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Abstract

We propose a novel joint registration and segmentation

approach to estimate scene flow from RGB-D images. In-

stead of assuming the scene to be composed of a number of

independent rigidly-moving parts, we use non-binary labels

to capture non-rigid deformations at transitions between

the rigid parts of the scene. Thus, the velocity of any point

can be computed as a linear combination (interpolation) of

the estimated rigid motions, which provides better results

than traditional sharp piecewise segmentations. Within a

variational framework, the smooth segments of the scene

and their corresponding rigid velocities are alternately re-

fined until convergence. A K-means-based segmentation is

employed as an initialization, and the number of regions

is subsequently adapted during the optimization process to

capture any arbitrary number of independently moving ob-

jects. We evaluate our approach with both synthetic and

real RGB-D images that contain varied and large motions.

The experiments show that our method estimates the scene

flow more accurately than the most recent works in the field,

and at the same time provides a meaningful segmentation of

the scene based on 3D motion.

1. Introduction
Scene flow estimation has many applications such as hu-

man body pose tracking, articulated object modelling for
virtual/augmented reality or traffic scene understanding. In
many scenarios, the dynamic scene is composed of rigid
parts: human/animal bodies, man-made articulated objects,
cars in a street scene, etc. Many existing methods that work
on scene flow do not completely exploit this aspect, and es-
timate motion fields that are only locally rigid or not rigid
at all. Other methods do segment the scene to impose rigid-
ity or strong regularization over the regions (or segments).
However, these segmentations are only used as tools to im-
prove the accuracy of the estimates, and do not really cor-
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Figure 1. The proposed method is based on a motion interpolation
model, which allows the emergence of smooth transitions between
the segments where the motion is given by a convex combination
of adjacent rigid motions (e.g. in ⇠̄).

respond to the underlying/independent motions of the scene
(e.g. [20] partitions the scene into depth layers, [24] di-
vides the scene into piecewise planar regions). Therefore,
the segmentation-from-motion problem, which can be par-
ticularly useful for scene understanding or human-machine
interaction, is not trully addressed by these methods.

On the other hand, assuming purely rigid motions is a
strong restriction that is barely fulfilled in organic shapes.
When a person moves, there are parts of their body moving
rigidly (e.g. upper and lower arms or legs) and others which
are transitions between the rigid ones (e.g. the neck). Be-
sides, rigid motions within a fine-grained articulated struc-
ture may not be observable with the limited resolution of a
camera. For these reasons, a sharp segmentation will never
be able to estimate the motion of life beings or some other
inanimate objects with exactitude.

In our method, we leverage the natural rigid-part decom-
position by allowing for smooth continuous transitions be-
tween the parts. We formulate the problem of retrieving
a smooth segmentation along with the motion estimates of
the rigid parts, where each rigid part is assigned an inde-
pendent 6 degree-of-freedom motion. To this end, we solve
a non-convex optimization problem by means of coordinate
descent consisting of a motion estimation step (in the fash-
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ion of visual odometry) and a subsequent variational multi-
labelling solver. By using a weighted quadratic regularizer
over the discontinuity-preserving total variation (TV), we
promote smooth transitions between motion models rather
than a harsh competition. For this reason, we refer to this
approach as ”motion cooperation” as opposed to the tradi-
tional ”motion competition”. We evaluate our motion co-
operation scene flow (MC-Flow) algorithm with synthetic
and real RGB-D image pairs, and compare it with state-of-
the-art approaches. In all cases, our approach achieves a
superior performance both qualitatively and quantitatively.
Furthermore, this evaluation demonstrates that the combi-
nation of a convex relaxation labelling with quadratic reg-
ularizer is superior to a sharp traditional segmentation be-
cause it naturally relaxes the overly constraining assump-
tion of piecewise rigidity. Additionally, we show that our
method retrieves meaningful soft segmentations into rigid
parts as depicted in Figure 1.

1.1. Related work

Scene flow estimation has been traditionally investigated
in the multi-view stereo setting within the computer vision
community. Vedula et al. [22] have proposed one of the first
methods based on the optical and range flow constraints.
This approach has been later extended to regularize the flow
field using quadratic [27] and TV regularization [2, 10],
the latter optiziming for disparity and flow jointly. In [25],
disparity and scene flow estimation has been decoupled to
achieve real-time performance with a stereo camera system.
The approach in [23, 24] oversegments the image into su-
perpixels, assumes the superpixels to cover planar regions,
and estimates a rigid-body motion for each superpixel indi-
vidually. In [24], the planar motion of a superpixel acts as a
regularization constraint on the scene flow of the individual
pixels. Recently, with RGB-D cameras, the scene flow esti-
mation topic has received further attention due to the avail-
ability of depth images at high framerate. Herbst et al. [8]
used the L1 norm on a data term derived from the optical
and range flow constraint equations and showed good qual-
itative results. Jaimez et al. [12] devised the first real-time
dense scene flow for RGB-D images. A more natural TV
regularization for the flow was proposed, where the regu-
larization term minimizes the line integral of the scene flow
gradients over the observed 3D surface. Quiroga et al. [16]
overparametrize scene flow and estimate a 6-DoF rigid-
body motion at each pixel. They regularize the flow field in
this 6-DoF parametrization such that their model favors lo-
cally rigid motions. Hornacek et al. [9] also parametrize the
flow-field with 6 DoF, but propose to match corresponding
points within a spherical search range instead of traditional
planar patch comparisons.

On the other hand, motion segmentation has also been
studied in computer vision research. An early variational

method for motion segmentation using optical flow con-
straints was proposed by Cremers and Soatto [7] in their
work on motion competition. The name stems from the
interpretation of the motion segments to compete for the
boundaries through the best fit to their individual motion
model. Several extensions to this method have been pro-
posed, e.g. using non-parametric motions [3]. Unger et

al. [21] explicitly model occlusions as an additional label in
the multilabel optimization and impose a map uniqueness
constraint to avoid ambiguous (non-bijective) data associa-
tions. All these methods are 2D and, hence, do not incor-
porate a 6-DoF motion model. Furthermore, they estimate
a discrete segmentation.

3D-motion segmentation has only gained attention re-
cently, mainly due to the current availability of GPUs and
dense RGB-D cameras. Roussos et al. [17] propose a vari-
ational rigid-body motion segmentation and reconstruction
method for monocular video. Zhang et al. [26] also pose 3D
multi-body structure-from-motion in a variational frame-
work. They require, however, a plane fitting step to make
the method robust. Closely related to our method is the ap-
proach by Stueckler and Behnke [19]. They jointly estimate
motion and segmentation of rigid bodies in an expectation-
maximization framework in RGB-D video. Each motion
segment is assigned one rigid-body motion, but the ap-
proach does not interpolate between the motions of the seg-
ments. Recently, Sun et al. [20] proposed a probabilistic
approach which makes use of a depth-based segmentation
to estimate motion between RGB-D images. They regular-
ize the estimation process by retrieving a mean rigid-body
motion in each layer. This approach also does not explic-
itly model smooth transitions of motions between layers,
but allows for small deviations of the motion field from the
layer’s mean motion.

1.2. Contributions

The MC-Flow algorithm is the first approach to perform
joint soft-labelling and scene flow estimation by dissecting
the scene into differently moving regions and their underly-
ing motion. Our contributions are the following:

• Our algorithm estimates 3D motion based on a
smooth piecewise rigidity assumption and simultane-
ously finds a soft motion-based segmentation of the
scene.

• By choosing a suitable regularizer we are able to inter-
polate between rigid motions in order to recover non-
rigidly moving parts and their underlying motion.

• An arbitrary (and previously unknown) number of
rigid parts can be segmented automatically.

• MC-Flow outperforms state-of-the-art RGB-D scene
flow algorithms qualitatively and quantitatively.



2. Problem formulation
In this work, we assume that the scene can be segmented

into n unknown distinct motion labels, each label standing
for one rigid motion, as well as non-rigid parts which can be
explained by neighbouring rigid motion labels. An illustra-
tion of such a smooth segmentation can be seen in Figure 1.
As inputs, a pair of RGB-D frames (I1, Z1) and (I2, Z2) is
given, where I(.) : ⌦ ! R and Z(.) : ⌦ ! R stand for the
intensity and depth images defined on the image domain
⌦ ⇢ R2. The segments and the rigid motions associated
to them are obtained by minimizing a functional which de-
pends on an implicit labelling function u : ⌦ ! [0, 1]n, the
6-dimensional twist parametrizations ⇠

i

2 R6 of the rigid
motions and the number n of rigidly moving parts. The la-
bel assigment function u encodes the moving scene in the
following way:

u
i

(x) =
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Here we denote the i-th segment by ⌦
i

⇢ ⌦, which moves
with a velocity ⇠

i

. Note that, in order to allow for fuzzy
assignments, the label functions u

i

can take on values in
the interval [0, 1], in contrast to classical label assignment
problems and their underlying binary representation.

The general problem of jointly solving for motion seg-
mentation and motion estimation can be stated as the fol-
lowing optimization problem:

E
m
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The function G encodes geometric and photometric con-
sistency between the RGB-D images according to a linear
combination of rigid-body motions:

G(⇠, I1, I2, Z1, Z2, u, n) = F (I1(x) � I2(W
⇠̄
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with
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and | • |
z

meaning the z-coordinate. The warping function
W

⇠

(x) involves a projection ⇡ which transforms the 3D co-
ordinates of the observed points into pixel coordinates. The
function g relates twist coordinates to rigid transformation

matrices in SE(3). The function F in (3) measures photo-
metric / geometric consistency and can be chosen according
to the application and prior knowledge. In order to obtain
a compact labelling, we regularize the labels by imposing
a smoothing term R(u, n) in (2). Note that problem (2)
is hard to minimize because the labels are non-linearly in-
volved in the non-convex dataterm G. To the best of our
knowledge, except for performing complete search on u,
which is unfeasible in our application, there is no direct
way of tackling problem (2). Consequently, we consider
a simpler formulation where the labels are pulled out of the
dataterm. This significantly facilitates the optimization pro-
cess because the label assignment function u is now linearly
involved with the dataterm:
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The data fidelity term D
i

is now evaluated for every inde-
pendent rigid motion:

D(⇠
i

, I1, I2, Z1, Z2) = F (I1(x) � I2(W⇠i(x)))

+F (
��g
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��
z
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The optimization problems (2) and (4) would be equiv-
alent if the labels u were binary. The main difference be-
tween the two models is that in (2) the motions are interpo-
lated and subsequently used to evaluate the residuals with
the exact velocities, whereas in (4) the residuals are com-
puted for each independent rigid motion and interpolated
afterwards. With binary labels, there would not be interpo-
lation between motions or residuals and, hence, both models
would turn out to be the same. In this work, we aim to solve
the motion interpolation model (2) but, given its complex-
ity, we resort to the simpler model (4) as an approximation
of (2) to optimize for the labels. For this reason, the regu-
larization term R(u, n) plays a crucial role to estimate ac-
curate interpolated motions at the transitions between rigid
bodies/parts.

2.1. Overall Optimization

Independently of which of the two models we chose, the
dataterms are nonlinear with respect to the rigid motions.
Therefore, the overall optimization problem is not convex
and the global minimum cannot be guaranteed to be found.

To tackle this joint problem, we propose a coordinate
descent strategy that alternates between estimating the mo-
tions for a fixed set of labels and then refining these labels
for the recently obtained velocities, as illustrated in Algo-
rithm 1. The motions are computed in the fashion of a visual



odometry problem, but considering that the whole scene is
not rigid but smooth-piecewise rigid. The labels are solved
using the approximate model (4) that is convex in u. Note
that we are implicitly optimizing for the label count n by
adapting the number of labels within the inner iterations, as
will be described in section 5. Next, we elaborate on how
to solve the main two subproblems in Algorithm 1.

Algorithm 1 Coordinate Descent Optimization for joint
Motion Estimation and Segmentation
Initialize u0

for k = 0, 1, 2, ...
1: ⇠k+1 = arg min

⇠

E(⇠, uk)

2: uk+1 = arg min
u

E(⇠k+1, u)
3: Update n

end for

3. Motion estimation
Given a precomputed set of labels, at every iteration of

Algorithm 1 we need to estimate the rigid-body motions as-
sociated to each label (step 1). This problem can be con-
sidered as an extension of the well-known visual odometry
(VO) problem. In this more general case, the whole scene is
not supposed to be moving rigidly; instead, we assume that
there are n predominant rigid motions that can be linearly
combined to explain the motion of every point of the scene.

Our solution to estimate the motion of the segments
builds upon two existing VO methods: DIFODO [11] and
the Robust Dense Visual Odometry [13]. This solution
is obtained by minimizing the photometric and geometric
residuals, defined as

r
I
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⇠̄

(x)) (6)
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Note that the residuals are defined here according to the mo-
tion interpolation model (2). To cope with large motions,
the process of minimization is applied in a coarse-to-fine
scheme where the residuals are linearized at each level of
the pyramid. In order to deal with outliers and to provide an
accurate motion estimate, a robust function of the residuals
is minimized:

⇠ = arg min
⇠

⇢Z

⌦
F (r

I

) + ↵F (r
Z

)dx

�
(8)

F (r) =
c2

2
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✓
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c

⌘2
◆

(9)

The function F is equivalent to the Cauchy M-estimator.
Although we do not present comparisons in this regard,
it was chosen because it provides considerably better re-
sults than other more common choices like the L2 or L1

norms. The parameter ↵ balances the two kinds of residu-
als and c controls the relative weighting between high and
low residuals. This minimization problem is solved using
Iteratively Reweighted Least Squares (IRLS), where the as-
sociated weighting function is

w(r) =
1

1 +
�
r

c

�2 . (10)

With this strategy, we are able to solve the motion esti-
mation problem accurately. The minimization of both the
photometric and the geometric residuals allows us to esti-
mate the motion of the segments even if they lack of texture
or geometric distinctive features. This aspect is crucial be-
cause the segments can be considerably small (compared to
the whole scene) and might not present sufficient photomet-
ric or geometric data to solve the 3D registration problem
using only one of these two input data.

4. Label optimization
Once the motion ⇠k+1 at a given iteration k + 1 is ob-

tained, we optimize the label assignment function as the
second step of the overall optimization problem (Algo-
rithm 1 ). For a fixed set of motions ⇠, the functional
E(⇠k+1, u) is convex and can be solved using state-of-the-
art first-order solvers. In this work, the labelling function
is optimized with the primal-dual algorithm developed by
Pock et al. [15]. Detailed information about how to ap-
ply this algorithm to the addressed problem is given in the
supplementary material.

In this work, two different regularizers are considered:
total variation and quadratic regularization. Furthermore,
the geometrical data that RGB-D cameras provide are ex-
ploited to regularize the labels according to the real 3D dis-
tances between points. Thus, regularizers are defined as a
function of a weighted gradient r

r

of the labels, whose
weights (r

x

) are the inverse of the 3D distances between
the points:

r
r

u
i

=

✓
r
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@u
i

@x1
, r

x2

@u
i

@x2

◆
(11)

More details on the theory and the implementation of this
regularization strategy can be found in [12].

4.1. Total Variation Regularization

Total variation was made popular by the seminal work
of Rudin Osher Fatemi (ROF) [18] on image denoising.
The most prominent properties of the TV regularizer are
allowing for jumps in the solution and being a measure of
perimeter of a region if applied on its indicator function.
These factors made TV widely used in general reconstruc-
tion problems like image denoising [18], image deblurring



[6] and image segmentation [5, 14]. In order to incorporate
TV regularization into our approach, we simply set:

R(u, n) = �

nX

i=1

Z

⌦
kr

r

u
i

(x)k1dx (12)

4.2. Quadratic Regularization

As previously mentioned, TV regularization favors sharp
label boundaries. However, in our segmentation we would
like to obtain a smooth interface between the labels. Hence,
a suitable choice to encourage smooth label transitions is
the so-called Tikhonov or quadratic regularization:

R(u, n) = �

nX

i=1

Z

⌦
kr

r

u
i

(x)k2
2dx (13)

Normally, quadratic regularization does not allow for dis-
continuities in the solution, which would not help to provide
a precise segmentation. However, the geometric weighting
makes it able to estimate discontinuities in the labels and
soft transitions between rigid parts at the same time.

5. Initialization and adaptive number of labels
This section describes the adopted strategy to refine the

number of labels n so that they represent the actual num-
ber of independent rigid motions in the scene. Since we
are solving a non-convex problem, it is crucial to start with
an initial set of labels u0 that allows us to converge to
the global optimum in Algorithm 1. Instead of including
the number of labels in the variational formulation (which
would significantly increase the computational burden), we
propose to initialize the labels with a meaningful over-
segmentation of the observed scene and iteratively remove
those labels that are redundant or not significant for the
overall motion estimation. To this end, we create an ini-
tial K-means segmentation based on the 3D coordinates of
the points of the scene. The initial number of labels is al-
ways set to 20 (the number of independent rigid motions in
the scene is assumed to be smaller than this quantity). An
example of a K-means initialization is shown in Figure 2.
The refinement of the label count is performed after a full
inner iteration of Algorithm 1 as follows:

a) Input image b) K-means initialazation u0

Figure 2. We initialize our algorithm by performing K-means
(k=20) on the 3D coordinates of the image pixels.

• If labels i and j are associated to similar velocities, i.e.,
if k⇠

i

� ⇠
j

k  � for some small � > 0, we merge both
labels.

• If a label i contains too few pixels, i.e., if
R
⌦ u

i

(x) < �
for some small � > 0, we assign these pixels to the
outlier label and remove label i.

6. Occlusions and outliers

In our formulation, we include an outlier label (u
n

)
to capture pixels with null depth measurements and those
other pixels that produce very high residuals for all the pos-
sible velocity candidates ⇠

i

. To this end, a constant weight
K

D

is associated to this label which, according to (4) means
that D

n

= K
D

in the whole image plane ⌦. As previously
mentioned, this outlier label also plays an important role in
the process of reducing the number of labels. When a label
is removed as a consequence of containing very few pixels,
those few pixels need to be assigned to another label. If they
were assigned to a wrong label they could affect the sub-
sequent motion estimate and spoil the results. Conversely,
if they are assigned to the outlier label, they don’t partic-
ipate in the motion estimation stage and are automatically
assigned to the best label afterwards in the label optimiza-
tion stage.

On the other hand, we detect occlusions to avoid the eval-
uation of the dataterm (D

i

in (4)) for those pixels which
are not visible in the second RGB-D frame. Occlusions are
handled with a binary mask O(x) instead of an extra label,
in a way that occluded points can still be segmented and,
therefore, their 3D motion is estimated too. This can be ac-
complished by virtue of the regularization term, and allows
us to provide a complete segmentation of the scene even if
some points or areas are occluded after the motion.

In order to detect occlusions, two factors are considered:
the amount of pixels that are registered to each pixel of
the second frame and the temporal change in the depth im-
ages. First, we compute a cumulative function C(x) : ⌦ 2
R2 ! R that counts how many pixels from the first frame
are warped to the pixel x of the second frame (according to
the estimated motion). Without occlusions, this function is
approximately equal to 1 (or maybe inferior to one for new
points appearing in the second frame), meaning that there
is a one-to-one (bijective) correspondence between the ob-
served points at both images. On the contrary, if C(x) is
noticeably higher than one, there are some pixels in the
first frame that are warped to the same pixel x in the sec-
ond frame, indicating the existence of occlusions. Conse-
quently, we can define a function O

C

(x) that finds the pix-
els candidates for occlusion by applying a warping with the
estimated motion and evaluating the cumulative function C:

O
C

(x) = C(W
⇠̄

(x)) (14)



On the other hand, unlike in the optical flow problem, geo-
metric information is available and can be exploited to rea-
son whether a point is occluded or not. The simplest func-
tion that can be used to detect occlusions is the temporal
change in depth:

O
Z

(x) = Z1(x) � Z2(x) (15)

Combining these two functions we can detect most of the
occluded areas in the scene by imposing a threshold K

o

:

O(x) =

(
1 if O

C

(x) + K
z

O
Z

(x) > K
o

0 else
(16)

where K
z

is a parameter that weights O
Z

against O
C

. This
strategy could be improved by embedding these functions
into a variational formulation and imposing regularization
over the occlusion mask. However, this has not been imple-
mented in our work because it would significantly increase
the runtime of our method.

7. Experiments
In this section, qualitative and quantitative results are

presented to evaluate the accuracy of our approach. These
results are divided into two categories: scene segmentation
and scene flow estimation. However, the evaluation process
is not straightforward given the lack of benchmarks with ei-
ther scene flow ground truth or segmentation from 3D mo-
tion. For this reason, we have selected a set of synthetic
and real RGB-D frame pairs that contain varied and chal-
lenging motions. First, our approach is tested with some
sequences from the Sintel dataset [4]. This dataset contains
scenes with heterogeneous and large motions, and provides
optical flow ground truth which can be used to measure the
scene flow error. Second, the joint segmentation and mo-
tion estimation is generated for several RGB-D image pairs
that either have been utilized in previous works in the litera-
ture (as in [16]) or have been taken with RGB-D cameras in
our lab. In all cases, two versions of our method are tested,
corresponding to the two different regularization strategies
for the label optimization problem: total variation (TV) and
quadratic regularization (Quad). The resolution adopted for
the images is QVGA (240 ⇥ 320) for those taken with an
RGB-D camera and 218⇥512 for the Sintel sequences. The
maximum depth is set to 5 meters in all cases. Tests have
been performed with a total of fourteen image pairs: eight
from the Sintel dataset (named ”Sintel-1...8”) and six real
image pairs (named ”RI-1...6”).

7.1. Scene segmentation

In this subsection we present the motion segmentation
that our method provides for all the tested sequences. The
occlusion layer is also displayed for some sequences to-
gether with the segmentation although the occlusion is not

a label itself (but a mask). Figure 3 shows the results for
the Sintel images. It can be observed that TV produces
very sharp labels with very few pixels interpolating between
different motions. On the contrary, quadratic regulariza-
tion gives rise to a smooth segmentation where many pix-
els adopt an interpolated velocity between two (or maybe
more) rigid-body motions. The same behavior can be seen
in Figure 4 where the results for the real RGB-D images are
presented. In general, it can be noticed that the number of
labels to which the method converges is not the same for
the two regularization strategies. Normally, TV produces a
higher number of labels because it is not able to interpolate
motions and tends to keep extra labels to compensate for it.
It can be observed that, but for Sintel-4 (with TV) and RI-
5, the resulting segmentations represent quite accurately the
different objects and rigid parts of the scenes.

7.2. Scene flow evaluation

For all the sequences, the scene flow is evaluated quan-
titatively and compared with three state-of-the-art methods:
the Primal-Dual flow (PD-Flow) [12], the Semi-Rigid flow
(SR-Flow) [16] and the Layered flow [20]. First, the pho-
tometric and geometric residuals are computed by warping
the intensity and depth images (respectively) according to
the estimated flow. It is important to note that occluded
pixels will show very high residuals even if the motion is
accurately estimated for them, which considerably disturbs
the error metrics (RMSE of the residuals). To overcome
this limitation and to provide more precise comparisons, we
compute the RMSE of the non-occluded pixels, which is a
more reliable metric of the scene flow accuracy. To this
end, we assume that the occlusion layer computed by our
approach is sufficiently accurate and use it in all cases (nei-
ther PD-flow nor SR-flow detect occlusions). This does not
represent any bias toward our method because it is a com-
mon mask applied to all of them, and if some occluded pix-
els have not been detected properly then they will affect the
error metrics of all the compared methods equally. Table 1
shows the results for all the frame pairs. It can be observed
that our method provides the most accurate estimates with
both TV and quadratic regularization. The differences be-
tween TV and Quad are essentially caused by the way they
produce transitions between the labels and the number of
labels they converge to. As previously analyzed, TV gener-
ates a sharp segmentation where the motion is barely inter-
polated, whereas quadratic regularization provides smooth
transitions between the labels that lead to larger areas with
interpolated motions. On the other hand, TV tends to con-
verge to a higher number of labels, which helps to compen-
sate for its inability to capture nonrigid motions. Overall,
the best results are obtained with quadratic regularization,
although the differences are small.

For the sake of clarity, Figure 5 is included to illustrate
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Figure 3. Segmentation estimated by our approach for the eight sequences of the Sintel dataset considered. Colors are independent for each
result and do not depend on the associated rigid motion. Black represents the outlier label.
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Figure 4. Segmentation and the occlusion layer estimated by our approach for 6 image pairs taken with RGB-D cameras. Colors are
independent for each result and do not depend on the associated rigid motion. Black represents the outlier label.

PD - Flow SR - Flow MC-Flow (TV) MC-Flow (Quad) 

Figure 5. Comparison of the 3D motion fields estimated for the ”RI-2” sequence. The initial frame is represented by the red point cloud,
the final frame by the turquoise point cloud and the scene flow by the blue lines. The above comparison shows that our approach provides
the most accurate estimate of the scene flow.

the 3D motion field that the compared methods estimate for
the sequence ”RI-2”. PD-Flow, which was conceived to
work in real-time, is unable to estimate large motions and
can only capture the motion of the body and the upper arms.
SR-Flow provides better results but is still unable to repro-
duce the real motion of the hand and head. Only our ap-
proach estimates the whole motion field properly, specially
with quadratic regularization of the labels.

Moreover, for the Sintel image pairs, we project the

scene flow onto the image plane to obtain the optical flow
and compare it with the ground truth provided by the Sin-
tel dataset. In this case we evaluate two error metrics: the
average end-point error (EPE) and the average angular er-
ror (AAE), as explained in [1]. Again, the results (Table
2) are computed for the non-occluded pixels, which is a
fairer comparison given that some methods do not man-
age occlusions and hence provide bad estimates for the oc-
cluded areas. It can be seen that our approach with both TV



Photometric residual - RMSE Geometric residual - RMSE
PD-Flow SR-Flow Layered-Flow MC-TV MC-Quad PD-Flow SR-Flow Layered-Flow MC-TV MC-Quad

Sintel-1 0.060 0.035 0.049 0.022 0.021 0.443 0.317 0.420 0.253 0.186
Sintel-2 0.057 0.068 0.063 0.026 0.025 0.086 0.090 0.108 0.056 0.053
Sintel-3 0.048 0.041 0.047 0.032 0.028 0.021 0.022 0.035 0.018 0.017
Sintel-4 0.091 0.069 0.109 0.063 0.044 0.378 0.347 0.607 0.155 0.190
Sintel-5 0.074 0.067 0.091 0.051 0.055 0.373 0.267 0.498 0.203 0.283
Sintel-6 0.120 0.118 0.127 0.055 0.055 0.224 0.190 0.253 0.114 0.096
Sintel-7 0.076 0.071 0.079 0.035 0.038 0.407 0.423 0.382 0.233 0.188
Sintel-8 0.063 0.026 0.045 0.028 0.027 0.083 0.069 0.086 0.038 0.037

RI-1 0.038 0.025 0.031 0.024 0.022 0.070 0.060 0.046 0.038 0.038
RI-2 0.032 0.028 0.035 0.021 0.020 0.286 0.259 0.294 0.114 0.102
RI-3 0.031 0.024 0.027 0.018 0.018 0.221 0.208 0.217 0.160 0.145
RI-4 0.015 0.012 0.011 0.008 0.008 0.025 0.024 0.025 0.025 0.025
RI-5 0.074 0.051 0.056 0.039 0.040 0.095 0.087 0.108 0.079 0.085
RI-6 0.077 0.050 0.070 0.049 0.047 0.036 0.038 0.037 0.041 0.040

Average 0.061 0.049 0.060 0.034 0.032 0.197 0.172 0.223 0.109 0.106

Table 1. Photometric and geometric residuals after warping the image pairs with the estimated scene flow.

Optical flow - EPE Optical flow - AAE
PD-Flow SR-Flow Layered-Flow MC-TV MC-Quad PD-Flow SR-Flow Layered-Flow MC-TV MC-Quad

Sintel-1 1.940 0.684 1.320 0.221 0.219 27.87 7.694 13.26 2.486 2.827
Sintel-2 2.299 2.100 2.851 0.367 0.324 23.63 16.02 35.50 4.826 4.950
Sintel-3 1.223 1.130 0.975 0.383 0.344 31.69 20.21 20.80 8.364 7.721
Sintel-4 17.04 21.68 15.26 10.23 3.436 73.57 90.56 43.09 22.13 9.694
Sintel-5 4.381 3.990 3.212 2.316 1.983 24.27 26.14 10.43 14.56 10.16
Sintel-6 6.045 7.739 7.67 1.168 1.498 12.10 18.99 27.52 3.845 5.194
Sintel-7 2.875 3.335 3.382 1.480 1.591 26.50 21.26 22.48 7.723 8.169
Sintel-8 1.674 0.456 1.012 0.228 0.228 22.45 4.713 8.003 3.762 3.757
Average 4.685 5.142 4.461 2.049 1.203 30.26 25.70 22.63 8.462 6.559

Table 2. Average end-point and angular errors of the optical flow computed by projecting the estimated scene flow onto the image plane.

and quadratic regularization clearly outperforms the others,
providing a motion estimate that is between 2 and 5 times
more accurate than those from the PD-Flow, SR-Flow and
the Layered-Flow.

Regarding the computational performance, our method
ranks second with a runtime of 30 seconds. For the ex-
periments, we have utilized a standard desktop PC running
Ubuntu 14.04 with an AMD Phenom II X6 1035T CPU at
2.6 GHz, equipped with an NVIDIA GTX 780 GPU with
3GB of memory. The measured runtimes are:

• PD-Flow: 0.042 seconds (GPU).

• SR-Flow: 150 seconds (CPU).

• Layered-Flow: 8 minutes (CPU).

• MC-Flow: 30 seconds (label optimization on GPU and
all the remaining steps on CPU).

8. Conclusion

In this paper we have addressed the problem of joint seg-
mentation and scene flow estimation from RGB-D images.
The overall optimization problem is solved by means of a
coordinate descent method which alternates between mo-
tion estimation and label optimization, while at the same
time adapts the number of labels to the real number of in-
dependent rigid motions of the scene. Two different reg-
ularization strategies for the labels are employed, TV and
quadratic, leading to sharp and smooth segmentations, re-
spectively. Our method has been tested with both synthetic
and real RGB-D image pairs, and the experiments show
that joint segmentation and motion estimation provides very
accurate results that outperform state-of-the-art scene flow
algorithms on RGB-D frames. Comparisons between the
two regularization strategies show that quadratic regular-
ization estimates motion more accurately than TV because



it generates smooth label transitions between rigid bodies,
which models the scene motion more realistically. For fu-
ture work, we plan to extend this work to RGB-D video
streams where temporal regularization can be imposed.
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1. Primal-Dual algorithm for the Label Opti-
mization

As mentioned in the main manuscript, the labelling func-
tion u is optimized with the primal-dual algorithm devel-
oped by Pock et al [3]. To this end, we consider the follow-
ing generic problem:

min

u

H(u) +Q(Ku) (1)

where H and Q are given by:

H(u) =

nX

i=1

Z

⌦
u
i

D
i

(⇠
i

, I1, I2, Z1, Z2)dx+ �
(

Pn
i=1 ui(x)=1

)

Q(Ku) = R(u)

The linear operator K denotes the spatial gradient applied
on the labelling. This operator is computed in the same
fashion as in [2] where the authors incorporate geometric
weights in order to regularize the motion field on the 3D
world coordinates instead of on the image plane. The term
�
(

Pn
i=1 ui(x)=1

)

denotes the indicator function for the feasi-

bility of u according to the constraint
P

n

i=1 ui

(x) = 1:

�
(

Pn
i=1 ui(x)=1

)

=

(
0 if

P
n

i=1 ui

(x) = 1,

1 else.
(2)

More specifically, the aforementioned algorithm tackles the
problem

min

u

max

p

hp,Kui+H(u) +Q⇤
(p) (3)

and performs the iterative steps illustrated in Algorithm 1 in
order to solve equation 3. The dual variable p : ⌦ ! Rn

is an auxiliary variable and is maximized during the opti-
mization process. Function Q⇤ denotes here the Fenchel
conjugate function of Q. The operators (I + ⌧@Q⇤

)

�1 and

(I+⌧@H)

�1 are the so-called resolvents and can be consid-
ered as generalized projectors [1]. Regarding the step sizes,
we set them according to the diagonal preconditioning strat-
egy explained in [3].

Algorithm 1 Primal-Dual Algorithm for minimizing
E(⇠k+1, u)

1: for k = 0, 1, 2, ... do
2: pk+1

= (I + ⌧@Q⇤
)

�1
�
pk + ⌧K ūk

�

3: uk+1
= (I + ⌧@H)

�1
(uk � �KT pk+1

)

4: ūk+1
= uk+1

+ ✓ (uk+1 � uk

)

5: end for

1.1. Proximal Operator for Total Variation Regu-
larization

In our algorithm we incorporated TV regularization and
we set:

R(u) = �kKu(x)k1 =

nX

i=1

Z

⌦
kK

s

u
i

(x)k2 (4)

The operator K
s

here represents the gradient operator for
each of the label functions u

i

which will be elaborated on
in section 1.3. Regarding the computational cost of our
method, applying TV has only impact on computing the re-
solvent (I + ⌧@Q⇤

)

�1
) in the primal-dual formulation (3)

of our problem. This operation can be done in closed-form
as follows:

(I + ⌧@Q⇤
)

�1
(p) = �

p
i

(x)

max(kp
i

(x)k,�) (5)

8x 2 ⌦ and i 2 1, ..., n.

1



1.2. Proximal Operator for Quadratic Regulariza-
tion

As a second regularization strategy, we incorporated the
so-called Tikhonov or quadratic regularization:

R(u) = �kKu(x)k21 =

nX

i=1

Z

⌦
kK

s

u
i

(x)k22 (6)

The implementation of a quadratic regularizer only affects
the evaluation of the proximal operator (I + ⌧@Q⇤

)

�1 and,
like in the case of TV, it can be done in closed-form:

(I + ⌧@Q⇤
)

�1
(p) =

p
i

(x)

(�+ ⌧)
(7)

8x 2 ⌦ and i 2 1, ..., n.

1.3. Implementation of the Differential Operator K

For simplicity, we assume that in the discrete case u
i

2
X with X = Rm⇥c (where m and c are the number of rows
and columns, respectively) and p

i

2 X ⇥ X . The discrete
linear operator K represents a geometrically weighted gra-
dient that is applied pixel-wise over the image domain ⌦.
Hence, the identical K

s

operators are applied over each in-
dividual labelling functions u

i

as follows:

K
s

u
i

= r
r

u
i

=

✓
r
x1

@u
i

@x1
, r

x2

@u
i

@x2

◆
(8)

where (x1, x2) represent the pixel coordinates and the
weighting functions r

x1 , rx2 encode the inverse of the 3D
distances between points observed by contiguous pixels.
More details about these geometric functions and how they
are derived can be found in [2].

Likewise, KT represents the weighted divergence oper-
ator(inverted in sign). Similarly to K, it is composed of
identical KT

s

operators applied pixel-wise to the individual
dual variables p

i

:

KT

s

p
i

= �r⇤
r

· p
i

= �r
x1

@p1
i

@x1
� r

x2

@p2
i

@x2
(9)

where (p1, p2) are the two components of the dual variables.
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