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Abstract

This paper presents a reactive navigator for wheeled
mobile robots moving on a flat surface which takes into
account both the actual 3D shape of the robot and the 3D
surrounding obstacles. The robot volume is modelled by a
number of prisms consecutive in height, and the detected
obstacles, which can be provided by different kinds of
range sensor, are segmented into these heights. Then, the
reactive navigation problem is tackled by a number of
concurrent 2D navigators, one for each prism, which are
consistently and efficiently combined to yield an overall
solution. Our proposal for each 2D navigator is based on
the concept of the “Parameterized Trajectory Generator”
which models the robot shape as a polygon and embeds its
kinematic constraints into different motion models.

Extensive testing has been conducted in office-like and real
house environments, covering a total distance of 18.5 km,
to demonstrate the reliability and effectiveness of the
proposed method. Moreover, additional experiments are
performed to highlight the advantages of a 3D-aware
reactive navigator. The implemented code is available
under an open-source licence.

Keywords Reactive Navigation, Mobile Robotics, Robot
Motion, Obstacle Avoidance

1. Introduction

Reactive navigation is a crucial component of almost any
mobile robot. It is one of two halves which, together with
the path-planner, make up a navigation system according
to the commonly used “hybrid architecture”[1]. Within this
scheme, a reactive navigator works at the low-level layer to
guarantee safe and agile motions based on real-time sensor
data.

Traditionally, due to the lack of affordable 3D sensors and
the limited computational resources available, reactive
navigators have relied on two strong assumptions:

• The world is considered 2D. Since robots usually move
on a flat surface, this implies that the third dimension
(height) is ignored.

• The robot shape is simplified by a polygon or circle
projected onto the 2D world.
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These two simplifications force the reactive algorithm to
adopt the worst-case scenario, that is, to work with the most
restrictive section of the robot and the nearest obstacle
detected in each direction. This limitation can complicate
or even impede many robotic platforms from carrying out
their tasks. In the most general case, the 2D reduction over-
constrains the robot motion, marking as unfeasible some
paths through which the robot could actually navigate.
This effect arises when the robot does not have a constant
vertical section, and it is particularly detrimental for robotic
platforms equipped with a manipulator. In this specific
case, any purely 2D approach would not allow the robot to
place any object on any horizontal surface (e.g., a table)
because the robotic arm and the surface would be super‐
imposed in a 2D projection and would represent a collision
for the 2D navigator. With the recent emergence of 3D
range cameras and the current computational resources on
board robots, these assumptions are no longer justified.

In this work we address the problem of planar navigation
in indoor environments by a reactive navigation system
which considers both the 3D shape of the robot and the 3D
geometry of the environment (Figure 1). The proposed
reactive navigator is based on the concept of “Parameter‐
ized Trajectory Generator” or PTG [2], a robust and
effective 2D reactive navigator that models the robot shape
as a polygon and embeds its kinematic constraints into
different motion models. The contribution of this paper
consists of extending such work to overcome the limitation
of modelling the robot in 2D:

• The robot volume is now modelled by a number of
prisms consecutive in height. Collisions are evaluated
considering those exact prisms, including predicted
robot orientations according to a number of path
families, unlike many existing approaches which take
the conservative “circular-robot approximation” and
only consider circular paths.

• 3D obstacles coming from an arbitrary number of range
sensors can feed the reactive navigator.

• The new 3D information is merged consistently and
efficiently to yield an overall solution.

This generalization, called 3D-PTG navigator, has been
extensively tested in varied and challenging scenarios. Two
different robots, Giraff (see Figure 4 and Figure 5) and
Rhodon (see Figure 5 and Figure 12), equipped with radial
laser scanners and RGB-D cameras, have been chosen to
conduct the experiments and demonstrate the potential of
our approach. Overall, more than 20 hours of navigation
are analysed, during which the robots covered a distance
of 18.5 km in both office-like and house-like scenarios.

This paper is divided into eight sections. Section 2 describes
the state of the art in reactive navigation. A brief summary
of the 2D-PTG navigator is presented in Section 3. Its
generalization to the 3D world is described in Section 4, and
all the algorithm steps are explained in Section 5. Imple‐

mentation details are given in Section 6 and the experi‐
ments are presented and analysed in Section 7. Results are
divided into four subsections: two of them are intended to
demonstrate the robustness of our approach, while the
other two show the advantages of a 3D navigator as against
the classic 2D approach. Finally, conclusions are discussed
in Section 8.
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Figure 1. 3D obstacles are sorted in height bands according to the 3D shape
of the robot

The implemented code has been added to MRPT [3] and is
available under an open-source licence. Two demonstra‐
tion videos of our approach, together with the code, can be
found here: http://mapir.isa.uma.es/mjaimez

2. Related work

The first example of reactive navigation was probably
given by the tortoises of Walter [4]. From then on, reactive
navigation has been well studied, and some authors like
Brooks [5] have defined it as the lowest hierarchical layer
of a robotic motion control. The first successful methods,
such as VFF [6], VFH [7] and VO [8], enabled robots to
advance toward a given target while avoiding the obstacles
encountered along the path, but they ignored both the robot
shape and its kinematic constraints. Afterwards, reactive
algorithms started to overcome these simplifications,
solving the navigation problem in a velocity space where
kinematic and dynamic constraints can be easily consid‐
ered (typically, speed and acceleration limits). Within this
category, Simmons [9] proposed to compute the optimal
motion command in a curvature-velocity space where
translational and rotational velocities are represented
independently. In a similar way, the “Dynamic Window
Approach” (DWA) [10], which was arguably the most
successful strategy of this kind, minimizes an energy
function to obtain the best motion command regarding the
reachable obstacles and velocities within a short time
interval. DWA is still in use today thanks to its implemen‐
tation as a local planner in the popular Robot Operative
System (ROS) “navigation” stack. These two approaches [9,
10] impose the feasible trajectory to be composed of circular
arcs, so non-holonomic restrictions are also regarded,
although, on the other hand, both the robot and the
obstacles are still supposed to be circular. This circular
shape assumption is also made in the extension of the
Velocity Obstacle method [11].
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Later improved solutions incorporated the robot shape into
the reactive navigator. Minguez and Montano [12] defined
the Ego-Kinematic Transformation (EKT): a mathematical
procedure to transform the 3D configuration space into a
new 2D space which implicitly contains the robot shape
and its non-holonomic constraints. In this reduced space,
the robot is a free-flying point and any holonomic obstacle
avoidance method can be used to compute the solution.
However, this approach still has a shortcoming: only
circular paths are considered. This methodology was
extended by Blanco et al. [2] with the generalization of path
models through a novel approach called “Parameterized
Trajectory Generator” (PTG). With this tool, several
customized path models can be used in the reactive
navigator and, at each iteration, the best one is selected
according to some specific criteria, such as the collision-free
distance for the selected movement, the minimum distance
from the path to the target, etc. It must be noted that the
robot becoming a free-flying point in this space comes at
the cost of having a different set of obstacles in the trans‐
formed space, even for real stationary obstacles. However,
as will be seen experimentally, this obstacle transformation
can be made extremely efficient by means of precomputed
look-up tables.

In this context, reactive navigators were effective enough,
but they still had to assume that the world was 2D. None‐
theless, the improvement and availability of 3D range
sensor during the last few years have made it possible to
realistically tackle the problem of navigating in 3D envi‐
ronments. Most of the new approaches are based on
processing 3D point clouds and use the resulting informa‐
tion to execute a 2D navigator. For example, the solution
proposed by Surmann et al. [13] consists in scanning the
environment with a tilting laser and extracting some
semantic information (planes) which is projected onto the
floor plane and utilized by a 2D navigator. Holz et al. [14]
also use a tilting laser to generate 3D point clouds, which
are processed to obtain the “2D Obstacle Map” and “2D
structure Map”. The former contains the minimum dis‐
tance in each scan direction (i.e., closest obstacles) and is
exploited by the reactive navigator, while the 2D Structure
Map contains the maximum distance in each scan direction
(i.e., furthest obstacles) which is likely to correspond to the
environmental bounds and is used for robot localization.
In contrast, Marder-Eppstein et al. [15] proposed to store
the 3D information in a voxel grid: a 3D occupancy grid
whose cells are marked as occupied, free or unknown. The
robot navigation is controlled by two modules: the “global
planner” and the “local planner”. The “global planner”
creates a high-level plan for the robot to reach the goal
location and the “local planner” is a reactive navigator
based on the aforementioned DWA [10]. No information is
given about how the 3D voxel grid is interpreted by the 2D
reactive navigator. Finally, the work recently proposed by
Gonzalez-Jimenez et al. [16] addresses the problem of
adding the 3D information provided by an RGB-D camera
to a reactive navigator which was designed to work with

radial laser scanners. To this end, they propose to adapt the
Kinect depth image into a virtual 2D scan which, in turn,
encapsulates the 3D world information.

From a different point of view, 3D navigation is also
studied for legged robots and humanoids [17, 18, 19]. In
these cases, point clouds are always analysed to extract
semantic information, which is more convenient for the gait
of this type of robot. In general, a 3D representation of the
world has proved to be advantageous in many other
aspects of the robot navigation, e.g., in localization [20].

3. Reactive navigation based on PTGs

For the sake of completeness, this section summarizes the
PTG-based reactive navigator upon which our proposal for
dealing with a 3D world is built. More details can be found
in [2]. The PTG-based reactive navigator is based on a
mathematical transformation that reduces the dimension‐
ality of the Configuration Space (C-Space) [21] from 3D
(x, y, ϕ) to 2D, incorporating in the transformation the
geometrical and kinematical constraints of the robot. The
robot thus becomes a free-flying point over this 2D mani‐
fold embedded in C-Space, and the collision avoidance
problem is easier and faster to solve. This dimensional
reduction is accomplished by restricting the robot motion
to one of a set of parametric path models which are
compliant with the robot kinematics (e.g., circular paths, as
shown in Figure 2). The set of all possible robot poses
according to any path model constitutes a 2D manifold
(“sampling surface”) embedded in the general C-Space
(3D). The basic idea behind PTG-based navigation is to map
those manifolds by means of 2D “Trajectory Parameter
Spaces”, or TP-Spaces. The mathematical transformation
between the TP-Space and the C-Space is formulated by a
“Parameterized Trajectory Generator” or PTG, a smooth
mapping of TP-Space points into C-Space poses according
to a certain path model. TP-Spaces are expressed in polar
coordinates, where the angle α corresponds to an individ‐
ual path from the family and the radius d  indicates the
normalized distance travelled along that path (Figure 2).
The region of interest in a TP-Space is the circle of unit
radius, that is, the sub-space A  ×  D  ⊂ℝ2, where
A={  α  |  α∈ −π, π  } and D ={  d  |  d∈ 0, 1  }. Therefore,
kinematically compliant paths become straight lines in TP-
Space and the robot motion can be guided with simple
holonomic methods like VFF [6] or ND [22], disregarding
the robot shape and non-holonomic constraints.

Since several path models are included in the reactive
system, several TP-Spaces are built. The mathematical
transformation between the C-Space and the TP-Spaces is
done by the inverse PTG function, defined as:

( ){ } ( )

1 2 1 2:     

, ,  ,

PTG Sampling surface S A D

x y df a
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Equation (1) transforms both obstacle points and the target
from the C-Space to the corresponding TP-Space, using
path models such as those shown in Figure 3. In the
resulting TP-Spaces, the robot becomes a free-flying point
because its shape and its kinematic constraints are embed‐
ded into the mathematical transformation and, therefore,
any holonomic method can be applied to get the best path
αb

i in the i-th TP-Space. All the αb
i are subsequently evalu‐

ated and compared following some heuristic criteria which
take into account the collision-free distance for the selected
movement, the minimum distance from the path to the
target, whether the robot will be heading to the target or
not, etc. The result of this process will be the most suitable
movement αb given the obstacles, the target and the path
models being used. Finally, the speed commands associat‐
ed with αb are calculated and sent to the robot. This
sequence is repeated at a given frequency, typically higher
than 20 Hz, such that the robot can move smoothly. In
summary, the PTG-based reactive navigator has two inputs
– the target relative pose and sensor data – and generates
one output: the velocity command for the robot. The
sequence of steps to compute the velocity commands is as
follows:

1. For each path model, using its corresponding PTG,
transform the obstacles and the target to the associated
TP-Space.

2. For each path model, apply a holonomic reactive
method to get the best path αb

i in the TP-Space.

3. Select the best path αb among the candidates αb
i

obtained from the different TP-Spaces.

4. Compute the linear and angular velocities and send
them to the robot motor unit.

4. PTG-based reactive navigation in a 3D world

The main limitation of a 2D navigator, such as the one
described above or any of those reviewed in Section 2, is
that both the robot and the world are assumed to be 2D,
that is, the robot section is considered to be constant and
the detected obstacles are projected onto the floor plane,

even if they are provided as 3D data by sensors like RGB-
D cameras or lidars. This happens to be a valid simplifica‐
tion under the assumption that the robot has roughly the
same horizontal profile all the way from bottom to top.
However, many wheeled robots have a non-constant
section (please visit ROS – robots to find many examples
like PR2, Gostai Jazz, Amigo, etc.), in which case the 2D
solution is suboptimal for two reasons: it takes the biggest
section of the robot and also the closest obstacles regardless
of their height position in space. Figure 4 illustrates this
limitation with an obstacle configuration where a 2D
reactive navigator would fail even though the robot has
enough space to pass through. This kind of situation is quite
common in cluttered environments and demands the
addition of the third dimension (height) to the reactive
navigator in order to successfully cope with it. For that
purpose, we model the robot geometry through a set of
prisms circumscribing the robot volume, as shown in
Figure 5. Besides defining the 3D shape of the robot, it is
also necessary to include the height coordinates of the
obstacles or, more specifically, to sort them into height
bands according to the height sections used to model the
robot (Figure 1). Therefore, we decompose the 3D reactive
navigator into N 2D navigators, N being the number of
height sections that model the robot geometry. Each 2D
navigator comprises an individual robot section and the
obstacles in its corresponding height band. In order to
obtain an overall solution for the robot, we combine the
results for all the 2D navigators, as will be described later.

At this point, it is necessary to give a brief explanation of
how obstacles are transformed into TP-Obstacles and what
they represent (Figure 6). In the Workspace, obstacles are
always considered to be points. Focusing on a single
obstacle (or point), and given its coordinates, the robot
shape and its location, we can calculate all the poses
(x, y, ϕ) in the C-Space which imply a collision between the
robot and the obstacle. This set of poses forms a volume
called C-Obstacle. In addition, it is useful to recall that in
C-Space every path model is a sampling surface. Thus, TP-
Obstacles are obtained by transforming the 3D intersection
between C-Obstacles and the sampling surface to the TP-
Space.

 
Figure 2.Mathematical transformations from the Workspace (2D) to the C-Space (3D) and then to the TP-Space (2D). Individual 
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Figure 3.  In this example three different path models are considered,leading to three different TP-Spaces. In both the Workspace and the 

TP-Spaces the target is marked as a green circle, while the obstacles are displayed in red.  The best path for each TP-Space is shown with a 

blue arrow, and the best of all the three (PTG 3) is selected to provide the angular and linear robot velocities. 
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Formally, let σ∈ℝ2 be a real obstacle in the Workspace,
C-Obstacle(σ) its representation in C-Space and P a 3D point
in C-Space. TP-Obstacles are defined as:

( ) ( ) ( )1( )  ,  | ,  ,

( )  }
TP Obstacle d d PTG P

P C Obstacle Sampling surface
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s

-- = =

" Î - Ç
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(2)

Nevertheless, only the closest obstacle for each path α is
relevant here as it marks the maximum distance the robot
can travel along that path, always from the origin, without
collision. The set of closest obstacles in TP-Space is called
“TP-NavLimit”. If there is no obstacle along the path α, its
TP-NavLimit is set to 1 (the maximum distance in the
normalized TP-Space), that is:

( ) { }min 1, mTP NavLimit da- = (3)

where dm is the minimum distance of the pairs (α, d )∈  TP-
Obstacles.
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maximum distance that the robot at that height section can 

travel along a given path model. Hence, the most 
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In this section we describe the overall operation of the 

reactive navigator. It consists of a number of steps which 

are executed periodically at a given frequency (Figure 

8).The inputs to the reactive system are the obstacles and 

the relative location of the target. Different kinds of 

sensors providing 3D obstacle points can be used 

simultaneously, typically laser scanners and RGB-D 

cameras. As previously mentioned, these 3D obstacle 

Figure 5. Example of 3D geometric models of the Giraff robot (right) and
Rhodon (left)

Returning to the 3D reactive navigator, the same process is
followed for the N height sections of the robot to obtain a
TP-Space with N sets of TP-NavLimits, each indicating the
maximum distance that the robot at that height section can
travel along a given path model. Hence, the most restrictive
TP-NavLimits are used to build the TP-Space for each α
(Figure 7), that is:

 

Figure 3.  In this example three different path models are considered,leading to three different TP-Spaces. In both the Workspace and the 

TP-Spaces the target is marked as a green circle, while the obstacles are displayed in red.  The best path for each TP-Space is shown with a 

blue arrow, and the best of all the three (PTG 3) is selected to provide the angular and linear robot velocities. 

 

sensors like RGB-D cameras or lidars. This happens to be a 

valid simplification under the assumption that the robot 

has roughly the same horizontal profile all the way from 

bottom to top. However, many wheeled robots have a 

non-constant section (please visit ROS – robots to find 

many examples like PR2, Gostai Jazz, Amigo, etc.),in which 

case the 2D solution is suboptimal for two reasons: it takes 

the biggest section of the robot and also the closest 

obstacles regardless of their height position in space.Figure 

4 illustrates this limitation with anobstacle 

configurationwhere a 2D reactive navigator would fail 

even though the robot has enough space to pass through. 

This kind of situation is quite common in cluttered 

environments and demands the addition of the third 

dimension (height) to the reactive navigator in order to 

successfully cope with it.For that purpose, we model the 

robot geometrythrough a set of prisms circumscribing the 

robot volume, as shown in Figure 5. Besides defining the 

3D shape of the robot, it is also necessary to include the 

height coordinates of the obstacles or, more specifically, to 

sort them into height bands according to the height 

sections used to model the robot (Figure 1). Therefore, we 

decompose the 3D reactive navigator into N 2D 

navigators, Nbeing the number of height sections that 

model the robot geometry. Each 2D navigator comprises 

an individual robot section and the obstacles in its 

corresponding height band. In order to obtain an overall 

solution for the robot, we combine the results for all the 2D 

navigators, as will be described later. 
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Figure 4. Example of how the 2D approach limits the reactive 

navigator performance. 

 

At this point, it is necessary to give a brief explanation of 

how obstacles are transformed into TP-Obstacles and what 

they represent (Figure 6). In the Workspace, obstacles are 

always considered to be points. Focusing on a single 

obstacle (or point), and given its coordinates, the robot 

shape and its location, we can calculate all the poses 

ሺݔ, ,ݕ ߶ሻ in the C-Space which imply a collision between 

the robot and the obstacle. This set of poses forms a 

volume called C-Obstacle. In addition, it is useful to recall 

that in C-Space every path model is a sampling surface. 

Thus, TP-Obstacles are obtained by transforming the 3D 

intersection between C-Obstacles and the sampling surface 

to the TP-Space.  

Figure 3. In this example three different path models are considered, leading to three different TP-Spaces. In both the Workspace and the TP-Spaces the target
is marked as a green circle, while the obstacles are displayed in red. The best path for each TP-Space is shown with a blue arrow, and the best of all the three
(PTG 3) is selected to provide the angular and linear robot velocities.
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where n =1, 2… N  are the height sections of the robot.
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Nevertheless, only the closest obstacle for each path ߙ is 

relevant here as it marks the maximum distance the robot 

can travel along that path, always from the origin, without 
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We want to remark that calculating the minimum of all TP-
NavLimits is not equivalent to projecting the most restric‐
tive 3D obstacles onto the floor. Given that the TP-NavLimit
of each individual robot section contains information about
how far this part of the robot could travel in the 3D world
according to some path models, the minimum of them
shows how the whole robot could navigate in the same 3D
world, since it encompasses the motion restrictions of every
part of it.Thus, all these restrictions correspond to poses of
the robot that would actually imply collisions with the
environment, whereas the typical 2D obstacle projection is
prone to creating motion constraints that do not correspond
to any potential collision in the real world, hence over-
constraining the robot motion.
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Nevertheless, only the closest obstacle for each path ߙ is 

relevant here as it marks the maximum distance the robot 

can travel along that path, always from the origin, without 

collision. The set of closest obstacles in TP-Space is called 

“TP-NavLimit”. If there is no obstacle along the path ߙ, its 

TP-NavLimit is set to 1 (the maximum distance in the 

normalized TP-Space), that is: 
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where݀௠is the minimum distance of the pairs ሺߙ, ݀ሻ ∈TP-

Obstacles. 

Returning to the 3D reactive navigator, the same process is 
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TP-Space with N sets of TP-NavLimits, each indicating the 
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as the minimum of the TP-NavLimits associated with each individual PTG.

5. The 3D reactive navigation framework

In this section we describe the overall operation of the
reactive navigator. It consists of a number of steps which
are executed periodically at a given frequency (Figure 8).
The inputs to the reactive system are the obstacles and the
relative location of the target. Different kinds of sensors
providing 3D obstacle points can be used simultaneously,

typically laser scanners and RGB-D cameras. As previously
mentioned, these 3D obstacle points are sorted according
to the different height sections employed to model the robot
volume.

Before applying the PTG transformations, a module called
“Short-Term Memory” (STM) stores the position of close
obstacles that might eventually become unseen by the robot
sensors if they enter into their blind zone. This is particu‐
larly relevant for RGB-D cameras which have a narrow
FOV and cannot detect obstacles at short distances. The
STM module is implemented by N local occupancy grids
centred at the robot pose onto which the 3D points within
each slice in height are projected. The appropriate grid and
cell sizes depend on the sensors used, the accuracy of the
localization estimate, how cluttered the environment is, etc.
The outputs of the STM block are sets of “virtual obstacles”
whose coordinates are generated from those of the occu‐
pancy grid cells. These virtual obstacles are merged with
the real ones coming from sensors and passed to the TP-
Obstacle builder. Detailed information about the occupan‐
cy grids, their working principle and how they are
implemented can be found in [16].

All the obstacles, real and virtual, are converted into TP-
Obstacles for a number of path models and also for each
height level. This results in K×N sets of TP-Obstacles and,
subsequently, in K×N sets of TP-NavLimits. Then, the N
sets of TP-NavLimits corresponding to each path model are
combined, as explained in Section 4, yielding K TP-Spaces
representing the robot navigability for each path model.
Concurrently, the relative target location is also trans‐
formed to these TP-Spaces, where any holonomic method
can be run, for example VFF [6] or ND [22], to get the most
suitable path αb

i for each path model i. The best path
candidate αb among all is then the one that maximizes an
objective function that trades off several navigational
criteria:

( )arg max
b

i
i i bw f

a
a a= å (5)

with wi being weighting coefficients and f i factors which
measure:

• f 1 : The collision-free distance of each candidate (in TP-
Space).

• f 2 : The angular distance in the TP-Space between the
target and the candidate.

• f 3 : The minimum distance between the target and the
path candidate.

• f 4 : How different the new (tentative) and the previous
speed commands would be (to soften the robot motion).

Finally, the linear and angular velocities are derived from
αb and sent to the robot motion control unit.
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6. Experimental setup and implementation details

The 3D reactive navigator has been intensively tested for
months  in  several  scenarios  to  demonstrate  its  proper
functioning. The Giraff and Rhodon mobile robots (Figure
5) have been chosen to conduct the experiments, as their
heterogeneous  profiles  are  appropriate  to  test  the  3D
reactive navigator’s performance. In particular, the Giraff
robot  has  been  deployed and utilized  for  more  than  a
year in several real apartments in Spain as part of the EU
project  GiraffPlus  [23]  using  the  proposed  method  to
reactively  navigate  between  nodes  of  a  pre-established
roadmap.

Giraff  is  a  differential  wheeled  robot  and  has  been
equipped with  a  Hokuyo URG-04LX-UG01 laser  and a
PrimeSense  Carmine  1.09  RGB-D  camera,  both  facing
forwards. Rhodon is a heavier differential wheeled robot
equipped with two laser scanners (one Sick LMS200 and
one  Hokuyo  UTM  30-LX,  facing  forwards  and  back‐
wards respectively), and one Kinect camera placed at the
top of the robot and tilted downward with an angle of
50 degrees. 3D points provided by all the range sensors
are expressed with respect to the robot coordinate system
and then merged before feeding the reactive navigator.
In  this  preprocessing  stage,  the  fused  point  cloud  is
downsampled, retaining only the most restrictive points
at each height band. The frequency at which sensor data
are read is adjustable; in our experiments it ranges from
10 Hz for the Hokuyo URG-04LX-UG01 (its  maximum)
to 30 Hz for the remaining sensors. Due to the lack of 3D
sensory information at their back (Rhodon does contain
a  Hokuyo  facing  backwards  but  it  is  only  used  for
localization),  the robots  are  not  allowed to move back‐
wards during the experiments.

6.1 Configuration of the 3D reactive algorithm

First, we need to define the height sections that model the
robot geometry (Figure 5). In these experiments we have
modelled the Giraff robot with four consecutive prisms and
Rhodon with five prisms (see Section 4 for further details).
Second, path models and their characteristics have to be
specified; in our case three different path models are
considered (Figure 9): circular arcs, trajectories with
asymptotical heading and trajectories with a minimal
turning radius (see [2] for more details about their mathe‐
matical definition).
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Furthermore, the holonomic method can be chosen from 

two options:VFF [6] or ND [12], and their associated 

parameters can be customized too. We opted forthe ND 

method because, in general, it outperforms the VFF. 

Finally, the reactive loop frequency is set to 20 Hz, which 

is fast enough to react to incoming sensor data without 

overloading the processor.  

 

6.2. Speed regulation and recovery behaviour 

 

Linear and angular velocity commands sent to the robot 

come from the PTG associated with the selected path, but 

they can be modulatedor rescaled without violating the 

kinematic constraints of that path. 

As a general rule, the robot should move carefully when it 

is surrounded by obstacles, but this is not always granted 

by the PTGs. For this reason, the speed commandsare 

adjusted taking into account the proximity of obstacles, 

with thefrontal obstacles having agreater influence than 

those at the sides. This speed regulation, which allows us 

to increase the average robot speed while keeping the 

navigation safe, can be adjusted depending on the robot 

dynamics and the desired balance between robot agility 

and conservativeness. 

On the other hand, a basic recovery behaviour is 

implemented in case the robot gets stuck. Taking into 

account the fact that backward movementsare not 

permitted, the reactive navigator assumes that the robot is 

trapped when both forward movements and rotations are 

impeded. In such situations, the robot starts to move 

backward slowly until it finds a feasible movement from 

the reactive navigator. If it is unable to find a way out after 

a few seconds, it stops (to avoid possible backward 

collisions) and keeps waiting until the environment 

changes or the user takes control of the situation.  

 

7. Experiments 

 

A wide variety of experiments have been conducted. The 

first two sets are intended to study the performance of the 

3D navigator under circumstances that are habitual in 

many robotic applications: navigation in an office-like 

environment and navigation at home. To validate our 

proposal,the other two sets of experiments include some 

specific and demanding situations that cannot be 

addressed without3D knowledge of the world. In all the 

experiments, localization relies on wheel odometry and 

laser scanners, which feed a particle filter implementation 

of localization based on a metric map of the environment 

[24]. Those geometric maps were previously built for each 

environment by means of a simple ICP-based incremental 

registration of laser scans.  
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other robotic modules (localization, sensing, interface, etc.) 
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Furthermore, the holonomic method can be chosen from
two options: VFF [6] or ND [12], and their associated
parameters can be customized too. We opted for the ND
method because, in general, it outperforms the VFF.
Finally, the reactive loop frequency is set to 20 Hz, which
is fast enough to react to incoming sensor data without
overloading the processor.
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come from the PTG associated with the selected path, but
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obstacles that might eventually become unseen by the 
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of “virtual obstacles” whose coordinates are generated 

from those of the occupancy grid cells. These virtual 

obstacles are merged with the real ones coming from 

sensors and passed to the TP-Obstacle builder. Detailed 

information about the occupancy grids, their working 
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Figure8.Scheme of the 3D reactive navigator with K different path models and N height sections. 

 

 

6. Experimental setup and implementation details 

 

The 3D reactive navigator has been intensively tested for 

months in several scenarios to demonstrate its proper 

functioning. The Giraff and Rhodon mobile robots (Figure 

5) have been chosen to conduct the experiments, as their 

heterogeneous profiles are appropriate to test the 3D 

reactive navigator’s performance. In particular, the Giraff 

robot has been deployed and utilized for more than a year 

in several real apartments in Spain as part of the EU 

project GiraffPlus [23] using the proposed method for 

reactively navigating between nodes of a pre-established 

roadmap. 

Figure 8. Scheme of the 3D reactive navigator with K different path models and N height sections
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they can be modulated or rescaled without violating the
kinematic constraints of that path.

As a general rule, the robot should move carefully when it
is surrounded by obstacles, but this is not always granted
by the PTGs. For this reason, the speed commands are
adjusted taking into account the proximity of obstacles,
with the frontal obstacles having a greater influence than
those at the sides. This speed regulation, which allows us
to increase the average robot speed while keeping the
navigation safe, can be adjusted depending on the robot
dynamics and the desired balance between robot agility
and conservativeness.

On the other hand, a basic recovery behaviour is imple‐
mented in case the robot gets stuck. Taking into account the
fact that backward movements are not permitted, the
reactive navigator assumes that the robot is trapped when
both forward movements and rotations are impeded. In
such situations, the robot starts to move backward slowly
until it finds a feasible movement from the reactive
navigator. If it is unable to find a way out after a few
seconds, it stops (to avoid possible backward collisions)
and keeps waiting until the environment changes or the
user takes control of the situation.

7. Experiments

A wide variety of experiments have been conducted. The
first two sets are intended to study the performance of the
3D navigator under circumstances that are habitual in
many robotic applications: navigation in an office-like
environment and navigation at home. To validate our
proposal, the other two sets of experiments include some
specific and demanding situations that cannot be ad‐
dressed without 3D knowledge of the world. In all the
experiments, localization relies on wheel odometry and
laser scanners, which feed a particle filter implementation
of localization based on a metric map of the environment
[24]. Those geometric maps were previously built for each
environment by means of a simple ICP-based incremental
registration of laser scans.

7.1 Computational burden

In order to check the computational resources that the
reactive navigator demands, we have tested how long one
complete iteration of the reactive module takes on the
Giraff robot, whose processor is an Intel i3 – 2310M 2.10
GHz with 4.0 GB of RAM. Considering four height sections
and three different path models, the reactive iteration takes
4.8 milliseconds on a single CPU core, which implies a
computational load inferior to 100 milliseconds per second
for the 20 Hz implemented frequency. This leaves more
than 90% of the CPU to the other robotic modules (locali‐
zation, sensing, interface, etc.) which have to share the same
computational resources.

We can compare this runtime with that of the 2D reactive
navigator, i.e., considering only one height section to model

the robot. In this case the reactive iteration takes 3.4
milliseconds, which implies that the 3D version is about
40% slower than the 2D for this particular configuration.
The difference in time is not proportional to the number of
height sections because, within one complete iteration of
the 3D reactive approach, there are only a few steps that are
executed for each height section of the robot model, as can
be seen in Figure 8.

7.2 Navigating in an office-like environment

The Giraff robot has navigated autonomously around our
lab floor for more than a year, mainly in an area which
includes a long corridor, our two-room lab and the two
contiguous labs. This scenario presents a wide variety of
static and dynamic obstacles that the robot has to detect and
dodge (Figure 10). Apart from the geometric map for
localization, the robot is provided with a topological map
from which navigational targets are generated randomly.

Table 1 shows the results of some of these navigational
missions where navigational data were monitored to
evaluate the reactive navigation performance. Overall, the
robot has travelled 13.5 km with an average speed of 0.32
m/s and a top speed of 0.7 m/s. The incidents that took place
during these sessions were classified into two categories.
The first one, called “minor incidents”, refers to smooth
contacts or grazes that the robot itself can manage and solve
autonomously without human intervention. The second
category comprises those cases where the robot gets stuck
and cannot resolve the situation by itself, needing human
intervention.

Duration
(s)

Distance
travelled

(m)

Average
speed
(m/s)

Minor
incidents

Human
intervention

5330 1771 0.332 0 0

1352 399 0.295 0 0

597 184 0.308 1 0

564 179 0.317 0 0

1500 479 0.319 1 0

1737 535 0.308 0 0

4749 1435 0.302 1 1

3974 1206 0.303 1 1

3764 1207 0.321 1 0

1614 537 0.333 2 0

5450 1811 0.332 4 0

4975 1587 0.319 5 1

1840 601 0.327 3 0

5228 1571 0.300 1 1

Overall Results

11.854 h 13.5 km 0.316 20 4

Table 1. Results of the experiments in an office-like environment
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The incidents recorded are explained according to their
nature:

• Minor incidents are due to wheel slippage and the
relatively high response time of the whole system. Wheel
slippage depends on the robot mechanics and the surface
it is moving on, and causes the robot to move in an
uncontrolled way. On the other hand, we have checked
that the elapsed time from the moment an obstacle is
detected until the time the robot starts to react to it is
slightly higher than 0.5 seconds. This latency is the sum
of a number of small response times, inertias, and
communication delays between modules of the robotic
architecture.

• Human intervention is mainly needed when the robot
gets stuck due to unnoticed obstacles, most of them being
small pieces or part of objects lying on the floor.

Figure 10 gives an idea of how the robot has been wander‐
ing during the experiments. The point map shown was
built with a laser scanner and, hence, white areas may
contain obstacles invisible to the laser scanner (tables,
chairs or other objects) but not to the RGB-D camera. This
explains why in the trajectory plot there are apparently free
areas that the robot did not visit.
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Figure10.A) Some snapshots of the Giraffrobot navigating in an 

office-like environment (first row) together with a virtual 

representation of the robot and the obstacles detected by the 

sensors onboard (second row). B) The trajectory described by the 

robot during one of the missions. 

 

7.3. Navigating in a flat 

 

As mentioned, the Giraff robot has been deployed for 

more than a year in several flats in Malaga (Spain) as part 

of the objectives of the EU project GiraffPlus [23]. The flat 

selected for the experiments has four rooms andpresents a 

narrow navigable space with a reduced margin for 

manoeuvre (Figure 11). As a consequence, the Giraff 

maximum speed was lowered to 0.4 m/s in this case. The 

followed procedure is similar to that explained in the 

Figure 10. A) Some snapshots of the Giraff robot navigating in an office-like
environment (first row) together with a virtual representation of the robot
and the obstacles detected by the sensors onboard (second row). B) The
trajectory described by the robot during one of the missions.

7.3 Navigating in a flat

As mentioned, the Giraff robot has been deployed for more
than a year in several flats in Malaga (Spain) as part of the
objectives of the EU project GiraffPlus [23]. The flat selected
for the experiments has four rooms and presents a narrow
navigable space with a reduced margin for manoeuvre
(Figure 11). As a consequence, the Giraff maximum speed

was lowered to 0.4 m/s in this case. The followed procedure
is similar to that explained in the previous section: both
metric and topological maps were built and provided to the
robot which used them to navigate autonomously. Results
are listed in Table 2.

We can observe that the average speed has decreased,
which is not only a consequence of the maximum speed
reduction, but is also caused by the many situations in
which the robot performs a pure rotation to turn round,
contributing zero to the average velocity (see Figure 11 B).
The incidents that took place during these tests are ex‐
plained following similar criteria to those mentioned in the
analysis of the previous set of experiments:

• Minor incidents are mainly due to the high response time
of the robot working loop, which becomes more relevant
when moving in tight spaces.

• Only one human intervention was necessary because
there were not many objects lying on the floor.

Duration
(s)

Distance
travelled

(m)

Average
speed
(m/s)

Minor
incidents

Human
intervention

3003 448 0.149 2 0

4331 644 0.149 2 0

3845 571 0.149 1 1

4241 671 0.158 0 0

4263 654 0.153 1 0

4321 716 0.166 1 0

4384 731 0.167 3 0

3207 574 0.179 1 0

Overall Results

8.776 h 5.01 km 0.159 11 1

Table 2. Results of the experiments in a four-room flat

7.4 Navigation with an outstretched robotic arm

During this experiment, Rhodon is commanded to perform
a task that would be unfeasible using a 2D navigator. This
task consists in visiting different desks with a robotic arm
in a stretched position, emulating the process of collecting
and delivering objects autonomously, but omitting the
manipulation phase as it is outside the scope of this work.
This is an illustrative example of a robotic application that
necessarily requires 3D knowledge of the environment and
the robot. As PTG-based navigation does not support
changeable robot shapes, the arm is maintained at the same
position during the whole navigation so that the same five
prisms model the robot shape properly throughout this test
(if the arm moved, its corresponding height section could
be modelled according to the range of motion of the
manipulator). We specify a blind pixel region for Kinect
and neglect all the points observed at that region of the
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depth images since, given the camera pose on the robot (see
Figure 5), the robotic arm is necessarily observed by the
Kinect and would be considered an obstacle otherwise.
Taking into account the weight (~  50 kg) and height (1.8 m)
of Rhodon, its maximum linear and angular speeds have
been set to 0.4 m/s and 45 deg/s respectively. During the
experiment, the robot has travelled 160 m around our lab
visiting a total of seven different desks several times at
random (Figure 12).
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Figure11. A) Some snapshots of the Giraff robot navigating in a 

flat (first row) together with a virtual representation of the robot 

and the obstacles detected by the sensors onboard (second row). 

B) The trajectory described by the robot during one of the 

missions. The geometric map was built by laser scans. 
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Aside from accomplishing its task, the 3D reactive 

navigator has shown an improved behaviourwith respect 

to the 2D version sincethe robot was able, for example, to 

turn roundwhen surrounded by chairs, tables or boxes 

while the arm was moving above them. No incidents 

occurred during this test. In Figure 12 we can observe the 

final pose of the robot when it reached some of its 

destinations and how the robotic arm layabove the 

corresponding desks. 

 

Figure 11. A) Some snapshots of the Giraff robot navigating in a flat (first
row) together with a virtual representation of the robot and the obstacles
detected by the sensors onboard (second row). B) The trajectory described
by the robot during one of the missions. The geometric map was built by
laser scans.

Aside from accomplishing its task, the 3D reactive naviga‐
tor has shown an improved behaviour with respect to the
2D version since the robot was able, for example, to turn
round when surrounded by chairs, tables or boxes while
the arm was moving above them. No incidents occurred
during this test. In Figure 12 we can observe the final pose
of the robot when it reached some of its destinations and
how the robotic arm lay above the corresponding desks.

7.5 Testing the reactive navigator’s limits

A more extreme test to challenge the functioning of the 3D
reactive navigator consisted of commanding the robot to
go through a contour which has the same profile as the
robot itself. For this purpose we cut out a piece of fabric and
placed it at the door frame (Figure 13). The experiment was
carried out placing the robot about 5 m away from the door

at different positions and giving it a target outside of the
lab. Sometimes we put an additional piece of fabric crossing
the contour so as to check that the robot realized it could
not go across it. The maximum velocity was set to 0.3 m/s
and the short-term memory (STM) was not used (please see
the demonstration video at the link attached in the intro‐
ductory section).

 

Figure12. A) Schematic map of the lab and the desks that Rhodon 

visited during the experiment. B) Snapshots of Rhodon reaching 

its destinations or turning round surrounded by obstacles (first 

row) together with a virtual representation of the robot and the 

obstacles detected by the sensors onboard (second row). 
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We repeated this run 20 times and the robot always passed 

through the silhouette if the blocking piece of fabric was 

not present and always stopped otherwise. Quite 

frequently (about 50% of the time), however, the robot 

slightly touched the cloth as the field of view of the RGB-D 

camera is not wide enough to sense the whole clearance 

when the robot gets close to the door (Figure 13). We also 

made some trials activating the STM, but we found that 

using it had a counterproductive effect. As the localization 

module has a precision of few centimetres, virtual 

obstacles are inserted in the map carrying such positioning 

errors, which on occasion prevent the robot from seeing 

the clearance or cause undesired jittery behaviourin the 

reactive navigator. In this case, the errors in localization  

 

 

Figure13.Real images (up) and representations of the robot, the detected obstacles and the map (down) showing how the robot goes 

through the contour. 

 

arehigher than the spatial margins to pass through the 

clearance and, hence, the STM becomes useless. 

Nevertheless, the STM would be a good solution as long as 

the robot pose was estimated more precisely.  

 

8. Conclusions 

Figure 12. A) Schematic map of the lab and the desks that Rhodon visited
during the experiment. B) Snapshots of Rhodon reaching its destinations or
turning round surrounded by obstacles (first row) together with a virtual
representation of the robot and the obstacles detected by the sensors
onboard (second row).

We repeated this run 20 times and the robot always passed
through the silhouette if the blocking piece of fabric was
not present and always stopped otherwise. Quite frequent‐
ly (about 50% of the times), however, the robot slightly
touched the cloth as the field of view of the RGB-D camera
is not wide enough to sense the whole clearance when the
robot gets close to the door (Figure 13). We also made some
trials activating the STM, but we found that using it had a
counterproductive effect. As the localization module has a
precision of few centimetres, virtual obstacles are inserted
in the map carrying such positioning errors, which on
occasion prevents the robot from seeing the clearance or
cause undesired jittery behaviour in the reactive navigator.
In this case, the errors in localization are higher than the
spatial margins to pass through the clearance and, hence,
the STM becomes useless. Nevertheless, the STM would be

10 Int J Adv Robot Syst, 2015, 12:63 | doi: 10.5772/60563



a good solution as long as the robot pose was estimated
more precisely.

8. Conclusions

We have presented a 3D reactive navigator that can be
adapted to almost any robot moving on a flat surface. We
achieve high levels of versatility and manoeuvrability, as
only very weak assumptions have been made to formulate
this 3D approach, namely:

• The robot can be properly modelled in three dimensions
as a set of prisms.

• Measurements coming from different kinds of sensor
can be directly merged and read by the reactive naviga‐
tor, provided they are expressed as 3D point sets.

The robot is allowed to move according to several kine‐
matically compliant path models. Two robots with hetero‐
geneous height sections were chosen to test the reactive
navigator in different environments. A fair amount of
experiments were conducted and the results support its
proper functioning, although it may be conditioned by
some factors. First, the robot mechanics has been shown to
play an important role and can spoil the reactive navigator
performance if the robot is not able to reproduce the motion
commands quickly and accurately enough. Second, the
coverage of the surroundings by the robot sensorial system
is also a key factor that clearly delimits the quality of the
reactive navigator. The number, type and placement of
sensors needed for the robot to comprehensively sample its
surroundings are aspects that require a great deal of
attention. In this respect, we believe that active perception
could be an effective solution to improve obstacle detection
without demanding many sensorial resources. Although it
has not been contemplated here, active perception repre‐

sents a potential improvement and will be studied in future
works.
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