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Abstract

We propose an optimization algorithm for mutual-
information-based unsupervised figure-ground separation.
The algorithm jointly estimates the color distributions of
the foreground and background, and separates them based
on their mutual information with geometric regularity. To
this end, we revisit the notion of mutual information and re-
formulate it in terms of the photometric variable and the
indicator function; and propose a sequential convex op-
timization strategy for solving the nonconvex optimization
problem that arises. By minimizing a sequence of con-
vex sub-problems for the mutual-information-based non-
convex energy, we efficiently attain high quality solutions
for challenging unsupervised figure-ground segmentation
problems. We demonstrate the capacity of our approach in
numerous experiments that show convincing fully unsuper-
vised figure-ground separation, in terms of both segmenta-
tion quality and robustness to initialization.

1. Introduction
1.1. Unsupervised Figure-Ground Separation

The unsupervised segmentation of figure and ground is
inherently a chicken-and-egg problem: Where is the object
and what distinguishes it from the background? A com-
mon assumption in image segmentation is that the object
and background have different color distributions. Yet, if
these are completely unknown and if they show consider-
able overlapping, then the joint estimation of color distribu-
tions and segmentation becomes a major algorithmic chal-
lenge.

Figure 1 shows two segmentation problems: The top row
is a zebra image where humans easily distinguish the ze-
bra from the background; and the bottom row shows a syn-
thetic image where intensity distributions of each region are

∗This work was supported by an Erasmus Mundus BEAM fellowship
(No. L031000107).

significantly overlapped—see Figure 6 for details. While
existing PDE-based techniques—resorting to the level-set
method [21]—often provide somewhat reasonable segmen-
tation results if good initializations are given, these meth-
ods tend to fail on the more challenging synthetic image.
This is not just because we hardly know which initializa-
tions are appropriate for a given task, but the level-set based
segmentation techniques are inherently bound to get stuck
in local minima. On the other hand, a convex formula-
tion [7] of the Chan-Vese model [9], which is independent
of any initialization, guarantees near-optimality of the solu-
tions. Unfortunately, the Chan-Vese model does not take
into account any higher-order statistics of color distribu-
tions, which means it not only fails on the synthetic im-
age but is also barely able to separate meaningful regions
in natural images since, in practice, they exhibit complex
coloring.

Therefore, it seems to be fairly obvious that a convex for-
mulation of a functional that takes all possible collections
of statistical moments into account would outperform those
based on the level-set method or inspired by the Chan-Vese
model.

1.2. Related Work

Local Search on Nonparametric Methods Since the
color distributions from which pixel values of the object and
background are drawn would not be properly assumed as
parametric models, the segmentation algorithms that make
use of non-parametric statistical methods are superior to
those resorting to the parametric methods. In conjunc-
tion with the philosophy of unsupervised image segmen-
tation, the nonparametric methods have been incorporated
with local search algorithms. Kim et al. [17] and Herbu-
lot et al. [15] proposed curve evolution equations driven
by information-theoretic energy functionals—mutual infor-
mation and conditional entropy, respectively—using the
Parzen-Rosenblatt window method [25, 22]. Similarly,
Michailovich et al. [18] derived the gradient flow of the
Bhattacharyya coefficient for curve evolution using non-
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Figure 1. We propose a sequential convex programming approach for mutual-information-based unsupervised image segmentation. In
contrast to curve evolution techniques, e.g. Kim et al. [17], our approach reasonably separates photometric distributions of figure and
ground and is robust to initialization, therefore it allows to achieve high quality solutions. Obviously, even a convex formulation of the
Chan-Vese model [9], e.g. Brown et al. [7], fails entirely when applied on above examples due to the complex coloring of the images.

parametric methods. Note that all the curve evolution equa-
tions mentioned above were implemented using the level-
set method [21], which is a gradient-based local search al-
gorithm.

Convex Relaxation Methods During the era of classi-
cal variational and graph-theoretic approaches, the consid-
erable efforts taken to find globally optimal solutions of
energy models for various types of computer vision prob-
lems have recently opened up the realm of convex relax-
ation techniques [11]. For example, the seminal work
of Nikolova et al. [20] tackles the two-phase instance of
the Mumford-Shah functional and devised a convex for-
mulation in terms of the indicator function of the object.
Based on their work and the calibration approach of Al-
berti et al. [2], Pock et al. [23] proposed an efficient algo-
rithm to find near-optimal solutions of the piecewise smooth
Mumford-Shah functional. Similarly, Brown et al. [7] com-
pletely convexified the Chan-Vese model [9] with respect to
region-based variables and the geometric unknown.

Convex Relaxation Methods for Statistical Distances
The convex relaxation techniques have been gradually ex-
panding to find globally (or near) optimal solutions for en-
ergy models inspired by various types of statistical distance
measures. A notable relaxation (among others such as those
making use of user inputs, e.g. scribbles or bounding boxes)
is the work of Punithakumar et al. [24]. The authors pro-
posed a sequential bound optimization technique for the
Bhattacharyya coefficient between a given (a priori known)
distribution and distributions of the candidate figures to be
segmented. However, to the best of our knowledge, little
attention has been paid to convex relaxation methods for
unsupervised image segmentation, except for the work of
Ni et al. [19]. In their work, they proposed an energy func-
tional which consists of the Wasserstein distance between

(local) intensity histograms from disjoint regions, and the
total variation regularization. The energy is only convex
with respect to the geometric unknown, and is minimized
by an alternating scheme.

1.3. Contribution

In this paper, we consider the fully unsupervised figure-
ground segmentation problem, namely the chicken-and-egg
problem of jointly computing a segmentation and respective
color distributions. This problem combines maximal color
separation with spatial regularity and can be formulated as
the following functional:

min
F⊂Ω

Per(F ; Ω)− λD(PF , PG), (1)

where Ω and F denote an image domain and the foreground
region, respectively; and the perimeter of F is denoted as
Per(F ; Ω). PF and PG denote the color distributions of
the foreground and background, respectively; and D(·, ·)
is some metric on the space of probability distributions
(weighted by a parameter λ > 0). Our main contribution is
to establish a family of convex upper bounds of the mutual
information—which can be rewritten as a convex combina-
tion of Kullback-Leibler divergences—in such a way that
it can be efficiently minimized by sequential convex relax-
ation. A generalization for vector-valued images turns out
to be straightforward; on the other hand, there is no closed
form representation for vector-valued images in the case of
the Wasserstein distance [19].

The remainder of the manuscript is organized as follows:
In Section 2, we introduce, step by step, a functional which
combines the negative mutual information of color distribu-
tions with a weighted total variation regularization encoding
the boundary length. In Section 3, we show how this formu-
lation can be minimized by constructing a sequence of con-
vex upper bounds, each of which can in turn be efficiently



(a) Ground truth model (b) Binary labels

Figure 2. Probabilistic setting for figure-ground separation. (a)
Photometric distributions of Ω0 and Ω1, where each region is as-
sociated with p0(z) and p1(z), respectively. (b) An indicator func-
tion u(x) decides foreground R1 and background R0.

minimized by convex relaxation techniques. In Section 4,
we experimentally validate the capacity of our approach by
showing convincing, fully unsupervised figure-ground sep-
aration; then we end with a conclusion.

1.4. Notation

Throughout the paper, we mainly deal with information-
theoretic quantities from a variational point of view. We
clarify a system of notation to be used as follows: capi-
tal and lower case letters are used for denoting random and
deterministic variables, respectively; and we use bold face
letters for vectors.

2. Information-Theoretic Energy Functional
We briefly summarize the motivation of an information-

theoretic energy for unsupervised image segmentation pro-
posed by Kim et al. [17], then reformulate the energy
in terms of an indicator function and its total variation,
thereby convexifying the curve length penalization term.

2.1. Image Modelling

Let I : Ω ⊂ R2 → Z ⊂ Rn be an observed image
function that maps a bounded open set Ω with Lipschitz
boundary to a photometric space Z , e.g. intensity or color
space. As in Figure 2 (a), we model collections of photo-
metric variables as independent and identically distributed
spatial random processes as follows:

{Z(x) ∈ Z | x ∈ Ω1}
iid∼ p1(z),

{Z(x) ∈ Z | x ∈ Ω0}
iid∼ p0(z). (2)

where Ω1 and Ω0 are the ground truth object and back-
ground, respectively. Note that I(·) is a realization of
Z(·); and both p1(z) and p0(z) are joint probability den-
sity functions when n ≥ 2. For a given indicator func-
tion u ∈ BV (Ω; {0, 1}), the space of functions of bounded
variation [3]—we use BV (Ω) as a solution space in this

(a) Mutual information (b) Labeling configuration

Figure 3. (a) On the space of probability distributions, the mu-
tual information measures similarity between two distributions PF

and PG (by means of a convex combination of Kullback-Leibler
divergences between PF and λPF + λ̄PG, and between PG and
λPF + λ̄PG). (b) We use the same labeling configuration as pro-
posed in [24].

paper—the figure R1 and the ground R0 which form a par-
tition of Ω is defined by

R1 = {x ∈ Ω | u(x) = 1} ,
R0 = {x ∈ Ω | u(x) = 0} , (3)

which are shown in Figure 2 (b).
Having established the above statistical assumption and

correspondences, we introduce the notion of mutual infor-
mation between the photometric variable and the indicator
function.

2.2. Mutual Information between the Photometric
Variable and the Indicator Function

Let us randomly extract a pixel X from Ω for a given im-
age; its photometric variable Z(X) is then probabilistically
realized by the following distribution

pZ(X)(z) =
∑

i={0,1}

Pr (X ∈ Ωi) pZ(X)|X∈Ωi
(z), (4)

= |Ω0|/|Ω| p0(z) + |Ω1|/|Ω| p1(z), (5)

where | · | denotes the 2-dimensional Lebesgue measure,
i.e., area. The joint distribution of the photometric variable
consists of two sources of uncertainty: first, the uncertainty
of pixel location, or the region where a given pixel belongs,
which is modeled by Pr (X ∈ Ωi); the second source of
uncertainty is photometric distributions in each region, i.e.,
pZ(X)|X∈Ωi

(z). The indicator function u(X), on the other
hand, is given by

u(X) =

{
1 with probability |R1|/|Ω|,
0 with probability |R0|/|Ω|.

(6)

It should be noted that the function u(·) is deterministic it-
self, but the probability nature of u(·) in (6) derives merely
from the uncertainty of pixel location.



We now consider the conditional entropy (or uncertainty)
h(Z(X)|u(X)). Since the differential entropy is concave,
i.e., h(αp0 + (1 − α)p1) ≥ αh(p0) + (1 − α)h(p1),
α ∈ (0, 1), for every p0, p1 ∈ P (the space of probabil-
ity density functions which is a convex set), the idea is to
minimize the conditional entropy by flipping pixel labels to
make their photometric distributions (i.e., pZ(X)|u(X)=0(z)
or pZ(X)|u(X)=1(z), which are mixtures of p0 and p1) as
homogeneous as possible. Thereby, we achieve an opti-
mal labeling configuration where the photometric distribu-
tions are similar to the model distributions, namely p0 and
p1. The unsupervised figure-ground segmentation problem,
therefore, can be captured by maximizing the mutual infor-
mation between the photometric variable and the indicator
function, where the mutual information is defined as

I(Z(X);u(X))

= h(Z(X))− h(Z(X)|u(X)) (7)
= h(Z(X))− Pr(u(X) = 1)h(Z(X)|u(X) = 1)

− Pr(u(X) = 0)h(Z(X)|u(X) = 0), (8)

where Pr(u(X) = 1) = Pr(X ∈ R1) = |R1|/|Ω|
and Pr(u(X) = 0) = Pr(X ∈ R0) = |R0|/|Ω|. In-
deed, the mutual information is maximized if, and only
if, Ω0 = R0, Ω1 = R1 (or equivalently Ω0 = R1,
Ω1 = R0)—readers can find the proof in [17]—which
comes basically from the data processing inequality [10].
Interestingly, the mutual information proposed can be inter-
preted as a disparity measure between pZ(X)|u(X)=1(z) and
pZ(X)|u(X)=0(z) using a convex combination of Kullback-
Leibler (KL) divergences—often called λ-divergence—as
follows

I(Z(X);u(X)) (9)
= λDKL(PF ||λPF + λ̄PG) + λ̄DKL(PG||λPF + λ̄PG)

where λ = |Ω1|/|Ω|, and PF and PG are the photomet-
ric distributions from which densities pZ(X)|u(X)=1(z) and
pZ(X)|u(X)=0(z) are derived. Although the KL divergence
is not a distance metric on the space of probability distribu-
tions, it as a premetric measures discrepancy between PF
and PG via λPF + λ̄PG. In Figure 3 (a), we illustrate how
the mutual information measures dissimilarity between PF
and PG on the space of probability distributions.

2.3. Energy Functional

Nevertheless, the mutual information I(Z(X);u(X))
cannot be computed in practice since the distributions in-
volved are unknown to us; otherwise, the maximization of
the mutual information would be straightforward by the
likelihood ratio test, i.e., p1(z(x))

p0(z(x)) ≷ γ. Therefore, we
estimate the mutual information using the integral esti-

mate1 of entropy proposed by Dmitriev et al. [12]; they
showed that the estimate converges almost surely, that is
Pr
(

limn→∞ ĥ(Z(X)) = h(Z(X))
)

= 1, where the en-

tropy estimate ĥ(Z(X)) = −
∫
Z p̂Z(X)(z) log p̂Z(X)(z) dz;

the kernel density estimate p̂Z(X)(z) of pZ(X)(z) is de-
fined as 1

n

∑n
i=1KH(z − I(xi)), where H is the n ×

n bandwidth matrix. Note that we use 1
|Ω|
∫

Ω
KH(z −

I(x)) dx for p̂Z(X)(z) in the continuous setting. The
conditional entropy estimates ĥ(Z(X)|u(X) = 1)

and ĥ(Z(X)|u(X) = 0) are similarly defined by
using p̂Z(X)|u(X)=1(z) =

∫
Ω
KH(z−I(x))u(x) dx∫

Ω
u(x) dx

, and

p̂Z(X)|u(X)=0(z) =
∫
Ω
KH(z−I(x))(1−u(x)) dx∫

Ω
1−u(x) dx

. Here, a
number of possible definitions for the kernel function
KH(z) and H can be found in [26].

We now combine the mutual information estimate with
a (weighted) total variation (TV) regularization encoding
boundary length. Furthermore, we multiply the area of the
image domain to the mutual information estimate in order to
incorporate the total amount of information between the in-
dicator function and the entire image—see [17] for details.
Then, the overall energy model is given by:

inf
u∈BV (Ω;{0,1})

−λ|Ω|Î(Z(X);u(X)) +

∫
Ω

g|Du|︸ ︷︷ ︸
=:E(u)

, (10)

where λ > 0 is a parameter. The second term is the
weighted TV-norm of u [3]—geometrically equivalent to
Perg(F ; Ω)—which is the exact counterpart of that in the
geodesic active contours [6], where g(x) is an edge indi-
cator function. Let us claim that there exists a minimizer
of (10).

Proposition 1. There exists a u(·) such that inf{E(u) |u ∈
BV (Ω; {0, 1})} is achieved.

Proof. See the Supplementary Material.

However, in spite of the existence of a solution, the over-
all energy functional would not be able to be efficiently
minimized because the convexity of E(u) is not guaranteed
even when the domain {0, 1} is relaxed to its convex hull
[0, 1]. Note that the proof of Proposition 1 obviously holds
in the relaxed domain [0, 1].

Proposition 2. −λ|Ω|Î(Z(X);u(X)) is concave in u ∈
BV (Ω; [0, 1]).

Proof. See the Supplementary Material.
1Note that entropy terms in [17], on the other hand, are estimated by

using the resubstitution estimate proposed by Ahmed et al. [1]—which
is essentially the law of large numbers. They showed that the estimate
is mean square consistent. Readers can refer to an overview of the non-
parametric entropy estimation in [5].
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Figure 4. Fundamental inequality when b = 2. (a) Red,
black, and blue curves correspond to (x − 1) logb e, logb x, and(
1− 1

x

)
logb e, respectively. (b) Blue, black, and red curves cor-

respond to −x
(
1− 1

x

)
logb e, −x logb x, and −x(x − 1) logb e,

respectively.

Let u?bin be a thresholded version of u?rel which is a
global minimizer of E(u) over the relaxed domain [0, 1],
that is u?bin = 1{u?

rel≥θ} for any threshold value θ ∈
(0, 1); and let uopt be a globally optimal binary solution
of E(u). Then, under the condition that the coarea for-
mula [14] holds in E(u), the global optimality of u?bin, or
E(u?bin) = E(uopt), is typically guaranteed by the thresh-
olding theorem [20]. Unfortunately, one cannot obtain an
optimal binary solution by simply thresholding any relaxed
solutions, because the coarea formula does not hold in the
case of E(u). Instead, we can give a per instance energy
bound for the optimal solution: |E(u?bin)− E(uopt)| ≤
|E(u?bin)− E(u?rel)|. That is, by evaluating E(u) at u?rel

and u?bin, one can check how close u?bin is to uopt ener-
getically. However, efficient minimization of E(u) over
BV (Ω; [0, 1]) appears hopeless, as it is nonconvex. Yet,
E(u) is a form of the difference of convex functionals
where the Majorization-Minimization principle [16] could
kick in.

Indeed, in what follows, we tackle the challenging non-
convex optimization problem by constructing a convex sur-
rogate, thereby minimizing the original nonconvex energy
by means of sequential convex relaxation.

3. Sequential Convex Programming
To begin with, we summarize the Majorization-

Minimization (MM) principle [16] as follows.

MM Philosophy Let F (u|ui) denote a function of u
whose form depends on ui. In the MM principle, one con-
structs a surrogate function F (u|ui) which majorizes the
objective E(u), meaning for all u, F (u|ui) ≥ E(u) and
F (ui|ui) = E(ui), and minimizes it instead. Indeed, if
ui+1 is a minimizer of F (u|ui) for all i ∈ Z+, the itera-
tive minimization of F (u|ui) gives a sequence of energies
(E(ui))i≥1 which is monotonically decreasing. Further-
more, (E(ui))i≥1 is convergent if E(u) is bounded below.

Therefore, the task is to construct an energy upper bound

(a) (b)

Figure 5. (a) Mutual information estimate Î(Z(X);ui
bin(X))

(blue line) is bounded by 0 and 1 (black lines) and converges
to the ground truth (red line). (b) Energy E(ui

bin) (blue line) is
monotonically decreasing to the ground truth (red line).

F (u|ui) for E(u) in (10). Note that the iterative bound op-
timization framework proposed by Punithakumar et al. [24]
is basically the MM principle.

3.1. Energy Upper Bounds and Convex Relaxation

Definition 1. Let ui ∈ BV (Ω; {0, 1}) be a previous label
and u ∈ BV (Ω; {0, 1}) be a current label. We denote the
area increase and decrease as respectively,

u+(x) =

{
u(x) where ui(x) = 0,

0 otherwise;
(11)

u−(x) =

{
1− u(x) where ui(x) = 1,

0 otherwise.
(12)

The above labeling configuration proposed in [24]—see
also Figure 3 (b)—is one of the building blocks to construct
an energy upper bound of E(u) with the following inequal-
ity.

Lemma 1 (Fundamental inequality). For any b > 0, and
x > 0,(

1− 1

x

)
logb e ≤ logb x ≤ (x− 1) logb e, (13)

where equalities on both sides are satisfied if, and only if
x = 1.

Proof. See the proof in [27].

We illustrate the inequality (13) in Figure 4 to give an
intuition for the bounds which are going to be presented.
Indeed, it turns out these two building blocks play a signifi-
cant role to derive the following theoretical results.

Proposition 3. Given a binary label ui, for any labeling
function u ∈ BV (Ω; {0, 1}), we have the following energy
upper bound:

E(u) ≤ λ
(
−|Ω|Î(Z(X);ui(X)) + J(u, ui)

)
+

∫
Ω

g|Du|︸ ︷︷ ︸
=:F (u|ui)

,

(14)
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Figure 6. Synthetic image experiments for visualization of the intensity distribution separation. Case 1 (top row and four PDFs
from the left most) : Object (white) and the background (black) of the “CVPR’14” image are associated with an unimodal and bimodal
distribution, respectively, of the same µ = 0.5 and σ = 0.16. Case 2 (second row and the remaining PDFs) : By setting ZG =
2E[ZF ] − ZF , where ZF ∼ Rayleigh(0.15

√
2/π) + 0.4 [18], we obtain two Rayleigh distributions from which all the even central

moments drawn are the same.

where

J(u, ui) =

∫
Ω

Ci1(u− ui) dx +

∫
Ω

(u− ui) dx (15)

·
[
Ci2

∫
Ω

C4udx− Ci3
∫

Ω

C4(1− u) dx

]
,

and

Ci1 =

∫
Z
KH(z− I(x)) · log

(
p̂Z(X)|ui(X)=0(z)

p̂Z(X)|ui(X)=1(z)

)
dz,

(16)

Ci2 =

(∫
Ω

ui dx

)−1

, (17)

Ci3 =

(∫
Ω

(1− ui) dx

)−1

, (18)

C4 =

∫
Z
KH(z− I(x)) dz · log e; (19)

furthermore2, the equality holds if, and only if, u(x) =
ui(x), for all x ∈ Ω.

Proof. See the Supplementary Material.

Corollary 1. (E(ui))i≥1 is convergent.

Proof. (E(ui))i≥1 is bounded below, since 0 ≤
Î(Z(X);u(X)) ≤ 1 bit, and

∫
Ω
g|Du| ≥ 0.

Corollary 2. The upper bound of E(u) in (14) is convex in
u ∈ BV (Ω; [0, 1]).

Proof. For every u1, u2 ∈ BV (Ω; [0, 1]) and 0 ≤ t ≤ 1,∫
Ω
g|D(tu1 + (1 − t)u2)| ≤

∫
Ω
g|Dtu1| +

∫
Ω
g|D(1 −

t)u2| = t
∫

Ω
g|Du1|+ (1− t)

∫
Ω
g|Du2|; and J ′′(u, ui) >

0.
2Note that Ci

1 and C4 are functions of x; on the other hand, Ci
2, Ci

3
are constants.

Consequently, the original nonconvex optimization
problem (10) can be efficiently solved by minimizing the
convex upper bound in Proposition 3. In addition, the mu-
tual information estimate Î(Z(X);ui(X)) in (14) is con-
stant for a given ui, we clearly have the following sequential
convex programming problem:

inf
u∈BV (Ω;[0,1])

λJ(u, ui) +

∫
Ω

g|Du|. (20)

Here, one can easily check that each of the convex sub-
problems admits the existence of a minimizer as shown in
the proof of Proposition 1.

For each instance again, let uopt be a globally optimal
binary solution of F (u|ui), and let u?bin be a thresholded
version of u?rel which is a global minimizer of F (u|ui) over
the relaxed domain [0, 1]. Unfortunately, the coarea for-
mula [14] does not hold for the proposed upper bounds. In
other words, we simply cannot make use of the thresholding
theorem [20] to show that F (u?bin|ui) = F (uopt|ui). In-
stead, we have the following a posteriori optimality bound:∣∣F (u?bin|ui)− F (uopt|ui)

∣∣ ≤ ∣∣F (u?bin|ui)− F (u?rel|ui)
∣∣ .

(21)

In practice, the relative bounds are typically less than 1%—
see Section 4 for actual numerical values we obtained.

3.2. Implementation

3.2.1 Primal-Dual Optimization

The convex energy upper bounds in (20) are not dif-
ferentiable because the Euler-Lagrange equation of the
(weighted) TV term exhibits a singularity at u = 0. In or-
der to remedy that, we reformulate the bounds to equivalent



Figure 7. Unsupervised figure-ground segmentation for vector-valued images. Interestingly, the results obtained by minimizing the
mutual-information-based functional do not always match human expectations: For example, rather than separating the butterfly from the
background, the algorithm separated the white flowers, which are more likely distinguishable from the remaining colors.

saddle-point problems [13] as follows:

min
u∈BV (Ω;[0,1])

sup
ξ∈Kg

λJ(u, ui)−
∫

Ω

udiv ξ dx, (22)

with the convex set Kg =
{
ξ ∈ C1

c (Ω,R2) : |ξ| ≤ g
}
,

where |·| denotes the Euclidean norm in R2 and g is an edge
indicator function. We solve (22) by means of a primal-
dual algorithm of Arrow-Hurwicz type [4], which essen-
tially performs a projected gradient ascent in the dual vari-
able followed by a projected gradient descent in the pri-
mal variable. Additionally, we perform a subsequent over-
relaxation step for the primal variables as in [8], in order
to improve the convergence of the algorithm. Overall, the
algorithm point-wise iterates the following update steps:

ξk+1(x) = ΠKg

(
ξk(x) + τ∇ūk(x)

)
(23)

uk+1(x) = Π[0,1]

(
uk(x)− σ

(
∂uJ − div ξk(x)

))
(24)

ūk+1(x) = 2uk+1(x)− uk(x), (25)

where (23) and (24) are the update steps for the dual and
primal variables (ΠKg

and Π[0,1] are orthogonal projection
operators onto the sets Kg and [0, 1]), respectively; (25) is
an over-relaxation step. For the step sizes (τ , σ), we chose
sufficiently small values.

3.2.2 Kernel Density Estimation

We use a Gaussian function with a diagonal matrix H
for KH(z). For the sake of efficient implementation, we
channel-wise estimate the color distributions of vector-
valued images as follows,

KH(z− I(x)) =

n∏
j=1

1

2πσ2
j

exp

(
−|zj − Ij(x)|2

2σ2
j

)
, (26)

where σj is the j-th diagonal element of H and | · | denotes
the Euclidean norm in Rn. This estimation derives from
the assumption that the color channels are mutually inde-
pendent which is not necessarily the case in natural images.

However, computing the log-likelihood ratio at each step is
computationally demanding during optimization and would
render our approach impractical. By decoupling the color
channels, we are able to achieve drastic improvements of
the computation time with reasonably meaningful figure-
ground separation. The runtime of the algorithm is ap-
proximately 5 minutes with unoptimized Matlab code on
an 400 × 1200 image. Our algorithm runs on a Intel Core
I7 CPU computer with 2.67 GHz and 4 GB of memory.

4. Experimental Results
The segmentation results obtained by our approach are

mostly well matched to human expectations, compared to
those from algorithms based on the Chan-Vese model [9]
and its convex formulations. The reason is that the mutual
information takes into account all the higher-order statis-
tics, whereas the algorithms for the Chan-Vese model in-
cluding its convex formulations consider the 1st central mo-
ment only. We present two compelling examples in Fig-
ure 6 where such algorithms completely fail to separate the
hidden distributions. Here, the figure and ground basically
cannot be distinguished up to the 2nd central moment. Even
in the challenging Rayleigh distribution example where all
the even central moments are the same [18], the proposed
method is capable of separating the foreground and back-
ground. We also demonstrate Corollary 1 in Figure 5 by
plotting the evolution of the mutual information and the
overall energy with respect to the number of iterations for
the unimodal/bimodal distribution case. Indeed, in many
cases, the proposed algorithm converges to the global opti-
mum of the original problem, and it is robust to initialization
compared to [17] and [18].

The gradient based curve evolution of Kim et al. [17]
fails to segment the zebra image in Figure 1 where even a
bounding box was used for an initialization to enclose the
object to be segmented. Even with a good initialization—
multiple contours are typically used in the curve evolution
to cover the entire image—it may not well separate the fore-
ground and background in the challenging synthetic image



in the bottom row of Figure 1.
As we mentioned in Section 1.3, extending the pro-

posed method to vector-valued images is straightforward.
Some results from the the Berkeley Segmentation Dataset
are shown in Figure 7. In the case of the segmented flowers
in the butterfly image, we did not expect such an interest-
ing separation. This example could provide evidence why
unsupervised figure-ground separation is not trivial, even to
humans. As for the relative optimality bounds, we obtain in
average values between 0.1% to 0.5%.

5. Conclusion
We have proposed an optimization algorithm for unsu-

pervised figure-ground separation. Through sequential con-
vex relaxation of a sequence of convex upper bounds, we
have efficiently minimized the original nonconvex mutual-
information-based energy functional. In contrast to the ap-
proach where convex relaxation techniques are combined
with the Wasserstein distance, our approach is straightfor-
wardly generalizable to vector-valued images. Experimen-
tal results are remarkable in that they are in fairly good
agreement with those from humans; yet, some results are
quite surprising as the proposed approach is able to separate
distributions where humans can hardly see the differences.

Lastly, we should mention that it does not seem possible
to guarantee optimality for solutions of the original noncon-
vex problem due to the nature of sequential optimization.

References
[1] I. Ahmad and P.-E. Lin. A nonparametric estimation of the

entropy for absolutely continuous distributions (corresp.).
IEEE Trans. Inf. Theory, 22(3):372–375, 1976. 4
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