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Abstract

Convex relaxation techniques have become a popular
approach to image segmentation as they allow to compute
solutions independent of initialization to a variety of im-
age segmentation problems. In this paper, we will show
that shape priors in terms of moment constraints can be im-
posed within the convex optimization framework, since they
give rise to convex constraints. In particular, the lower-
order moments correspond to the overall volume, the cen-
troid, and the variance or covariance of the shape and can
be easily imposed in interactive segmentation methods. Re-
spective constraints can be imposed as hard constraints or
soft constraints. Quantitative segmentation studies on a va-
riety of images demonstrate that the user can easily impose
such constraints with a few mouse clicks, giving rise to sub-
stantial improvements of the resulting segmentation, and re-
ducing the average segmentation error from 12% to 0.35%.
GPU-based computation times of around 1 second allow for
interactive segmentation.

1. Introduction
1.1. Shape Optimization in Computer Vision

Shape optimization is at the heart of several classical
computer vision problems such as image segmentation and
multi view reconstruction. Following a series of seminal
papers [12, 1, 17], functional minimization has become the
established paradigm to solve shape optimization problems
such as image segmentation or 3D reconstruction. In the
spatially discrete setting the study of the corresponding bi-
nary labeling problems goes back to the spin-glas models
introduced in the 1920’s [11]. Popular algorithms to solve
the arising shape optimization problems include level set
methods [18], graph cuts [9] or convex relaxation [4].

In this paper, we focus on a class of functionals of the
form:

E(S) =

∫
int(S)

f(x) dx +

∫
S

g(x) dA, (1)

where S denotes a hyper surface in Rd, i.e. a set of closed

User input Segmentation with moment
constraints

Figure 1. We propose a convex formulation for interactive image
segmentation which allows to impose constraints on moments of
arbitrary order. In particular, constraints on the lower order mo-
ments (area, centroid, covariance) are easily transmitted through
mouse interaction (left). They allow to stabilize the segmentation
process while preserving fine-scale details of the shape (right).

boundaries in the case of 2D image segmentation or a set of
closed surfaces in the case of 3D segmentation and multi
view reconstruction. The functions f : Rd → R and
g : Rd → R+ are application dependent. In a statistical
framework for image segmentation, for example,

f(x) = log pbg(I(x))− log pob(I(x)),

may denote the log likelihood ratio for observing the color
I(x) at a point x given that x is part of the background or
the object, respectively.

The second term in (1) corresponds to the area (for
d = 3) or the boundary length (for d = 2), measured in a
metric given by the function g. In the context of image seg-
mentation, g may be a measure of the local edge strength –
as in the geodesic active contours [3, 13] – which energet-
ically favors segmentation boundaries along strong inten-
sity gradients. In the context of multi view reconstruction,



g(x) typically measures the photo-consistency among dif-
ferent views of the voxel x, where low values of g indicate
a strong agreement from different cameras on the observed
patch intensity.

1.2. Shape Priors for Image Segmentation

There has been much research on imposing prior shape
knowledge into image segmentation. While it was shown
that segmentation results can be substantially improved
by imposing shape priors [10, 5, 8], existing approaches
typically suffer from the following problems:

• Apart from a few exceptions such as [20] – computable
solutions are only locally optimal. As a consequence,
one typically needs appropriate initializations and so-
lutions may be arbitrarily far from the globally mini-
mal ones. Other notable exceptions were designed by
Veksler and coworkers for specific scenarios such as
“compact objects” [6] or “star-shaped objects” [21].

• Many shape priors have a rather fine granularity in the
sense that they impose the object silhouette to be con-
sistent with those silhouettes observed in a training set
[5, 7]. The degree of abstraction is typically rather
small. In particular, deviations of the observed shape
from the training shapes are (elastically) suppressed
by the shape prior. This is particularly undesirable in
medical image segmentation where malformations of
organs (that make it deviate from the training shapes
of healthy organs) should be detected rather than ig-
nored. It may therefore be of interest to merely impose
some coarse-level shape information rather that impos-
ing the exact form of the object.

An alternative approach that may provide a remedy for
both of the above problems is to impose moment con-
straints. In particular, the lower-order moments allow to
constrain the volume, the centroid and the size or covari-
ance of objects without imposing any constraints on their
local shape. A related idea of using Legendre moments (al-
beit in a local optimization scheme) was developed in [8].

In a convex formulation of multiple view 3D reconstruc-
tion, it was recently shown [14] that one can impose ad-
ditional convex constraints which assure that the computed
minimal surfaces are silhouette-consistent. Essentially this
constraint can be seen as a volume constraint: The volume
along any ray from the camera center must be at least 1 if
that ray passes through the silhouette and zero otherwise. In
the two-dimensional case, a related constraint was recently
proposed as a bounding box prior for image segmentation
[16].

1.3. Contribution

In this paper we show that one can impose an entire fam-
ily of moment constraints in the framework of convex shape
optimization, thereby generalizing from the zeroth order
moment (volume) to higher order moments (centroid, scale,
covariance, etc). In particular, all moment constraints - both
soft or hard - correspond to convex constraints. As a conse-
quence we can compute moment-constrained shapes which
are independent of initialization and lie within a bound of
the optimum.

The outline of the paper is as follows. In Section 2,
we will briefly review a framework for convex relaxation
and thresholding which allows to efficiently compute global
minima of the above energies in a spatially continuous set-
ting. In Section 3, we will then show that moment con-
straints can be imposed as convex constraints within the op-
timization framework. In Section 4 we show how the aris-
ing optimization problem can be minimized using efficient
GPU-accelerated PDEs. In Section 5 we present experi-
mental results and a quantitative evaluation showing that
interactive segmentation results can be drastically improved
using moment constraints.

2. Shape Optimization via Convex Relaxation
Functionals of the form (1) can be globally optimized

in a spatially continuous setting by means of convex relax-
ation and thresholding [4]. To this end, one reverts to an
implicit representation of the hyper surface S using an indi-
cator function u ∈ BV (Rd; {0, 1}) on the space of binary
functions of bounded variation, where u = 1 and u = 0
denote the interior and exterior of S. The functional (1) de-
fined on the space of surfaces S is therefore equivalent to
the functional

E(u) =

∫
f(x)u(x) dx +

∫
g(x)|Du(x)|, (2)

where the second term in (2) is the weighted total variation.
HereDu denotes the distributional derivative which for dif-
ferentiable functions u boils down to Du(x) = ∇u(x)dx.
By relaxing the binary constraint and allowing the function
u to take on values in the interval between 0 and 1, the op-
timization problem becomes that of minimizing the convex
functional (2) over the convex set BV (Rd; [0, 1]). Global
minimizers u∗ of this relaxed problem can therefore effi-
ciently be computed, for example by a simple gradient de-
scent procedure.

The tresholding theorem [4] assures that thresholding the
solution u∗ of the relaxed problem preserves global opti-
mality for the original binary labeling problem. We can
therefore compute global minimizers for functional (2) in
a spatially continuous setting as follows: Compute a global
minimizer u∗ of (2) on the convex set BV (Rd; [0, 1]) and
threshold the minimizer u∗ at any value µ ∈ (0, 1).



3. Moment Constraints for Segmentation
In the following, we will successively constrain the mo-

ments of the segmentation and show how all of these con-
straints give rise to nested convex sets. To this end we will
represent shapes in d dimensions as binary indicator func-
tions u ∈ BV (Ω; {0, 1}) of bounded variation on the do-
main Ω ⊂ Rd. We will denote the convex hull of this set by
B = BV (Ω; [0, 1]).

3.1. Area Constraint

We can impose that the area of the shape u to be bounded
by constants c1 ≤ c2 by constraining u to lie in the set:

C0 =

{
u ∈ B

∣∣ c1 ≤ ∫
Ω

u dx ≤ c2
}
.

Proposition 1. For any constants c2 ≥ c1 ≥ 0, the set C0
is convex.

Proof. Let u1, u2 ∈ C0 be two elements from this set. Then
for any convex combination uα = αu1 + (1 − α)u2, α ∈
[0, 1] of these elements we have:∫

Ω

uα dx = α

∫
Ω

u1 dx+ (1− α)

∫
Ω

u2 dx.

As a consequence we have c1 ≤
∫

Ω
uα dx ≤ c2 such that

uα ∈ C0.

In practice, we can either impose an exact area by setting
c1 = c2, or we can impose upper and lower bounds on the
area. Alternatively, we can impose a soft area constraint by
enhancing the functional (2) as follows:

Etotal(u) = E(u) + λ

(∫
u dx− c

)2

, (3)

which imposes a soft constraint with a weight λ > 0 favor-
ing the area of the estimated shape to be near c ≥ 0. Clearly,
the functional (3) is also convex.

3.2. Centroid Constraint

Assume that someone gave us some bounds about the
centroid (center of gravity) for the object we want to re-
construct. We can impose these bounds by constraining the
solution u to the set C1:

C1 =

{
u ∈ B

∣∣ µ1 ≤
∫

Ω
xu dx∫

Ω
u dx

≤ µ2

}
, (4)

where all inequalities are to be taken point wise and
µ1, µ2 ∈ Rd. This imposes the centroid to lie between the
two constants µ1 ≤ µ2. In particular, for µ1 = µ2, the
centroid is fixed.

Proposition 2. For any constants µ2 ≥ µ1 ≥ 0, the set C1
is convex.

Proof. The inequality constraint in (4) is equivalent to

µ1

∫
Ω

u dx ≤
∫

Ω

xu dx ≤ µ2

∫
Ω

u dx,

which are clearly two linear inequality constraints.

Alternatively, we can impose the centroid as a soft con-
straint by minimizing the energy:

Etotal(u) = E(u) + λ

(∫
(µ− x)u dx

)2

,

which is also convex in u. Interestingly this soft constraint
does not minimize the quadratic difference to the specified
center µ; the latter would not be convex. In contrast to the
hard constraint, this soft constraint unfortunately exhibits
a preference toward smaller shapes as it vanishes with de-
creasing object size:(∫

(µ− x)u dx

)2

=

(
µ−

∫
xu dx∫
u dx

)2

b2,

where b =
∫
u dx denotes the size of the object.

3.3. Imposing Higher-Order Moments

Clearly, the proposed concept can be generalized to mo-
ments of successively higher order, where we shall focus on
so-called central moments (i.e. moments with respect to a
specified centroid). In particular, the respective structures
will generally be tensors of higher dimension. For example,
one can impose the covariance structure by considering the
following convex set:

C2 =

{
u ∈ B

∣∣ A1 ≤
∫

Ω
(x− µ)(x− µ)>u dx∫

u dx
≤ A2

}
,

(5)
where the inequality constraint should be taken element
wise. Here µ ∈ Rd denotes the center and A1, A2 ∈ Rd×d
denote symmetric matrices such that A1 ≤ A2 element
wise. This constraint is particularly meaningful if one ad-
ditionally constrains the centroid to be µ, i.e. considers the
intersection of the set (5) with a set of the form (4).

Note that this allows, in particular, to constrain the scale
σ of the object, because:

σ2 =

∫
(x− µ)2u dx∫

u dx
= tr

∫
Ω

(x− µ)(x− µ)>u dx∫
u dx

.

From the constraint in (5) it follows that:

tr(A1) ≤ σ2 ≤ tr(A2).
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Figure 2. Segmentation results with higher order moment constraints. By imposing constraints of increasing order (up to 12th order) more
and more fine scale details of the shape are restored.

In general, we can impose constraints on moments of any
order k ∈ N:

Ci1...id =
{
u ∈ B

∣∣
ai1..id ≤

∫
Ω

(x1 − µ1)i1 · · · (xd − µd)idu dx∫
u dx

≤ bi1..id
}
,

where i1 + · · ·+ id = k and ai1..id ≤ bi1..id can be chosen
arbitrarily to constrain the moment tensor of order k. Here
xi denotes the i-th component of x.

Proposition 3. For all i1, . . . , id ∈ N and for any constants
ai1..id ≤ bi1..id , the set Ci1...id is convex.

Proof. The proof is analogous to that of proposition 1.

3.4. Imposing a Hierarchy of Shape Details

The above properties allow to impose various constraints
on the shape associated with the indicator function u. Im-
posing more and more constraints of increasingly higher or-
der leads to a smaller and smaller intersection of the asso-
ciated convex sets as a feasible domain of the shape and a
corresponding hierarchy of shape details being imposed in
the segmentation. How much shape detail can one impose
in this manner?

Proposition 4. Similarity to any given shape can be im-
posed at arbitrary detail by imposing convex moment con-
straints of increasingly higher order.

Proof. According to the uniqueness theorem of moments
[19], the function u is uniquely defined by its moment se-
quence.

Figure 2 shows an example of segmentations with high
order moment constraints: While the higher-order moments
allow to recover fine-scale shape details, the shape improve-
ments due to higher order constraints are fairly small. Fur-
thermore imposing moments of higher order is not very
practical: Firstly the user cannot estimate these moments vi-
sually. Secondly the user cannot transmit respective higher-
order tensors through a simple mouse interaction. Instead,
having the image data determine the shape’s fine scale struc-
ture turns out to be far more useful.

Therefore, for the application we consider – namely in-
teractive image segmentation – we shall in the following

limit ourselves to imposing moments up to 2nd order (vol-
ume, center of mass, scale and covariance).

4. Reconstruction under Moment Constraints
Shape optimization and image segmentation with respec-

tive moment constraints can now be done by minimizing
convex energies under respective convex constraints.

Let C be a specific convex set containing knowledge
about respective moments of the desired shape – given by an
intersection of the above convex sets. Then we can compute
segmentations by solving the convex optimization problem

min
u∈C

E(u),

with E(u) given in (2). In this paper we solved the Euler-
Lagrange equations:

0 = div
(
g
∇u
|∇u|

)
− f

using the lagged diffusivity approach that was presented
in [15]. We enforce constraints during the optimization
by back-projecting the current segmentation onto the con-
straint set after every iteration using the algorithm of [2].

Unfortunately, the threshold theorem [4] guaranteeing
optimality for the unconstrained binary labeling problem
does not generalize to the constrained optimization prob-
lems considered here. Nevertheless, we can prove the fol-
lowing optimality bound.

Proposition 5. Let u∗ = arg minu∈C E(u) be a minimizer
of the relaxed problem and Eopt the (unknown) minimum of
the corresponding binary problem. Then any thresholded
version û of the relaxed solution u∗ is within a computable
bound of the optimum Eopt.

Proof. Since Eopt lies energetically in between the mini-
mum of the relaxed problem and the energy of the thresh-
olded version, we have:

E(û)− Eopt ≤ E(û)− E(u∗).
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User input Segmentation
without constraint

with area and
centroid constraint

Figure 3. Segmentation of a CT image with kidneys and spine.
The centroid and area constraints enable the user to specify the
approximate location and size of the desired object that should be
segmented. Imposing these moment constraints during optimiza-
tion leads to drastic improvements in the segmentation.

5. Experimental Results

In this section we present a qualitative and quantitative
evaluation of the proposed method on medical imagery and
other real-world images and videos. For all experiments we
use g(x) = 1 and f(x) = log pbg(I(x))/pobj(I(x)) with
input image I : Ω → R. Respective moment constraints
on centroid, area or covariance structure are easily imposed
by simple mouse interactions. Solutions to the constrained
convex optimization problems are computed on the fly. Typ-
ical run-times on the GPU are around 1 second for an image
of the size 300× 400. The average energy bound is around
5% from the optimal solution.

5.1. Quantitative Evaluation on Medical Images

Centroid and Area Constraints Figure 3 shows a com-
parison of segmentation with and without a constraint on
the area and centroid for a CT image of kidneys and spine:
without constraints no location information is taken into
account for the segmentation, resulting in a segmentation
which includes many different regions. Enabling the area
and centroid constraints leads to segmentations that prefer
the center and the size of the circle that was clicked by the
user. This leads to substantial improvements of the segmen-
tations without affecting the fine-scale boundary estimation.

(6.93% error) (0.76% error)

(8.24% error) (0.26% error)

User input Segmentation
without constraint

with covariance
and area constraint

Figure 4. Tumor extraction in brain MR images using segmenta-
tion with and without constraints on covariance and area. While
the algorithm does not require any local boundary information,
constraining its second order moments by a simple user interac-
tion suffices to generate the desired segmentation.

Higher Order Constraints More sophisticated structures
can be specified with higher order moments. Since covari-
ance matrices can be represented by ellipsoids, an intuitive
user input is achieved by clicking an ellipse with the mouse.
The axes of the ellipse define the entries of the correspond-
ing covariance matrix, while the center and area of the el-
lipse define the centroid and area constraints. Figures 4 and
5 show segmentations with and without constraints result-
ing from user defined ellipses describing the approximation
size, location and shape of the desired object.

5.1.1 Quantitative Performance Evaluation

Clearly, the user-specified moment constraints allow to vis-
ibly improve the segmentation. To quantify this improve-
ment, table 1 shows average relative errors (i.e. the per-
centage of incorrectly labeled pixels per image) with stan-
dard deviations for an evaluation of the segmentation with-
out constraint, with area constraint only, and with area and
centroid and covariance constraint respectively. Some of the
images that were used for the tests and their segmentations
are shown in Figures 3, 4 and 5. The table shows that the
use of these rather simple and easy to transmit constraints
yield a reduction of incorrectly classified pixels by a factor
of about 10.
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User input Segmentation
without constraint

Segmentation with
area constraint

with covariance
and area constraint

Figure 5. Segmentation without and with constraints for a CT image of the neck. The area constraint yields a segmentation which prefers
the size of the ellipse that was clicked by the user, resulting in less incorrectly labeled pixels, compared to the segmentation without
constraint. The covariance constraint also considers the dimensions of the ellipse which yields an even more accurate segmentation. Again,
the convex constraints merely constrain respective moments of the solution leading to drastic improvements of the segmentation results.

Avg. relative error

Segmentation without constraint 12.02 % ± 0.89%

with area constraint 2.36 % ± 0.11%

with centroid and area constraint 0.41 % ± 0.05%

with centroid, area and covariance 0.35 % ± 0.09%

Table 1. Average relative errors with standard deviations for seg-
mentation without and with moment constraints.

5.2. Moment Constraints for Tracking

Figures 6 and 7 show how the proposed method can be
applied to tracking objects in videos. As can be seen in Fig-
ure 7, the purely color-based segmentation does not suffice
to correctly segment object from background in the case of
non-unique color distributions.

We impose shape information by constraining the low
order moments (area, centroid and covariance) throughout
the entire image sequence. As can be seen in the first im-
age of each sequence, the user initializes the method with
two mouse clicks: an ellipse of the approximate size and
location of the object is drawn on the first frame of the se-
quence. This is sufficient user input, since histograms and
moment constraint parameters are derived from the ellipse:
histograms for foreground and background are computed
from the inside and outside of the ellipse, respectively, and
the constraint parameters for area, centroid and covariance
are derived from the ellipse’s area, center point and princi-
pal axes. The subsequent frames of the video use the his-
tograms and moment constraints from the first frame, al-
lowing a small deviation of the centroid from each frame to
the next, which corresponds to a constraint on the maximum
velocity. Since no previous learning of shapes is neccessary,
the approach naturally applies to arbitrary object shapes.

5.3. Moment Constraints for Real World Images

Figure 8 shows how moment constraints can improve
segmentation of real world images. The purely color-based
segmentations without moment constraints shown in the
second column show that the color distributions of respec-
tive objects are not sufficiently different to discriminate the
objects of interest. The third column of Figure 8 shows the
segmentation results with constraints on area, centroid and
covariance. All moment constraints are extracted from the
user-specified ellipse. These constraints allow to quickly
disambiguate the color information leading substantial im-
provements of the segmentation.

6. Conclusion

We proposed the use of moment constraints in a convex
shape optimization framework. In particular, we showed
that for an entire family of constraints on the area, the cen-
troid, the covariance structure of the shape and respective
higher-order moments, the feasible constraint sets are all
convex. While, we cannot guarantee global optimality of
the arising segmentations, all computed solutions are inde-
pendent of initialization and within a known bound of the
optimum. In both qualitative and quantitative experiments
on interactive image segmentation, we demonstrated that re-
spective moment constraints are easily imposed by the user
and lead to drastic improvements of the segmentation re-
sults, reducing the average segmentation error from 12%
to 0.35%. In contrast to existing works on shape priors
in segmentation the use of low-order moment constraints
does not require shape learning and is easily applied to ar-
bitrary shapes since the recovery of fine scale shape details
is not affected through the moment constraints. Efficient
GPU-accelerated PDE solvers allow for computation times
of about one second for images of size 300 × 400, making
this a practical tool for interactive image segmentation.



Figure 6. Moment constraints for object tracking. The user initializes the tracking by clicking an ellipse in the first frame, the moments of
which constrain the segmentation in subsequent images. A small deviation of the centroid is allowed to track the moving object. Note that
this approach is generic, as no shapes have to be previously learned.

Figure 7. Moment constraints for object tracking. The user initializes the tracking in form of an ellipse in the first frame (left), from which
histograms and constraint parameters are derived. The first row shows results with moment constraints, where a deviation of the centroid
is allowed from each frame to the next one to account for the object’s motion. The second row shows results of histogram based tracking
without constraints. This comparison shows that moment constraints can realize acceptable real-world object tracking with no previous
learning of shapes.
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