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Abstract

The problem of generating maps with mobile robots has re-
ceived considerable attention over the past years. Most of the
techniques developed so far have been designed for situations
in which the environment is static during the mapping process.
Dynamic objects, however, can lead to serious errors in the re-
sulting maps such as spurious objects or misalignments due to
localization errors. In this paper we consider the problem of
creating maps with mobile robots in dynamic environments.
We present a new approach that interleaves mapping and lo-
calization with a probabilistic technique to identify spurious
measurements. In several experiments we demonstrate that
our algorithm generates accurate 2d and 3d in different kinds
of dynamic indoor and outdoor environments. We also use
our algorithm to isolate the dynamic objects and to generate
three-dimensional representation of them.

1 Introduction

Learning maps with mobile robots is one of the fundamen-
tal problems in mobile robotics. In the literature, the mobile
robot mapping problem is often referred to as thesimultane-
ous localization and mapping problem (SLAM)[5, 7, 13, 17,
14, 10, 19]. This is because mapping includes both, estimating
the position of the robot relative to the map and generating a
map using the sensory input and the estimates about the robot’s
pose.

Whereas most of todays mapping systems are able to deal with
noise in the odometry and noise in the sensor data, they as-
sume that the environment is static during mapping. However,
if a person walks through the sensor range of the robot dur-
ing mapping, the resulting map will contain evidence about an
object at the corresponding location. Moreover, if the robot re-
turns to this location and scans the area a second time, pose es-
timates will be less accurate, since the new measurement does
not contain any features corresponding to the person. The re-
duced accuracy of the resulting maps may have a negative in-
fluence on the overall performance of the robot, since it can
obstruct the execution of typical navigation tasks such as lo-
calization and path planning.

In this paper we present a new algorithm to mapping with
mobile robots in dynamic environments. Our approach ap-
plies the popular Expectation-Maximization (EM) algorithm.

In the expectation step we compute a probabilistic estimate
about which measurements might correspond to static objects.
In the maximization step we use these estimates to determine
the position of the robot and the map. This process is iterated
until no further improvement can be achieved.

We apply our approach to 2d and 3d data obtained with laser-
range scanners. In practical experiments we demonstrate that
our algorithm can reliably filter out dynamic aspects and yields
accurate models of the environment. A further advantage of
our algorithm is that the filtered data can be extracted from the
rest of all measurements. This way, we can obtain accurate
textured 3d models of dynamic objects.

This paper is organized as follows. After discussing related
work in the following section, we will present our EM-based
procedure to learn which measurements correspond to static
aspects of the environment in Section 3. In Section 4 we will
present several experiments illustrating that our approach can
successfully learn 2d and 3d maps with range scanners in dy-
namic environments.

2 Related Work

For mobile robots, there exist several approaches to mapping
in dynamic environments. The approaches mostly relevant to
the work reported here are the methods developed by Wang
et al. [20] and our previous work described in [11]. Wang et
al. [20] use a heuristic and feature-based approach to identify
dynamic objects in range scans. The corresponding measure-
ments are then filtered out during 2d scan registration. In our
recent work [11] we describe an approach to track persons in
range scans and to remove the corresponding data during the
registration and mapping process. Compared to these tech-
niques, our algorithm presented in this paper does not rely on
any pre-defined features. Rather, it considers every measure-
ment individually and estimates a posterior about whether or
not this data item has been generated by a dynamic object.

Additionally, there has been work on updating maps or im-
proving localization in populated environments. For exam-
ple, in the system described in [4] we update a given static
map using the most recent sensory input to deal with people in
the environment during path planning. Montemerlo et al. [15]
present an approach to simultaneous localization and people
tracking. Siegwart et al. [18] present a team of tour-guide
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robots that operates in a populated exhibition. Their system
uses line features for localization and has been reported to suc-
cessfully filter range-measurements reflected by persons. Fox
et al. [9] present a probabilistic technique to identify range
measurements that do not correspond to the given model of the
environment. These approaches, however, require a given and
fixed map which is used for localization and for the extraction
of the features corresponding to the people. Our technique,
in contrast, does not require a given map. Rather it learns
the map from scratch using the data acquired with the robot’s
sensors. Our algorithm repeatedly interleaves the process of
estimating which beams are caused by dynamic objects with
a mapping and localization algorithm. Thereby it iteratively
improves its estimates and generates more accurate models of
the environment.

From a more general perspective, the problem of estimating
dynamic aspects in data can be regarded as an outlier detec-
tion problem, since the spurious measurements are data items
that do not correspond to the static aspects of the environment
which are to be estimated. The identification of outliers is
an important subtask in various application areas such as data
mining [12, 3, 16], correspondence establishment [6, 2], clus-
tering [8], or statistics [1]. In all these fields, errors in the
data reduce the accuracy of the resulting models and thus can
lead to a decreased performance whenever the learned models
are used for prediction or robot navigation, for example. The
problem considered in this paper differs from these approaches
in the fact that outliers cannot be detected solely based on their
distance to the other data items. Rather, the measurements first
have to be interpreted and transformed into a global represen-
tation (map) before individual measurements can be identified
as outliers.

3 Learning Maps in Dynamic Environments

Our approach to discover measurements that correspond to dy-
namic objects is strictly statistical. We use the popular EM-
algorithm to identify data items that cannot be explained by
the rest of the data set. The input to our routine is a sequence
of data itemsz = {z1, . . . , zT }. The output is a modelm ob-
tained from these data items after incorporating the estimates
about spurious measurements. In essence, our approach seeks
to identify a modelm that maximizes the likelihood of the
data. Throughout this paper we assume that each measurement
zt consists of multiple datazt,1, . . . , zt,N as it is the case, for
example, for laser-range scans. Throughout this paper we as-
sume that the datazt,n are beams obtained with a laser-range
scanner.

To accurately map a dynamic environment we need to know
which measurements are caused by dynamic objects and there-
fore can safely be ignored in the alignment and map updating
phase. To characterize spurious measurements in the data we
introduce additional variablesct,n that tell us for eacht and
eachn, whether the data itemzt,n is caused by a static object

or not. Each such variablect,n is a binary variable, that is ei-
ther0 or 1. It is 1 if and only if thezt,n is caused by a static
object. The vector of all these variables will be denoted byc.

n,tz0 f(x,n,k)

endpointlaser beam

Figure 1: Beam coveringzt,n cells of a map.

For the sake of simplicity, we give the derivation for beams
that are parallel to the x-axis of the map. In this case, the
length zt,n directly corresponds to the number of cells cov-
ered by this beam. We will later describe how to deal with
beams that are not parallel to the x-axis. Letf be a function
that returns for each positionxt of the robot, each beam num-
ber n, and eachk ≤ zt,n the indexf(xt, n, k) of k-th field
covered by that beam in the map (see Figure 1). To determine
whether or not a beam is reflected by a dynamic object, we
need to define the likelihood of a measurement given the cur-
rent mapm of the environment, the posex of the robot, and
the information about whetherzt,n is reflected by a maximum
range reading. Typically, maximum-range readings have to
be treated differently, since those measurements generally are
not reflected by any object. Throughout this paper we intro-
duce indicator variablesζt,n which are1 if and only if zt,n is
a maximum range reading and0, otherwise. The likelihood of
a measurementzt,n given the value ofct,n and the mapm can
thus be computed as:

p(zt,n | ct,n, xt,m) =

[
zt,n−1∏

k=0

(1 − mf(xt,n,k)))

]ζt,n

·

[
[mf(xt,n,zt,n)]ct,n · [1 − mf(xt,n,zt,n)](1−ct,n)

·
zt,n−1∏

k=0

(1 − mf(xt,n,k))

](1−ζt,n)

(1)

The first term of this equation specifies the likelihood of the
beam given it is a maximum range scan. In such a situation, we
compute the likelihood as the product of the probabilities that
the beam has covered the cells0 to zt,n−1. Please note, that the
cell in which the beam ends does not provide any information
since we do not know, whether there is an object or not given
the beam is a maximum range reading. Thereby the probabil-
ity that a beam covers a cellk < zt,n is equal to1−mf(xt,n,k).
The second row of this equation specifies how to deal with the
case that a cell that reflects a non-maximum range beam. If
zt,n is not reflected by a dynamic object, i.e.ct,n = 1, then
the likelihood equalsmf(xt,n,zt,n). If, in contrast,zt,n is re-
flected by a dynamic object, the likelihood is1−mf(xt,n,zt,n).
As well as for the maximum range measurements we have to
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consider in both cases that the beam has coveredzt,n − 1 cells
before reaching cellf(xt, n, zt,n).

Based on the definition of the observation likelihood we now
will define the likelihoodp(z, c | x, m) of the data which we
try to maximize in order to find the most likely map of the
environment.

p(z, c | x, m) =
T∏

t=1

p(zt, ct | xt,m) (2)

=
T∏

t=1

p(zt, | xt,m) · p(ct | xt,m) (3)

=
T∏

t=1

p(zt, | xt,m) · p(ct) (4)

=
T∏

t=1

N∏
n=1

p(zt,n, | ct,n, xt,m) · p(ct) (5)

We obtain Equation (3) from Equation (2) by assuming that
thezt andct are independent givenxt andm. We furthermore
considerct as independent from the locationxt and the map
m, which leads to Equation (4). Finally, Equation (5) is de-
rived from Equation (4) under the usual assumption, that the
neighboring beams of a single scan are independent given the
map of the environment.

Maximizing p(z, c | x, m) is equivalent to maximizing the
corresponding log likelihood, which can be derived from
Equation (5) and Equation (1) by straightforward mathemat-
ical transformations:

ln p(z, c | x,m)

= ln
T∏

t=1

N∏
n=1

p(zt,n, | ct,n, xt,m) · p(ct)

= N ·
T∑

t=1

ln p(ct) +
T∑

t=1

N∑
n=1

ln p(zt,n, | ct,n, xt,m)

= N ·
T∑

t=1

ln p(ct)

+
T∑

t=1

N∑
n=1

[
(1 − ζt,n) ·

[
ct,n · lnmf(xt,n,zt,n)

+(1 − ct,n) · ln(1 − mf(xt,n,zt,n))
]

+
zt,n−1∑

k=0

ln(1 − mf(xt,n,k))

]
(6)

Since the correspondence variablesc are not observable in the
first place a common approach is to integrate over them, that is,
to optimize the expected log likelihoodEc[ln p(c, z | x, m) |
x,m, d] instead. Since the expectation is a linear operator,
we can move it inside the expression. By exploiting the fact
that the expectation ofct,n only depends on the corresponding

measurementzt,n and the positionxt of the robot at that time.
we can derive the following equation:

Ec[ln p(z, c | x,m) | z, x,m] =

γ +
T∑

t=1

N∑
n=1

[
et,n · (1 − ζt,n) · lnmf(xt,n,zt,n)

+(1 − et,n) · (1 − ζt,n) · ln(1 − mf(xt,n,zt,n))

+
zt,n−1∑

k=0

ln(1 − mf(x,n,k))

]
(7)

For the sake of brevity, we use the term

et,n = Ec[ct,n | zt,n, xt,m] (8)

in this equation. The term

γ = N ·
T∑

t=1

Ec[ln p(ct) | z, x,m] (9)

is computed from the priorp(ct) of the measurements which
is independent ofz, x, andm. Accordingly,γ can be regarded
as a constant.

Unfortunately, optimizing Equation (7) is not an easy en-
deavor. A typical approach to maximize log likelihoods is the
EM algorithm. In the particular problem considered here this
amounts to generating a sequence of mapsm of increasing
likelihood. In the E-Step, we compute the expectations about
the hidden variablesc. In the M-step we then compute the
most likely mapm using the expectations computed in the E-
Step. Both steps are described in detail in the remainder of this
section.

In the E-step we compute the expectationset,n = Ec[ct,n |
zt,n, xt,m] for eachct,n given the measurementzt,n, the lo-
cationxt of the robot and the current mapm. Exploiting the
fact thatet,n equalsp(ct,n | zt,n, xt,m) and considering the
two cases thatzt,n is a maximum range reading or not, we
obtain:

et,n =

{
p(ct,n) , if ζt,n = 1

p(ct,n)εt,n , otherwise

where

εt,n =
1

p(ct,n) + (1 − p(ct,n))( 1
mf(xt,n,zt,n)

− 1)
(10)

The first equation corresponds to the situation thatzt,n is a
maximum range reading. Then,et,n corresponds to the prior
probabilityp(ct,n) that a measurement is reflected by a static
object. Thus, a maximum range reading does not provide any
evidence about whether or not the cell in the map in which the
beam ends is covered by a dynamic object.

In the M-Step we want to determine the values form andx that
maximize Equation (7) after computing the expectationset,n
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MappingScan Registration

Determine Dynamic Measurements

SLAM

Figure 2: Iteration of SLAM and dynamic beam estimation.

about the hidden variablesct,n in the E-step. Unfortunately,
maximizing this equation is also not trivial since it involves a
solution to a high-dimensional state estimation problem. To
deal with the enormous complexity of the problem, many re-
searchers phrase it as an incremental maximum likelihood pro-
cess [19, 10]. The key idea of incremental approaches is to
calculate the desired sequence of poses and the correspond-
ing maps by maximizing the marginal likelihood of thet-th
pose and map relative to the(t − 1)-th pose and map. In our
algorithm, we additionally consider the estimationset,n that
measurementn at time t is caused by a static object of the
environment:

x̂t = argmax
xt

{
p(zt | ct, xt, m̂

[t−1])

·p(xt | ut−1, x̂t−1)
}

(11)

In this equation the termp(zt | ct, xt, m̂
[t−1]) is the likeli-

hood of the measurementzt given the posêxt and the map
m̂[t−1] constructed so far. The termp(xt | ut−1, x̂t−1) rep-
resents the probability that the robot is at locationxt given
the robot previously was at position̂xt−1 and has carried out
(or measured) the motionut−1. The registration procedure is
then carried out using the same algorithm as described in our
previous work [11].

It remains to describe how the measurementzt is then used
to generate a new map̂m[t] given the resulting posêxt and
the expectationset,n. Fortunately, oncex1, . . . , xt, have been
computed, we can derive a closed-form solution form[t]. We
want to determine the value of each fieldj of the mapm[t]

such that the overall likelihood ofm[t] is maximized. To
achieve this, we sum over individual fieldsj ∈ [1, . . . , J ] of
the map. Thereby we use an indicator functionI(y) which is
1, if y is true and0, otherwise.

m̂[t] = argmax
m

(
J∑

j=1

T∑
t=1

N∑
n=1

[
I(f(xt, n, zt,n) = j)

·(1 − ζt,n) · (et,n lnmj + (1 − et,n) ln(1 − mj))

+
zt,n−1∑

k=0

I(f(xt, n, k) = j) · ln(1 − mj)

])
(12)

Now suppose, we define

Ĩ(x, n, k, j) := I(f(x, n, k) = j)

and

αj :=
T∑

t=1

N∑
n=1

Ĩ(xt, n, zt,n, j) · (1 − ζt,n) · et,n

βj :=
T∑

t=1

N∑
n=1

(
Ĩ(xt, n, zt,n, j) · (1 − ζt,n)

·(1 − et,n) +
zt,n−1∑

k=0

I(f(xt, n, k) = j)

)
The quantityαj corresponds to the sum of the expectations
et,n that beamn of scant is reflected by a static object of all
beams that are not maximum-range beams and that end in cell
j. The termβj , on the other hand, is the sum of two terms.
The first term is the sum of the expectations1−et,n that beam
n of scant is reflected by a dynamic object of all beams that
are not maximum-range beams and that end in cellj. The
second value of the sum simply is the number of times a beam
coversj but does not end inj. Please note that this value is
independent from whether or not the corresponding beam is
reflected by a dynamic object or not. Please furthermore note
that in a static world withet,n = 1 for all t andn the termαt

corresponds to the number of times a beam that does not have
the maximum length ends inj. In contrast to that,βj is the
number of times a beam covers a cell.

Using the definitions ofαj andβj , Equation (12) turns into

m[t] = argmax
m

 J∑
j=1

αj lnmj + βj ln(1 − mj)

 (13)

Since allmj are independent, we maximize the overall sum
by maximizing eachmj . A necessary condition to ensure that
mj is a maximum is that the first derivative equals zero:

∂m

∂mj
=

αj

mj
− βj

1 − mj
= 0 (14)

By straightforward mathematical transformationswe obtain

mj =
αj

αj + βj
. (15)

Please note that, given the sensor model specified in Equa-
tion (1), this closed-form solution for the most likely mapm
for given positionsx and static environments corresponds to
the naive counting technique in which one counts for each cell
how often a beam has ended in that cell and how often a beam
has covered it without ending in it.

The overall approach can be summarized as follows (see also
Figure 2). We start with an initial map̂m obtained by the in-
cremental mapping approach. Thereby the expectationset,n

are initialized with the prior probabilityp(ct,n) that a mea-
surement is caused by a static object. Given the resulting map
m̂ and the corresponding positionsx̂, we compute new expec-
tationset,n for each beam according to Equation (8). These
expectations are then used to compute a new map. The overall
process is iterated until no improvement of the overall likeli-
hood (Equation (6)) can be achieved or a certain number of
iterations has been exceeded.

Finally, we would like to discuss how to deal with beams that
are not parallel to the x-axis. In this case we no longer can
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Figure 5: Evolution of the map during EM. The images corresponds to iteration 1, 2, and 6.

Figure 3: Robot Sam mapping the populated exhibition hall of the
Byzantine Museum in Athens (left). In the resulting map
(right), the measurements labeled as dynamic are shown
in grey/orange.
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Figure 4: Evolution of the log likelihood (Equation (6)) during the
individual iterations.

compute the likelihood that a beam covers a cellj of m as
(1 − mj). Otherwise, transversal beams covering more cells
would accumulate a lower likelihood. The solution to this is to
weigh the beams according to the length by which they cover
a cell. SupposeB is the set of cells inm covered by a beam.
Furthermore supposelj is the length by which the beam covers
field j ∈ B. Then, the likelihood of a covering all cells inB
is computed as

∏
j∈B (1 − mj)lj .

4 Experiments

The approach described above has been implemented and
tested on different robotic platforms, in different environments
and with 2d and 3d data. In all experiments, we figured out,
that the system is robust even in highly dynamic environments.
In one experiment carried out with a fast moving car, the sys-
tem was able to accurately map the environment even if no
odometry data was given.

4.1 Filtering People
The first experiments were carried out using the Pioneer 2
robot Sam in the empty exhibition hall of the Byzantine Mu-
seum in Athens, Greece. The size of this environment is 30m
x 45m. The robot traveled continously 57m with an avg. speed
of 0.37m/s and a max. speed of 0.96m/s. Figure 3 (left) shows
the robot during the mapping process. There were 15 people
walking with a typical speed through the environment while
the robot was mapping it. Partially they stopped and contin-
ued moving. The most likely map resulting from the appli-
cation of our approach is shown in athe right image of Fig-
ure 3. The beams labeled as dynamic are drawn grey/orange
in this figure. As can be seen, our approach can reliably iden-
tify dynamic aspects and is able to learn maps that include the
static aspects only. At this point we would also like to mention
that the resulting map contains seriously less dynamic objects
than the map obtained with our previous approach presented
in [11].

Figure 4 plots the evolution ofEc[ln p(c, z | x, m) | x,m, d]
over the different iterations of our algorithm. It illustrates that
our algorithm in fact maximizes the overall log likelihood.
Please note, that this curve generally is not monotonic, be-
cause of the incremental maximum-likelihood solution to the
SLAM problem. Slight variations in the pose can have neg-
ative effects in future steps, so that the map likelihood can
decrease. However, we never observed significant decrease of
the log likelihood.

4.2 Improved Localization Accuracy
Besides the fact that the resulting maps contain less spurious
objects, our approach also increases the localization accuracy.
If dynamic objects are not handled appropriately during local-
ization, matching errors become more likely. Figure 6 shows
a typical map we obtained when mapping a densely popu-
lated environment. In this case we mapped a part of the Wean
Hall Corridor at Carnegie Mellon University during peak of-
fice hours when many persons were around. Some of them
were trying to block the robot, so that the robot had to make
detours around them. Therefore the robot traveled 74m with
an avg. speed of 0.15m/s (0.35m/s maximum). Despite the
fact, that the huge amount of spurious objects make the map
virtually useless for navigation tasks, the map also shows se-
rious errors in the alignment. Some of the errors are indicated
by arrows in the corresponding figure.

Figure 7 shows the map generated by our algorithm. As
the figure illustrates, the spurious measurements (indicated by
grey/orange dots) have been filtered out completely. Addition-
ally, the alignment of the scans is more accurate.
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Figure 6: Map obtained in a populated corridor of the Wean Hall at
Carnegie Mellon University using the raw input data.

Figure 7: Map generated by our algorithm.

Figure 5 depicts the evolution of a part of the map in the differ-
ent rounds of the EM. It shows how the beams corresponding
to dynamic objects slowly fade out and how the improved es-
timates about these beams improve the localization accuracy.

4.3 Generating Large-Scale Outdoor Maps
To evaluate the capability of our technique to deal with arbi-
trary features, we mounted a laser-range scanner on a car and
drove approximately 1km through Pittsburgh, PA, USA (Cor-
ner between Craig Street and Forbes Avenue). The maximum
speed of the car was 35 MPH in this experiment. We then ap-
plied our approach to the recorded data. The map generated
by our algorithm is shown in Figure 8. Whereas the black dots
correspond to the static objects in the scene, the white dots are
those which are filtered out using our approach. Again, most
of the dynamics of the scene could be removed. Only a few
cars could not be identified as dynamic objects. This is mainly
because we quickly passed cars waiting for turns and because
we drove along the path only once. Please also note, that due
to the lack of a GPS, the map had to be computed without any
odometry information.

4.4 Generating Textured 3D Maps
To demonstrate that our approach is not limited to 2d range
data, we carried out several experiments with the mobile robot
Robin (see Figure 9) which is equipped with a laser-scanner

Figure 8: Map of an outdoor scene after filtering dynamic objects.

Figure 9: The mobile robot Robin used to generate textured 3d
models (left). Beams reflected by a person are isolated
from the rest of the data. This is achieved by computing
a bounding box around those beams perceived with the
horizontal scanner that are identified as corresponding to
dynamic objects (center and right).

Figure 10: Textured 3d model of a person identified as a dynamic
object.

mounted on an AMTEC pan/tilt unit. On top of this scanner
we installed a camera which allows us to obtain textured 3d
maps of an environment. Additionally, this robot contains a
horizontally scanning laser range finder which we used in our
experiments to determine dynamic objects. To label the beams
in the 3d data as dynamic we use a bounding box around
the dynamic 2d points. To filter dynamic objects in the tex-
tures recorded with Robin’s cameras we choose for every poly-
gon that image which has the highest likelihood of containing
static aspects only. The left image of Figure 11 shows one par-
ticular view of a model obtained without filtering of dynamic
objects. The arrow indicates a polygon whose texture contains
fractions of an image of a person which walked through the
scene while the robot was scanning it. After applying our ap-
proach the corresponding beams and parts of the pictures were
filtered out. The resulting model shown in the right image of
Figure 11 therefore only contains textures showing static ob-
jects.

4.5 Extracting Textured 3d Objects
Additionally to filtering dynamic objects and learning static
aspects of environments our algorithm can also be used to sep-
arate dynamic objects from the environment. The key idea is
to extract all measurements from the 3d data that lie within a
bounding box around the beams whose probability that they
are reflected by dynamic objects exceeds 0.7. Figure 9 shows
two views of a typical 3d data sets obtained with this approach.
Whereas the data points belonging to a dynamic object are
shown in black, the rest of the data is depicted in grey. Again
we used the camera to map textures on the 3d data that were
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Figure 11: Textured 3d models obtained using Robin. The upper image shows the result without filtering. The lower image shows the resulting
model obtained with our algorithm.

identified as belonging to a dynamic object. Figure 10 depicts
three views of the resulting model. As can be seen from the
figure, our approach can accurately extract realistic looking
textured 3d models of dynamic objects.

5 Conclusions

In this paper we presented a probabilistic approach to map-
ping in dynamic environments. Our approach uses the EM
algorithm to interleave the identification of measurements that
correspond to dynamic objects with a mapping and localiza-
tion algorithm. This way it incrementally improves its esti-
mate about spurious measurements and the quality of the map.
The finally obtained maps contain less spurious objects and
also are more accurate because of the improved range regis-
tration.

Our technique has been implemented and tested on differ-
ent platforms. In several experiments carried out in indoor
and outdoor environments we demonstrated that our approach
yields accurate maps even if used on a fast moving vehicle
without odometry information. We also presented an appli-
cation to learn textured 3d models of dynamic environments.
Finally, we applied our algorithm to extract dynamic objects
from 3d data. The results illustrate that our approach can reli-
ably estimate which beams correspond to dynamic objects.

Acknowledgements
This work has partly been supported by the EC under
contract number IST-2000-29456 and by the German Sci-
ence Foundation (DFG) under contract number SFB/TR8-03.
It has also been sponsored by DARPA’s MARS, CoABS,
and MICA Programme (contract numbers N66001-01-C-
6018,NBCH1020014, F30602-98-2-0137, and F30602-01-C-
0219) and by the NSF under grant numbers IIS-9876136 and
IIS-9877033.

References
[1] V. Barnett and T. Lewis.Outliers in Statistical Data. Wiley, New
York, 1994.

[2] P. Besl and N. McKay. A method for registration of 3d shapes.Trans.
Patt. Anal. Mach. Intell. 14(2), pages 239–256, 1992.

[3] C. E. Brodley and M. A. Friedl. Identifying and eliminating misla-
beled training instances. InProc. of the National Conference on Artificial
Intelligence (AAAI), 1996.

[4] W. Burgard, A.B. Cremers, D. Fox, D. Ḧahnel, G. Lakemeyer,
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