the estimated trans-
formation between the previous RGB-D image pair. Figure 5.13 shows the results. The x
axis depicts the different datasets and the y axis the RMSE of the translational drift. The
performance of the initialization with the previous estimate is worse on all datasets ex-
cept fr3/sitting halfsphere than the initialization with the identity. Therefore, the previous
estimate seems to be a bad initial guess for the optimization.

The last two experiments provide two insights. First the use of the temporal prior
through p(ξ) is beneficial to reduce drift for small values of the weighting parameter λ.
In contrast, initialization with the last estimate degrades the performance. The second in-
sight is, that the contrary argument to the temporal prior holds for the identity prior. It is
good for initialization, but increases drift when used as p(ξ).

5.3.7. Runtime

Table 5.5 summarizes the computational time required for one iteration at different res-
olutions. The second column shows the timings with disabled weighting and the third
column with enabled weighting. The execution time is measured on a PC with an Intel
i5 670 CPU (3.46 GHz) and 4 GB RAM. For each higher resolution level the time per itera-
tion increases by factor four approximately. Enabling robust weighting barely affects the
runtime.

Table 5.6 shows the approximate runtime for the alignment of one image pair computed
from the timings in table 5.5 and the average number of iterations in figure 5.10. The
second column displays the runtimes excluding the highest resolution and the third col-
umn the runtimes including it. As new RGB-D images arrive at 30 Hz (see section 2.2.2)
the maximum time for processing an image pair is 33.3 ms. As the table shows including
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Table 5.5.: Average runtimes per iteration with weighting enabled and disabled for dif-
ferent resolutions. Between a resolution and the next higher one the runtime increases
approximately by factor 4. Enabling weighting has only a minor impact on the runtime.

∅ runtime/iteration ∅ runtime/iteration
resolution without weighting [ms] with weighting [ms]

80× 60 0.35 0.37
160× 120 1.03 1.08
320× 240 4.26 4.42
640× 480 17.24 17.78
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Table 5.6.: Approximate runtimes required for the alignment of two RGB-D images with
different values of ε and lmax. The approximation is based on the timings per iteration in
table 5.5 and the average number of iterations in figure 5.10. Optimization including the
highest resolution results in runtimes not usable in realtime scenarios (maximum runtime
33.3 ms). When the highest resolution is chosen as 320× 240 and ε between 10−6 and 10−7

the highest accuracy is attained while staying in the realtime limit.

approx. runtime approx. runtime
precision ε highest resolution 320× 240 [ms] highest resolution 640× 480 [ms]

10−5 14.15 49.74
10−6 20.96 60.19
10−7 35.49 107.48
10−8 45.63 160.55
10−9 49.44 183.10
10−10 49.68 186.61

the highest resolution is prohibitively expensive in terms of runtime. The best accuracy
without violating the realtime constraint is obtained for ε between 10−6 and 10−7 and a
maximum resolution of 320× 240 pixels. As the previous experiments highlight the use of
the highest resolution yields only minimal improvement in terms of drift.

5.3.8. Summary

The experiments in this section show that optimization in a coarse to fine manner, starting
at a low resolution and using the estimate as initialization for optimization on higher reso-
lution, is superior in terms of accuracy and runtime to optimization on a single resolution.
Therefore, the coarsest level l0 is set to 80 × 60 and the finest level lmax to 320 × 240. Fur-
thermore, the precision as threshold on the error decrease between two iterations allows
to trade off performance against accuracy. The value ε = 5 · 10−7 results in high accuracy
while the runtime remains within the realtime limit of 33 ms. The maximum number of it-
erations is limited to kmax = 100. The degrees of freedom parameter ν of the t-distribution
is fixed to 5 which provides a good trade-off between robustness and drift reduction. For
the different priors the experiments show that the initialization with the identity is fa-
vorable. In contrast, the temporal prior is beneficial when used as p(ξ) with a weighting
parameter λ in the range from 0.05 to 0.3.

56



6. Conclusion

This thesis has developed a robust, dense visual odometry approach which utilizes the
data provided by recent RGB-D cameras. The robustness has been achieved by giving
a Bayesian derivation of the underlying least squares problem and modeling the distri-
butions based on empirical data. The t-distribution is a good model. Additionally, this
derivation allows to incorporate prior knowledge about the motion, e.g. from other sen-
sors, naturally. Due to the dense nature of the approach using all image information very
high accuracy over long trajectories can be achieved. This performance has been validated
trough extensive experiments on real and synthetic data. The drift of the estimated tra-
jectory is in the range of 2-4 cm/s. At the same time the implementation is capable of
running at camera frame rate on a single core of a recent commodity CPU. Furthermore,
experiments on the quadrocopter show that the visual odometry approach can be used to
stabilize the position over several seconds without human intervention. While long time
operation can be achieved by a human operator correcting for the accumulating drift, fully
autonomous operation remains an open challenge.

There are several possible directions for future research:

• The major violations of the photo-consistency assumption stem from automatic adap-
tion of the camera exposure and gain. These cause a shift in the brightness of the
whole image, which results in very large residuals all over the image. Observations
show that this leads to large jumps in the estimated trajectory. By modeling these
effects and estimating the parameters simultaneously to the motion the brightness
changes could be compensated [28].

• The integration of the depth error into the minimization as already proposed by
Tykkälä et al. [54] could further improve accuracy, especially in regions with few
texture. Instead of using an entirely depth based error metric a point-to-plane error
as in ICP could be used [58]. An open problem with this simultaneous optimization
is to find a strategy how to downweight outliers in both error terms, which are only
identified either in the intensity image or the depth image.

• An alternative to aligning consecutive frames is to match against a sufficiently close
keyframe. This could further reduce drift and jitter during slow motions [24]. The
keyframes can be replaced with keyframe models into which successfully matched
RGB-D frames are integrated to reduce noise. From this point the next step could be
the extension to a full SLAM system, e.g. including pose graph optimization.

• The optimization only requires the depth information of the reference image. There-
fore, tracking a monocular camera against an existing textured 3D model of the scene
should be possible.
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6. Conclusion

• For the minimization alternate optimization schemes like Efficient Second Order
Minimization (ESM) [39] could be evaluated. It might provide faster convergence,
but at the same time increase computational requirements.

• The robustness against dynamic objects occupying a large amount of the field of view
remains challenging. Possibly, these objects could be identified more easily in depth
images due to their large changes in depth.

• The use of data from the IMU as initialization or prior for the optimization is dis-
cussed in section 4.3.2, but it is not implemented due to inter-sensor pose calibration
and time synchronization issues. Especially the rotation measurements could be use-
ful.

• An evaluation of the approach using passive stereo cameras would be interesting,
because it would relax the limitation to indoor environments.

In conclusion, this thesis shows that it is possible to implement a robust, dense visual
odometry approach on currently available quadrocopter hardware, and use it for control
and stabilization. Further, the consequent Bayesian treatment of the optimization problem
provides a sound and natural framework for incorporating robustness.
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