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Abstract

We present a system capable of interactively dis-
playing a dynamic scene from novel viewpoints by
warping and blending images recorded from mul-
tiple synchronized video cameras. It is tuned for
streamed data and achieves 20 frames per second
on modern consumer-class hardware when render-
ing a 3D movie from an arbitrary eye point within
the convex hull of the recording camera’s positions.

The quality of the prediction largely depends on
the accuracy of the disparity maps which are recon-
structed off-line and provided together with the im-
ages. We generalize known algorithms for estimat-
ing disparities between two images to the case of
multiple image streams, aiming at a minimization
of warping artifacts and utilization of temporal co-
herence.

1 Introduction

Three-dimensional television is currently experi-
encing a surge in research activity [1, 2, 3, 4].
Acquisition hardware, computer vision algorithms,
and rendering techniques have reached a level of
affordability, robustness and sophistication, respec-
tively, that enable building a system to record, re-
construct, and render real-world dynamic scenes in
their three-dimensional nature. The development of
3D-TV follows advances recently made in image-
based rendering (IBR). In IBR, conventional pho-
tographs are used to capture the visual appearance,
the light field of a scene. Given enough images
from different viewpoints, any view of the scene
from outside of the convex hull of the recording
positions can be reconstructed [5]. Unfortunately,
light field rendering quality depends on the num-
ber of photographs. Very large numbers of im-
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ages are necessary to attain convincing rendering
results [6]. However, if 3D scene structure can
be reconstructed from the image data, e.g. per-
image depth maps [7] or a complete 3D scene ge-
ometry model [8], hybrid model/image-based ren-
dering methods achieve realistic rendering results
from only a relatively small number of images. Fur-
thermore, programmable graphics hardware can be
used to accelerate image-based rendering by warp-
ing and resampling the recorded images [9, 10].

Until recently, image-based rendering techniques
were restricted to static scenes. To record the dy-
namic light field of a temporally varying scene, the
necessary hardware effort is considerably higher.
Multiple synchronized video cameras are needed to
capture the scene from different viewpoints. In [11],
six cameras are used in conjunction with three
PCs to reconstruct approximate depth maps at near-
interactive frame rates. An off-line approach based
on volumetric reconstruction is presented in [12]
where a dynamic voxel model is used to render the
scene from novel viewpoints.

In this paper, a rendering system for dynamic
light fields is presented. An array of multiple syn-
chronized cameras is used to capture an animated
scene from different viewpoints. Depth maps are
reconstructed from the recorded video streams. In
contrast to [11] we use an off-line algorithm and
focus on the hardware accelerated rendering and
blending, where we achieve interactive rates of up
to 20 frames per second, including frame data load-
ing. The system makes possible interactive view-
ing of 3D movies from arbitrary viewpoint posi-
tions within the window spawned by the camera po-
sitions.
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Figure 1: The Stanford Light Field Video Cam-
era consists of numerous CMOS camera heads, ar-
ranged in a planar matrix and with aligned optical
axes.

2 Dynamic Light Field Acquisition

To record the light field of a static scene, it is cus-
tomary practice to use one single still-image camera
and consecutively record multiple views by moving
the camera around the scene. For acquiring the tem-
porally varying light field of a dynamic scene, how-
ever, numerous video cameras are needed to record
the scene from multiple viewpoints simultaneously.
In addition, all video cameras must be synchronized
to maintain temporal coherence among the recorded
images.

Because of the high hardware requirements, only
a few laboratories are currently able to record dense
dynamic light fields [1, 3, 4]. The dynamic light
field data used in this work has been captured with
the Light Field Video Camera (LFVC) [4] which
is currently being built at Stanford University as
part of the Immersive Television Project, Fig. 1.
The LFVC consists of multiple low-cost CMOS im-
agers, each providing

�����������	�
-pixel RGB resolu-

tion at 30 frames per second. The camera heads are
aligned in parallel, capturing the scene’s light field
in the two-plane parameterization [5]. Custom-built
driver boards enable on-line pre-processing as well
as MPEG-2 compression of each video stream. At
5 MBytes/sec per camera, up to 60 MPEG-encoded
video streams can be streamed to one PC via the
IEEE1394 High Performance Serial Interface Bus
where the data is stored on a SCSI hard drive.

The use of more than one camera inevitably leads

to mismatches in hue, brightness and radial distor-
tion among different camera images. These dif-
ferences need to be minimized by careful calibra-
tion prior to further processing. In addition, due to
the design of the Light Field Video Camera, only
MPEG-compressed image data is available, causing
quantization noise and blocking artifacts in the im-
ages. The depth estimation algorithm described in
the following Section must be robust against these
artifacts.

3 Disparity Map Estimation

Let 
 be an image from a source camera � . For��
 �������������
, let 
�� be an image from a reference

camera � � related to the source image by the fun-
damental matrix � � . If ������� is a fixed point in
world coordinates and  its projection in the source
image in homogenous coordinates, the correspond-
ing point  �! � in the reference image 
"� lies on the
epipolar line of  satisfying the epipolar constraint
[13, (1.9)]:  !$#� �%�& 
 ���

(1)

We use the prime to denote points whose coordi-
nates are given in the image coordinate frame of � � ,
all others are given in the image coordinate frame of
camera � .

If �'� is obtained from � by a pure translation ()�
parallel to the image plane, the fundamental matrix
is given by [13, Sect. 1.13]:

� � 
 * ( ��+�, 
 -. � � / �1032� � 4%/ �10654%/ �1032 / ��065 �
78

and the epipolar constraint (1) yields an equation
for a line which can be rewritten as

 ! � 
  4:9 ( � � (2)

Note that ( � is not normalized. Here
9 
 9<; �>=@?�

is called the disparity of � and can be interpreted
as the parallax of  for a unit camera movement
on the eye point plane. We also note that it is a
bijective function of the depth A ; �>= , the distance of� to the image plane: From Fig. 2 we deduce that
in the image coordinate frame of camera C,  B� has
coordinates

 � 
  DC A ; �>=A ; �>=ECGF ( � � (3)
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Figure 2: Top: Plane spawned in � � by a point �
and the camera’s centers of projection (COP). Be-
low: Image coordinate frames of camera � on the
left and camera � � on the right side.

where F denotes the camera’s focal length. Since
the coordinate frames in the image plane are related
by  ! � 
  � 4 (�� we conclude by comparing (2)
with (3) that

9 
 � 4 A ; �>=A ; �>=<C F 
 FA ; � =ECGF
does not depend on the reference image, so it is
well-defined. Equation (2) thus ensures that knowl-
edge of

9
is sufficient to derive the location of  in

an image taken by a camera related to � by a pure
translation parallel to the image plane.

For any point � , let 	 ; �E= be a square block
around � of a chosen fixed size. The distance be-
tween two blocks is defined as the sum of the abso-
lute differences between the R-, G- and B-values of
each pixel. We estimate the disparity

9
per-pixel by

computing the distance 
 � ; 9 = between 	 ;  �= and
	 ;  � = for all values of

9 � * ��� 9���
 5 + . The initial
disparity estimate is then given by the value of

9
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Figure 3: Relation between pixels in source and ref-
erence image.

where 
�� ; 9 = attains its minimum, Fig. 3. However,
if we use only this well-known correlation scheme,
the result suffers from a number of per-pixel dis-
continuities caused by false matches, Fig. 4b. These
lead to strong artifacts when (2) is used for forward-
predictive warping. In order to eliminate outliers
and further improve the disparity estimate, we use
the technique presented in [14]. In this algorithm,

9
is recovered as the asymptotic state of a parabolic
differential equation, which can be approximated
using an iteration process. We use our initial es-
timate to precondition this iteration and obtain new
disparity maps with the desireable property that per-
pixel discontinuities have vanished while disconti-
nuities along image edges are preserved, Fig. 4. An-
other advantage of this method is that the temporal
coherence in image streams can easily be exploited:
The disparity map obtained for the current frame is
a very good initial estimate for the disparity map of
the next frame, so no further computation of corre-
lations is required.

So far, we have only considered a single refer-
ence image. In the ideal case this is sufficient, since9

does not depend on
�

. In reality, we usually ob-
tain different

9 � for the different reference images.
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Figure 4: Original image, its correlation-based dis-
parity map and the processed final map.

The discrepancy is due to false matches caused by
occlusions as well as quantization noise and block-
ing artifacts present in the MPEG-encoded image
data used. Additionally, the transformation relating
the cameras is usually not a perfect translation, and
the response to colors may be different for different
cameras. The latter problem is alleviated by cali-
brating each camera’s color reproduction using cali-
bration matrices obtained from MacBeth color chart
images. In a second step, the images are equalized
which greatly improves the quality of the correla-
tion process.

Further errors are reduced by computing the final
disparity map

9
of the source image 
 by solving

� � � �� 9 �
Figure 5: Outlier elimination scheme.

the least-squares problem

������
�
� ; 9 � 4�9 =
	 (4)

for a selection of different
9 � . The values which

go into the computation are chosen according to the
following principles:� If the distance function 
�� exceeds a certain

threshold value,
9 � is discarded according to

the assumption that  � is most likely obscured
by some other object in the reference image 
	�
and thus no depth information can be gained
from this image.� To further eliminate outliers, we place an inter-
val

�
covering a small disparity range on the9

-axis in such a way that it contains the largest
possible number of disparity values, Fig. 5.
For the computation of (4) we use only the val-
ues of

9 � within
�

.

4 Interactive DLF Rendering

In the rendering step, a number of images� 
��
������� 0������30 � with precalculated dense disparity
maps

� 9 � � are warped and blended in order to
predict a view of the scene from a new viewpoint� . For interactive frame rates, one cannot trans-
form each pixel seperately as this would consume
too much time. The method described in this sec-
tion exploits the polygon processing capabilities of
OpenGL as well as hardware texturing and blending
provided by modern graphics hardware.

We create a regular triangle mesh covering the
area of the source image and assign to each vertex� of the mesh a disparity value

9 ; � = computed as
the average of its surrounding pixels in

9 � . This
process essentially downscales the disparity maps
and reduces the number of transformations required
during rendering. The downscaled maps can also be
precomputed and stored on hard drive for different
resolutions of the triangle mesh. An additional ben-
efit of downscaled disparity maps is their smaller
size which speeds up loading while displaying se-
quences of movie frames.

The blending process requires � passes of the
scene. In the

�
th pass, the source image 
�� is loaded
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Figure 6: Disparity map with triangle mesh, warped
triangle mesh and resulting warped image.

to the texture target TEXTURE RECTANGLE NV.
This OpenGL extension is required since the width
and height of the source images is usually not a
power of two. The mesh is rendered as a sequence
of triangle strips, which gives far superior perfor-
mance compared to quads. Final vertex positions
and texture coordinates are computed in hardware
by a vertex program which performs the following
tasks:� Use the position of the vertex directly as the

texture coordinates in the source image. Note
that texture coordinates for rectangular tex-
tures are not homogenous.� Compute the position of the vertex � in the

warped image according to

��������� 
 � C 9 ; � = ( � �
where ( � is the translation from � � to the new
viewpoint � .

The initial weight for each image is given by

� �	� 
 
���
 ; 4�� ( ��� ( � = � (5)

� � decreases with greater distance to the source im-
age. The use of the Gaussian is not mandatory, it is
but one of the functions having the desired property
of smoothness and a function value of one when ( �
equals zero. To further speed up rendering, images
with a weight below a small treshold value ��� �
are not used since their contribution is too small to
be visible. The constant

�
is chosen so that � � falls

just below � when ( � equals the minimum distance
between two cameras. Thus, if the position of the
camera for the predicted view coincides with one of
the source cameras, the original image of the cam-
era is reproduced exactly without distortions from
other source images.

After all initial weights are known, the final
blending weight � � used in the OpenGL blend
equation is then computed according to a cumula-
tive normalization by

� � 
 � �� �� ��� � � �
The stencil buffer is used to ensure that a weight of�

is used in areas where no image data has yet been
written. That way it is guaranteed that all pixels
are blended with the correct weight relative to the
images already warped and that for each pixel the
sum of all weights after every pass is equal to one.

Backfacing triangles are culled during rendering
since their pixels are obscured by a nearer object.
An example of the original triangle mesh, the depth
map and the resulting warped mesh is shown in
Fig. 6.

5 Results

The measurements in the following tables were per-
formed on a 1.7GHz Pentium Xeon with an nVidia
GeForce 4 graphics card. Four source images with
a resolution of ��� � � � ��� pixels taken from cam-
eras in the corners of a square are warped together
to render a predicted view with a resolution of�����>� ���	�

pixels, see the figures on the color plate.
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Block size Mesh res. Triangles Frame rate�
pixel � [blocks] [#] [Hz]

8 40 � 30 9600 72.99
4 80 � 60 38400 32.15
2 160 � 120 145200 10.87

Table 1: Frame rates for different mesh resolutions
without loading times.

Time per 100 frames used for
Block Rendering Loading Loading
size images depth maps

8 1.37 s 3.68 s 0.15 s
26.4 % 70.8 % 2.8 %

4 3.11 s 3.68 s 0.61 s
42.0 % 49.7 % 8.3 %

2 9.98 s 3.68 s 2.45 s
61.9 % 22.8 % 15.3 %

Table 2: Profile for different tasks while displaying
a movie, assuming the theoretical average transfer
rate of 25 MByte/s.

Frame rates achieved for a static image with differ-
ent triangle mesh resolutions are denoted in Table 1,
where block size corresponds to triangle leg length
in pixel.

In the case of dynamic scenes, the task of load-
ing the images and depth maps becomes the bot-
tleneck, as can be concluded from Table 2. In-
deed, at this resolution about 1 MByte of image
data and 0.25 MByte of disparity data have to be
transferred per frame from hard drive to the graph-
ics card. Modern standard IDE drives achieve av-
erage loading rates of 25 MByte per second, which
limits the theoretically possible frame rate to 20Hz.
In practice, the transfer rate on our system seldom
exceeds 15 MByte/s, probably because the different
data files to be read are not stored linearly on the
drive.

Thanks to the use of graphics hardware for ren-
dering, the predicted image can be scaled to an arbi-
trary size with no impact on performance. Smaller
block sizes result in a more complex triangle mesh
and require more bandwidth and rendering time, but
improve the quality of the image only marginally.
This is shown quantitatively in Table 3, where we
predict the view from the top-left camera by warp-
ing the images of the other three cameras. The mean
squared error per pixel between the original image

Figure 7: Residual error of disparity compensa-
tion: The error is concentrated in edges of the im-
age, where large differences in color stem from only
small inaccuracies in disparity.

Block size Root mean squared error

8 16.50
4 16.35
2 16.30

Table 3: Per-pixel error in a view warped from three
other images. Pixel values range from 0 to 255.

and the predicted image serves as a measure for the
warped image quality. Fig. 7 shows a visualization
of the error distribution.

The predicted image in the worst possible case
where the camera lies in the center of the square is
displayed on the color plate. Some strong blurring
artifacts are visible in the areas circled in red. The
errors in the upper right corner result from the fact
that some part of it is visible in only one image, so
no correct depth information can be derived for it.
In general, the depth information near the boundary
is not as accurate as in central regions, which is a
common problem in disparity map estimation [14].
The blurriness in the legs of the person is due to the
motion blur already present in the source images,
which leads to bad disparity estimates. However,
the algorithm reconstructs well features such as the
corners in the wall and the computer monitors, cir-
cled green. A movie showing our system in action
is available for download on our web page1.

6 Conclusions and Future Work

The system we have presented is capable of render-
ing 3D movies from an arbitrary viewpoint within

1http://www.mpi-sb.mpg.de/ � bg/3dtv.html
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the recording window at interactive frame rates on
today’s consumer-class hardware. Image quality
largely depends on the accuracy of the disparity
maps provided with the recorded video streams.
The algorithm we have proposed for off-line recon-
struction of these maps is a generalization of known
single-reference-image methods to the case of mul-
tiple image streams. It minimizes warping artifacts
and exploits the temporal coherence of the data.

In our current implementation the predicted view
can only be rendered for translated cameras. The
correlation algorithm used for preconditioning the
disparity map estimation also assumes that the cam-
eras in the array are related to each other by pure
translations. Our next goal is to generalize our soft-
ware towards arbitrary recording geometry and ar-
bitrary positions used for prediction. The additional
hardware-accelerated per-vertex computations will
not decrease the overall frame rate significantly.
Since the real bottleneck is the time needed for data
loading, we will investigate compression techniques
to speed up the transfer.

We also plan to improve the quality of the pre-
diction by using a triangle mesh adapted to image
features instead of a regular mesh. By matching tri-
angle edges with edges in the depth maps, pixels
belonging to the same physical object will be bound
to an independent subset of the mesh, which further
improves rendering quality.
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Figure 8: Source images taken by four cameras positioned at the vertices of a square. Note the artifacts
circled red caused by motion blur, which lead to blurred reproduction in the predicted view below.

Figure 9: The predicted view from a viewpoint in the center between the four cameras. Note the sharp
reproduction of features circled green. The visible blurriness in areas marked red is caused partly by motion
blur in the source images and partly by inaccuracies in the depth maps as explained in the main text.
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