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Abstract

We model the dynamic geometry of a time-varying scene
as a 3D isosurface in space-time. The intersection of the
isosurface with planes of constant time yields the geom-
etry at a single time instant. An optimal fit of our model
to multiple video sequences is defined as the minimum of
an energy functional. This functional is given by an inte-
gral over the entire hypersurface, which is designed to op-
timize photo-consistency. A PDE-based evolution derived
from the Euler-Lagrange equation maximizes consistency
with all of the given video data simultaneously. The result
is a 3D model of the scene which varies smoothly over time.
The geometry reconstructed by this scheme is significantly
better than results obtained by space-carving approaches
that do not enforce temporal coherence.

1. Introduction

Our goal is to reconstruct temporally coherent geome-
try using multi-video data from only a handful of cameras
distributed around a scene. The geometry models obtained
that way enable us to render the dynamic scene from ar-
bitrary viewpoints in high quality, using image-based ren-
dering techniques we investigated earlier [6]. In this paper,
however, we focus on the aspect of spatio-temporal recon-
struction, a computer vision problem that is a primary fo-
cus of research interest. It has been approached from sev-
eral points of view.

For one single frame of multi-camera data, voxel mod-
els of the scene have been quite popular for some time. In
particular, the visual hull can be easily and quickly be com-
puted as an approximate conservative model of scene ge-
ometry [9], and has been widely used as a geometry proxy
for image-based rendering. Much refined voxel models can
be obtained using space-carving [8], where one starts with

a completely solid voxel model, and carves away regions of
bad photo-consistency. Vedula et al. [13] achieve temporal
coherence by introducing a 6D model which includes mo-
tion information about each voxel, and additionally carving
away voxels inconsistent with the estimated scene flow.

Level set models are a nice alternative to voxels. The
boolean function defined on the voxel grid marking a voxel
as occupied or empty may be viewed as a {0, 1}-valued
function whose 0.5 level set is the surface enclosing the oc-
cupied voxels. In that sense, level sets are a true general-
ization of voxel models. Techniques which naturally em-
ploy level set models are those based on weighted mini-
mal surfaces, which minimize an energy functional given
as a surface integral of a scalar valued weight function. The
variational formulation of these kind of problems leads to
a surface evolution PDE which can be implemented using
level set techniques. Faugeras and Keriven [4] analyzed how
minimal surfaces can be employed for 3D reconstruction
of static scenes from multiple views. This technique was
recently extended to simultaneously estimate the radiance
of surfaces, and demonstrated to give good results in prac-
tice [7]. Another well-known technique which utilizes min-
imal surfaces is Geodesic Active Contours [1]. While orig-
inally designed for segmentation in 2D, it quickly became
clear that it could be generalized to 3D [2], and also applied
to other tasks. It is particularly attractive for modeling sur-
faces from point clouds [14]. Geodesic contours have also
been employed for 2D detection and tracking of moving ob-
jects [11].

In [5], we gave a mathematical analysis of weighted min-
imal hypersurfaces in arbitrary dimension and for a general
class of weight functions. We derived the Euler-Lagrange
equation yielding a necessary minimality condition. Our
analysis covers all of the the variational methods mentioned
above. In this paper, we present a variational method of
a new kind, applying the freedom in dimensionality al-
lowed by the theorem we proved in [5]. A fourth dimen-
sion is introduced which represents the flow of time in the



video sequence. Our goal is to reconstruct a smooth three-
dimensional hypersurface embedded in space-time. The in-
tersections of this hypersurface with planes of constant time
are two-dimensional surfaces, which represent the geome-
try of the scene in a single time instant. Our approach de-
fines an energy functional for the hypersurface. The min-
imum of the functional is the geometry which optimizes
photo-consistency as well as temporal smoothness.

In Sect. 2, we will introduce the mathematical foun-
dations of the algorithm and give a rigorous definition of
our method in terms of an energy minimization problem.
We also review how the minimization can be performed as
a surface evolution implemented with a level set method.
Implementation details are discussed in Sect. 3, where we
describe our parallel scheme which computes the evolu-
tion equation using a narrow band level set method. We
also propose algorithms necessary to evaluate the more in-
volved terms of the equation. Results obtained with real-
world video data are presented in Sect. 4.

2. Space-time 3D Reconstruction

In this section, we present the mathematical foundations
of our 3D reconstruction algorithm. We assume that we
have a set of fully calibrated, fixed cameras. The input to
our algorithm are the projection matrices for the set of cam-
eras, as well as a video stream for each camera. We want
to obtain a smooth surface X; for each time instant ¢, repre-
senting the geometry of the scene at that point in time. The
surfaces shall be as consistent as possible with the given
video data. Furthermore, as in reality, all resulting surfaces
should change smoothly over time.

2.1. Mathematical Foundations

To achieve these desirable properties, we do not con-
sider each frame of the sequences individually. Instead, we
regard all two-dimensional surfaces X; to be subsets of
one smooth three-dimensional hypersurface $) embedded in
four-dimensional space-time. From this viewpoint, the re-
constructed surfaces

% = 9N (R%t) CR?

are the intersections of $) with planes of constant time. Be-
cause we reconstruct only one single surface for all frames,
the temporal smoothness is intrinsic to our method.

However, we have to take care of photo-consistency of
the reconstructed geometry with the given image sequences.
We minimize an energy functional

A(H) = /ﬁ@dA. 1)

defined as an integral of the scalar valued weight function
® over the whole hypersurface. & = ®(s,n) measures the
photo-consistency error density, and may depend on the sur-
face point s and the normal n at this point. In [5], we em-
ployed a mathematical tool known as the method of the mov-
ing frame in order to prove the following theorem which is
valid in arbitrary dimension.

Theorem. A k-dimensional surface 5 ¢ R*¥*+! which
minimizes the functional A () := [, ® (s,n(s)) dA(s)
satisfies the Euler-Lagrange equation

(@q,m) — Tr(S)® + divg(®n) =0, (2

where S is the shape operator of the surface, also known as
the Weingarten map or second fundamental tensor. We now
present suitable choices for the error measure ®.

2.2. Continuous Space-time Carving

We need some additional notation for color and visibil-
ity of points in space-time first. Let ¢ denote a time instant,
then a time-dependent image I}, is associated to each cam-
era k. The camera projects the scene onto the image plane
via a fixed projection 7, : R? — R2. We can then com-
pute the color ¢!, of every point (s, ¢) on the hypersurface:

ch(s) = I} o mi(s).

Here, the image I, is regarded as a mapping assigning color
values to points in the image plane.

In the presence of the surface X, let v/ (s) denote
whether or not s is visible in camera & at time ¢. v} (s) is
defined to be one if s is visible, and zero otherwise.

The most basic error measure can now be defined as

l

dI(s,t) = Vt Z vi (s)vi(s) - |ch(s) — cz(s)H .
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The number V; , of pairs of cameras able to see the point s
at time ¢ is used to normalize the function.

If the error function ®° is used as the functional, the re-
sulting algorithm is similar to a space carving scheme in
each single time step. In that method, as introduced by Ku-
tulakos and Seitz [8], voxels in a discrete voxel grid are
carved away if ®° lies above a certain threshold value when
averaged over the voxel. In our scheme, the discrete vox-
els are replaced by a continous surface. In the surface evo-
lution introduced later, this surface will move inwards un-
til photo-consistency is achieved. This process is analogous
to the carving process [8]. The same functional for regular
surfaces in R? was introduced by Faugeras and Keriven [4]
for static scene reconstruction. As an additional constraint,
we enforce temporal coherence in the form of temporal
smoothness of the resulting hypersurface, which makes our
method ideal for video sequences.



A small grid in the tangent plane is projected in both cam-
era images. This leads to two columns of data containing
the pixels colors of the grid corners in the respective video
image. Between these two columns of data, the normalized
cross correlation is computed.

Figure 1. Cross-correlation error term ®C.

2.3. Normal Optimization

Because the theorem also allows for error functions
which may depend on the normal, we can take the scheme
one step further to include an optimization for the surface
normals as well. A similar idea was also presented in [4],
however, we give a slightly modified version and still work
in space-time to enforce temporal smoothness.

In order to set up an error function, we have to analyze
how well a small surface patch at position s with a given
normal n fits the images at time ¢. To this end, we assign
to each of these values a small patch O, ,, within the plane
orthogonal to n, Fig. 1. How exactly this patch is chosen
does not matter, however, the choice should be consistent
over time and space and satisfy a few conditions which will
become evident soon. In our implementation, we always
choose rectangular patches rotated into the target plane by
a well-defined rotation.

We will now define a measure how well the patch [, , is
in accordance with the images at time ¢. For that, we employ
the normalized cross-correlation of corresponding pixels in
the images, a well-established matching criterion in com-
puter vision. Mathematically, the resulting functional for a
point z = (s,t) € R* with normal direction n is defined as
follows:

1 ! ¢ ¢ X%,j(san)
®%(z,n) = — Z v; (s)v;(s) - yYE)

X;;(s,m’) = / (cf —Tf’n) (cz - T;’n) dA,
Ds,nt

and the mean color value of the projected patch in the im-

ages computed according to

—=z,n

— 1 ¢
I, = Ao /ci dA.

Some things have to be clarified. First, the correlation mea-
sure X?,j for a pair of cameras is hormalized using the area
A (O ) of the patch. Second, it is now clear that we have
to choose U ,, sufficiently large so that it is projected onto
several pixels. On the other hand, it should not be so large
that only parts of it are visible in the images. As a com-
promise, we choose its diameter to be equal to the cell di-
ameter of the underlying computation grid, as defined in
Sect. 3. Third, the integration of ®< in the energy func-
tional involves the normals of § in 4D space, while n is
supposed to lie in R3. For that reason, we project normals
of § into the tangent space of X, in order to get n.

When this functional is minimized, two constraints are
optimized simultaneously. Each surface X2, together with its
normals is selected to best match the images at that time
instant. Furthermore, a smooth change of the surfaces X,
with time is encouraged because of the curvature term in the
Euler-Lagrange equation. The error functional can be mini-
mized using a surface evolution implemented via a level set
scheme, as derived in the next subsection.

2.4. Level Set Evolution Equation

In order to find the minimum of the energy functional,
we have to find a solution to the Euler-Lagrange equation
(2) according to our theorem. An efficient way to do this
is to rewrite it as a surface evolution which can be im-
plemented using level sets [10, 3]. This technique is well-
established for a wide area of applications [12].

In the level set framework, we consider a familiy of sur-
faces 9. represented as the zero level sets of a regular func-
tion

w:R*xRZ° SR, u(z,7)=0 < z€9H,. (3)

u(+, ) is required to be positive inside the volume enclosed
by $., and negative on the outside. We derived in detail
in [5] that when exposed to the evolution equation

9
87’u

with v

U |Vu|

{— div((b : ;—ZO + din(fbn)] )

the surfaces )., converge towards a local minimum of the
Euler-Lagrange equation if we start with a suitable initial
surface $g.

In the next section, we will analyze how this evolution
can be implemented efficiently in a multi-processor envi-
ronment.

(4)
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e In the first step, the values of «; in the green cells are
used to compute the level set normal n € R* in the
blue cells using central differences. Having computed
n, we can also compute & for the blue cells. Note that
for the purpose of the above 2D illustration, the three
spatial dimensions are represented as one.

e For the second step, we compute the values for the
central red cell, also using finite differences. The dis-
crete formula for div(®n) at position p = (z,y, 2, t)
is

£ (I)P+einf+5i _ @P*eq‘,n?*ei
2

=1
We can also compute the curvature Tr (S) directly by
omitting ® in the above formula.

e The difficult part is to compute div: (®,,) for the red
cell. It is equal to the trace of &, restricted to the tan-
gent plane IT orthogonal to the normal at p. So we first
compute &, for the blue cells using finite differences,
taking the known normal n of the cell as the center
point. With these values, we can set up the 4 x 4 ma-
trix U := ®,, for the red cell. Choose an arbitrary
orthonormal base {to, t1, t2} of the plane II. The en-
tries for the 3 x 3 matrix V' of the mapping ®,.|m can
then be computed as

vij = t:Ut;,1<i,5<3.

Figure 2. Evaluation of the differential opera-
tor.

3. Parallel Implementation

In order to implement the level set evolution equation,
the volume surrounding the hypersurface $ has to be dis-
cretized. We use a regular four-dimensional grid of evenly
distributed cells with variable spatial resolution of usually
64> or 1283 cells. The temporal resolution is naturally equal
to the number of frames in the input video sequences. It is
currently not yet possible to store the full data for each grid
cell together with all images of all video sequences within
the main memory of a standard PC. A parallel implementa-
tion where the workload and data is distributed over several
computers is therefore mandatory.

For that reason, we choose the narrow band level set
method [12] to implement the evolution equation because it

is straightforward to parallelize. We start with an initial sur-
face $), and the values u%¥*" of the corresponding level set
function wg in the centers of the grid cells. A suitable ini-
tial surface for our case will be defined at the end of this
section. The values of the level set function are updated it-
eratively using the upwind scheme. At iteration step ¢ + 1,
the new values w{?;" are obtained from the values u{”*" of
the previous iteration step by a discrete version of equation
(4) using an explicit time step:

ul¥ = w4+ U (W) [V - AT (5)

Here, ¥ (uf¥*") is the value of the discretized version of
the differential operator ¥ acting on w;, evaluated in the cell
(z,y, z,t). Central differences on the four-dimensional grid
are used to compute the derivatives involved in Egn. 4. The
norm of the discretized gradient | V| is calculated accord-
ing to the upwind scheme [12]. To ensure stability, the step
size AT must be chosen such that the level sets of u; can-
not cross more than one cell at a time, i.e. satisfy the CFL-
condition

Ar < max diam Cell(tx,y,z,t) . ©)
(z,y,2,t)eT ’\I/ (uf”z ) . Vu‘

The computation of individual cells can easily be dis-
tributed over several processes. In our implementation, each
process is responsible for the computation of one single
slice of the grid of constant time ¢;. This slice corresponds to
the geometry of the ith frame of the video sequence. Fig. 2
shows in more detail how the value ¥ (uf¥*") is numeri-
cally evaluated from the values of u; in the grid cells. Ac-
cording to this figure, we need the values of grid cells up to
two cells apart from (z, y, 2, t) in order to evaluate the oper-
ator. As a consequence, each process P; also has to know the
slices of the four other processes P;11, P;+o. These have to
be communicated over the network. In addition, each pro-
cess needs to store the image data of its own video frame
and the two adjacent frames according to Fig. 2.

To summarize, one full iteration consists of the follow-
ing four steps:

e Each process transmits its own slice S; to the adjacent
processes and receives the other necessary slices from
its four neighbours.

e Afterwards, each process computes W (uf¥*") for all
cells in its slice near the zero level set of u;, using the
scheme presented in Fig. 2.

e The maximum value of the operator for each process
is transmitted to a special server process. From these
maxima, the server calculates the optimal step size AT
allowed by the inequality (6).

e The server broadcasts the maximum to all processes,
which afterwards compute the evolution on their slice
using equation (5).



Grid res.  # procs. Time per iteration [S] Memory
without n.o.  withn.o.  per proc.
323 60 0.9 25 80 MB
40 14 38
20 25 60
64° 60 7 140 180 MB
40 11 210
20 17 360
1283 60 30 510 535 MB
40 55 840
20 102 1200

Table 1. Time and memory requirements for
one single iteration, with and without normal
optimization, depending on resolution and
number of processes.

We finally have to define a suitable initial surface $q to
start the iteration process. For this purpose, we employ the
visual hull, which by definition is always a superset of the
correct scene geometry. In order to compute a level set rep-
resentation, we have to choose suitable values of u for each
grid cell. For this purpose, we fix a grid cell ¢ and select a
number of evenly distributed sample points zg, . ..,z in-
side it. These points are projected into each source image,
and we compute the percentage p € [0, 1] of the projec-
tions which fall into the silhouettes of the object to be re-
constructed. To the initial level set function ug is then as-
signed the value 2p — 1 at cell ¢. Since we only have to
compute an approximate starting surface, this straightfor-
ward method gives sufficiently good results in practice. In
particular, the projection of the zero level set of u into the
source images very closely resembles the silhoettes of the
object if £ is sufficiently high.

4. Results

In order to test our algorithm, we run it on real-world
320 x 240 RGB video sequences of a ballet dancer. All in-
put images are segmented into foreground and background
using a thresholding technique. Consequently, we can com-
pute the refined visual hull to get a starting volume for the
PDE evolution, Fig. 3. For our test runs, we choose a 20
frame long part of the sequence with the depicted frame in
the middle. As becomes apparent in Fig. 4, this frame is
particularly difficult to reconstruct, because we do not have
a camera capturing the scene from above. For that reason,
most of the area in between the arms of the dancer is not
carved away in the initial surface.

When we run a standard space-carving algorithm for this
single frame alone, the situation improves. The shirt of the
dancer contains not much texture information, however, so
only part of the critical region is carved away as it should

be. Only when we employ the full algorithm which takes
into account temporal coherence between the geometry of
the frames do we get the satisfactory result in Fig. 4 on the
right.

Table 1 informs about the time and memory required by
each of the slave processes for a single iteration. Our pro-
gram ran on a Sun Fire 15K with 75 UltraSPARC |1+ pro-
cessors at 900 MHz, featuring 176 GBytes of main memory.
It can be observed that the normal optimization requires a
lot of computation time when compared to the standard ver-
sion of our algorithm. For that reason, we first let the geom-
etry evolve towards a surface which is very close to an op-
timal result, as assessed by the operator of the program. Af-
terwards, we switch on the normal optimization in order to
improve the reconstruction of small surface details. In av-
erage, we need around one hundred iterations of the initial
evolution and twenty more of the normal optimization un-
til the surface has converged to the final result.

5. Summary and Conclusions

We have presented a novel 3D reconstruction algorithm
which takes into account all frames of a multi-video se-
guence simultaneously. The idea is to optimize photo-
consistency with all given data as well as temporal smooth-
ness. Our method is formulated as a weighted minimal sur-
face problem posed for a 3D hypersurface in space-time.
Intersecting this hypersurface with planes of constant time
gives the 2D surface geometry in each single time instant.
The energy functional defining the minimization problem
enforces photo-consistency, while temporal smoothness is
intrinsic to our method. The functional can be minimized
by implementing a surface evolution PDE using the narrow
band level set method. Significant improments compared to
space carving approaches which do not take temporal co-
herence into account can be observed in the results. In the
future, we plan to include a global optimization of surface
reflectance properties into the same unifying framework.
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