
Convex Relaxation for Multilabel Problems
with Product Label Spaces

Bastian Goldluecke and Daniel Cremers

Computer Vision Group, TU Munich

Abstract. Convex relaxations for continuous multilabel problems have
attracted a lot of interest recently [1–5]. Unfortunately, in previous meth-
ods, the runtime and memory requirements scale linearly in the total
number of labels, making them very inefficient and often unapplicable
for problems with higher dimensional label spaces. In this paper, we pro-
pose a reduction technique for the case that the label space is a product
space, and introduce proper regularizers. The resulting convex relaxation
requires orders of magnitude less memory and computation time than
previously, which enables us to apply it to large-scale problems like optic
flow, stereo with occlusion detection, and segmentation into a very large
number of regions. Despite the drastic gain in performance, we do not
arrive at less accurate solutions than the original relaxation. Using the
novel method, we can for the first time efficiently compute solutions to
the optic flow functional which are within provable bounds of typically
5% of the global optimum.

1 Introduction

1.1 The Multi-labeling Problem

A multitude of computer vision problems like segmentation, stereo reconstruc-
tion and optical flow estimation can be formulated as multi-label problems. In
this class of problems, we want to assign to each point x in an image domain
Ω ⊂ Rn a label from a discrete set Γ = {1, . . . , N} ⊂ N. Assigning the label
γ ∈ Γ to x is associated with the cost cγ(x) ∈ R. In computer vision applica-
tions, the local costs usually denote how well a given labeling fits some observed
data. They can be arbitrarily complex, for instance derived from statistical mod-
els or complicated local matching scores. We only assume that the cost functions
cγ lie in the Hilbert space of square integrable functions L2(Ω). Aside from the
local costs, each possible labeling g : Ω → Γ is penalized by a regularization term
J(g) ∈ R. The regularizer J represents our knowledge about which label con-
figurations are a priori more likely. Frequently, it enforces some form of spacial
coherence. In this paper, we are above all interested in regularizers which penal-
ize proportionally to the length of the interface between regions with different
labels γ, χ and a metric d(γ, χ) between the associated labels.

2 Bastian Goldluecke and Daniel Cremers

Fig. 1. The proposed relaxation method can approximate the solution to multi-labeling
problems with a huge number of possible labels by globally solving a convex relaxation
model. This example shows two images and the optic flow field between the two, where
flow vectors were assigned from a possible set of 50 × 50 vectors, with truncated linear
distance as a regularizer. The problem has so many different labels that a solution
cannot be computed by alternative relaxation methods on current hardware. See Fig. 7
for the color code of the flow vectors.

The goal is to find a labeling g : Ω → Γ which minimizes the sum of the
total costs and the regularizer, i.e.

argmin
g∈L2(Ω,Γ)

J(g) +
∫
Ω

cg(x)(x) dx . (1)

1.2 Discrete approaches

It is well known that in the fully discrete setting, the minimization problem (1)
is equivalent to maximizing a Bayesian posterior probability, where the prior
probability gives rise to the regularizer [6]. The problem can be stated in the
framework of Markov Random Fields [7] and discretized using a graph represen-
tation, where the nodes denote discrete pixel locations and the edges encode the
energy functional [8].

Fast combinatorial minimization methods based on graph cuts can then be
employed to search for a minimizer. In the case that the label space is binary and
the regularizer submodular, a global solution of (1) can be found by computing
a minimum cut [9, 10]. For multi-label problems, one can approximate a solution
for example by solving a sequence of binary problems (α-expansions) [11, 12],
or linear programming relaxations [13]. Exact solutions to multi-label problems
can only be found in some special cases, notably [14], where a cut in a multi-
layered graph is computed in polynomial time to find a global optimum. The
construction is restricted to convex iteraction terms with respect to a linearly
ordered label set.

However, in many important scenarios the label space can not be ordered,
or a non-convex regularizer is more desireable to better preserve discontinuities
in the solution. Even for relatively simple non-convex regularizers like the Potts
distance, the resulting combinatorial problem is NP-hard [11]. Furthermore, it
is known that the graph-based discretization induces an anisotropy, so that the

Lecture Notes in Computer Science: Authors’ Instructions 3

solutions suffer from metrication errors [15]. It is therefore interesting to inves-
tigate continuous approaches as a possible alternative.

1.3 Continuous approaches

Continuous approaches deal with the multi-label problem by transforming it
into a continuous convex problem, obtaining the globally optimal solution, and
projecting the continuous solution back onto the original discrete space of labels.
Depending on the class of problem, it can be possible to obtain globally optimal
solutions to the original discrete minimization problem.

As in the discrete setting, it is possible to solve the two-label problem in a
globally optimal way by minimizing a continuous convex energy and subsequent
thresholding [2]. In the case of convex interaction terms and a linearly ordered
set of labels, there also exists a continuous version of [14] to obtain globally
optimal solutions [3]. For the general multi-label case, however, there is no re-
laxation known which leads to globally optimal solutions of the discrete problem.
Currently the most tight relaxation is [4]. The theoretical basis of the reduction
technique introduced in this paper is the slightly more transparent formulation
introduced in [5] and further generalized in [1], but it can be easily adapted to
the framework [4] as well.

The convex relaxation described in [1, 5] works as follows. Instead of looking
for g directly, we associate each label γ with a binary indicator function uγ ∈
L2(Ω, {0, 1}), where uγ(x) = 1 if and only if g(x) = γ. To make sure that a
unique label is assigned to each point, only one of the indicator functions can
have the value one. Thus, we restrict optimization to the space

UΓ :=

(uγ)γ∈Γ : uγ ∈ L2(Ω, {0, 1}) and
∑
γ∈Γ

uγ(x) = 1 for all x ∈ Ω

 .

(2)
Let 〈·, ·〉 denote the inner product on the Hilbert space L2(Ω), then problem (1)
can be written in the equivalent form

argmin
u∈UΓ

J(u) +
∑
γ∈Γ
〈uγ , cγ〉 , (3)

where we use bold face notation u for vectors (uγ)γ∈Γ indexed by elements in Γ .
We use the same symbol J to also denote the regularizer on the reduced space.
Its definition requires careful consideration, see Section 3.

1.4 Contribution: Product label spaces

In this work, we discuss label spaces which can be written as a product of a
finite number d of discrete spaces, Γ = Λ1 × · · · × Λd. Let Nj be the number
of elements in Λj , then the total number of labels is N = N1 · ... · Nd. In the
formulation (3), we optimize over a number of N binary functions, which can

4 Bastian Goldluecke and Daniel Cremers

1

0 Γ

0

0

0

0 0

00 0

000

0 0

Λ1

11

Λ2

Fig. 2. The central idea of the reduction technique is that if a single indicator function
in the product space Γ takes the value 1, then this is equivalent to setting an indicator
function in each of the factors Λj. The memory reduction stems from the fact that there
are much more labels in Γ than in all the factors Λj combined.

be rather large in practical problems. In order to make problems of this form
feasible to solve, we present a further reduction which only requires N1+· · ·+Nd
binary functions - a linear instead of an exponential growth.

We will show that with our novel reduction technique, it is possible to effi-
ciently solve convex relaxations to multi-label problems which are far too large
to approach with previously existing techniques. A prototypical example is optic
flow, where a typical total number of labels is around 322 for practical problems,
for which we only require 64 indicator functions instead of 1024. However, the
proposed method applies to a much larger class of labelling problems. A con-
sequence of the reduction in variable size is a disproportionately large cut in
required runtime, which also makes our method much faster.

2 Relaxations for Product Label Spaces

2.1 Product Label Spaces

As previously announced, from now on we assume that the space of labels is a
product of a finite number d of discrete spaces, Γ = Λ1×· · ·×Λd, with |Λj | = Nj .
To each label λ ∈ Λj , 1 ≤ j ≤ d, we associate an indicator function ujλ. Thus,
optimization will take place over the reduced space of functions

U×Γ :=
{

(ujλ)1≤j≤d,λ∈Λj : ujλ ∈ L
2(Ω, {0, 1}) and∑

λ∈Λj

ujλ(x) = 1 for all x ∈ Ω, 1 ≤ j ≤ d
}
.

(4)

Lecture Notes in Computer Science: Authors’ Instructions 5

(a) Product function m(x1, x2) = x1x2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

x1 + x2

co (m)
ε = 0.05
ε = 0.15
ε = 0.20

(b) Convex envelope co (m) and molli-
fied versions for different ε

Fig. 3. Product function and its mollified convex envelope for the case d = 2.

We use the short notation u× for a tuple (ujλ)1≤j≤d,λ∈Λj . Note that such a
tuple consists indeed of exactly N1 + ... + Nd binary functions. The following
proposition illuminates the relationship between the function spaces UΓ and U×Γ .

Proposition 1. A bijection u× 7→ u from U×Γ onto UΓ is defined by setting

uγ := u1
γ1 · ... · u

d
γd
,

for all γ = (γ1, ..., γd) ∈ Γ .
This is easy to see visually, Figure 2.1. A formal proof can be found in the

appendix. With this new function space, another equivalent formulation to (1)
and (3) is

argmin
u×∈U×Γ

J(u×) +
∑
γ∈Γ

〈
u1
γ1 · ... · u

d
γd
, cγ
〉
. (5)

Note that while we have reduced the dimensionality of the problem considerably,
we have introduced another difficulty: the data term is not convex anymore, since
it contains a product of the components. Thus, in the relaxation, we need to take
additional care to make the final problem again convex.

2.2 Convex Relaxation

Two steps have to be taken to relax (5) to a convex problem. In a first step, we
replace the multiplication function m(u1

γ1 , ..., u
d
γd

) := u1
γ1 · ... · u

d
γd

with a convex
function. In order to obtain a tight relaxation, we first move to the convex
envelope co (m) of m. Analyzing the epigraph of m, Fig. 3(a) shows that

co (m) (x1, ..., xd) =

{
1 if x1 = ... = xd = 1,
0 if any xj = 0.

(6)

6 Bastian Goldluecke and Daniel Cremers

This means that if in the functional, m is replaced by the convex function co (m),
we retain the same binary solutions, as the function values on binary input are
the same. We lose nothing on first glance, but on second glance, we forfeited
differentiability of the data term, since co (m) is not a smooth function anymore.

In order to be able to solve the new problem in practice, we replace co (m)
again by a mollified function co (m)ε, where ε > 0 is a small constant. We
illustrate this for the case d = 2, where one can easily write down the functions
explicitly. In this case, the convex envelope of multiplication is

co (m) (x1, x2) =

{
0 if x1 + x2 ≤ 1
x1 + x2 − 1 otherwise.

This is a piecewise linear function of the sum of the arguments, i.e symmetric in
x1 and x2, see Fig. 3(b). We smoothen the kink by replacing co (m) with

co (m)ε (x1, x2) =


0 if x1 + x2 ≤ 1− 4ε
1

16ε (x1 + x2 − (1− 4ε))2 if 1− 4ε < x1 + x2 < 1 + 4ε
1 if x1 + x2 ≥ 1 + 4ε

This function does not satisfy the above condition (6) exactly, but only fulfills
the less tight

co (m)ε (x1, . . . , xd)

{
= 1 if x1 = · · · = xd = 1,
≤ ε if any xj = 0.

(7)

The following Theorem shows that the solutions of the smoothened energy con-
verge to the solutions of the original energy as ε → 0. After discretization, this
means that we obtain an exact solution to the binary problem if we choose ε
small enough, since the problem is combinatorial and the number of possible
configurations finite.

Theorem 1. Let ε > 0 and co (m)ε satisfy condition (7). Let u×0 be a solution
to problem (5), and

u×ε ∈ argmin
u×∈U×Γ

J(u×) +
∑
γ∈Γ

〈
co (m)ε (u1

γ1 , ..., u
d
γd

), cγ
〉
. (8)

Then ∣∣Eε(u×ε)− E(u×0)
∣∣ ≤ |Ω|∑

γ∈Γ
‖cγ‖∞ ε , (9)

where E and Eε are the energies of the original problem (5) and smoothened
problem (8), respectively.

The proof can be found in the appendix. The key difference of (8) compared
to (5) is that the data term is now a convex function.

In the second step of the convex relaxation, we have to make sure the do-
main of the optimization is a convex set. Thus U×Γ is replaced by its convex

Lecture Notes in Computer Science: Authors’ Instructions 7

hull co
(
U×Γ
)
. This just means that the domain of the functions (ujλ) is extended

to the continuous interval [0, 1]. The final relaxed problem which we are going
to solve is now to find

argmin
u×∈co(U×Γ)

J(u×) +
∑
γ∈Γ

〈
co (m)ε (u1

γ1 , ..., u
d
γd

), cγ
〉
. (10)

2.3 Numerical Method

With a suitable choice of convex regularizer J , problem (10) is a continuous
convex problem with a convex and differentiable data term. In other relaxation
methods, one usually employs fast primal-dual schemes [16, 17] to solve the con-
tinuous problem. However, those are only applicable to linear data terms. For-
tunately, the derivative of the data term is Lipschitz-continuous with Lipschitz
constant L = 1

8ε

∑
γ ‖cγ‖2. If we take care to choose a lower semi-continuous J ,

we are thus in a position to apply the FISTA scheme [18] to the minimization
of (10). It is much faster than for example direct gradient descent, with a prov-
able quadratic convergence rate. The remaining problems are how to choose a
correct regularizer, and how to get back from a possibly non-binary solution of
the relaxed problem to a solution of the original problem.

2.4 Obtaining a solution to the original problem

Let û× be a solution to the relaxed problem (10). Thus, the functions ûjλ might
have values in between 0 and 1. In order to obtain a feasible solution to the
original problem (1), we just project back to the space of allowed functions. The
function ĝ ∈ L2(Ω,Γ) closest to û× is given by setting

ĝ(x) = argmax
γ∈Γ

û1
γ1(x) · ... · ûdγd(x) ,

i.e. we choose the label where the combined indicator functions have the highest
value.

We cannot guarantee that the solution ĝ is indeed a global optimum of the
original problem (1), since there is nothing equivalent to the thresholding theo-
rem [2] known for this kind of relaxation. However, we still can give a bound how
close we are to the global optimum. Indeed, the energy of the optimal solution
of (1) must lie somewhere between the energies of û× and ĝ.

3 Regularization

The following construction of a family of regularizers is analogous to [1], but
extended to accomodate product label spaces. An element u× ∈ U×Γ can be
viewed as a map in L2(Ω,∆×), where

∆× = ∆1 × ...×∆d ⊂ RN1+...+Nd

8 Bastian Goldluecke and Daniel Cremers

and

∆i =

x ∈ {0, 1}Ni :
Ni∑
j=1

xj = 1

 .

is the set of corners of the standard (k− 1)-simplex. As shown previously, there
is a one-to-one correspondence between elements in ∆× and the labels in Γ .

We will now construct a familiy of regularizers J : co
(
U×Γ
)
→ R and after-

wards demonstrate that it is well suited to the problem at hand. For this, we
impose a metric d on the space Γ of labels. A current limitation is that we can
only handle the case of separable metrics, i.e. d must be of the form

d(γ, χ) =
d∑
i=1

di(γi, χi), (11)

where each di is a metric on ∆i. We further assume that each di has an Euclidean
representation. This means that each label λ ∈ ∆i shall be represented by an ri-
dimensional vector aiλ ∈ Rri , and the distance di defined as Euclidean distance
between the representations,

d(λ, µ) = |aλ − aµ|2 for all λ, µ ∈ ∆i . (12)

The goal in the construction of J is that the higher the distance between labels,
the higher shall be the penalty imposed by J . To make this idea precise, we
introduce the linear mappings Ai : co

(
∆i
)
→ Rri which map labels onto their

representations,
Ai(λ) = aiλ for all λ ∈ ∆i .

When the labels are enumerated, then in matrix notation, the vectors aiγ become
exactly the columns of Ai, which shows the existence of this map.

We can now define the regularizer as

J(u×) :=
d∑
i=1

TVi
v(Aiui) , (13)

where TVi
v is the vectorial total variation on L2(Ω,Rri). The following theorem

shows why the above definition makes sense.

Theorem 2. The regularizer J defined in (13) has the following properties:

1. J is convex and positively homogenous on co
(
U×Γ
)
.

2. J(u×) = 0 for any constant labeling u×.
3. If S ⊂ Ω has finite perimeter Per(S), then for all labels γ, χ ∈ Γ ,

J(γ1S + χ1Sc) = d(γ, χ) Per(S) ,

i.e. a change in labels is penalized proportional to the distance between the
labels and the perimeter of the interface.

Lecture Notes in Computer Science: Authors’ Instructions 9

of Pixels # Labels Memory [Mb] Runtime [s]
P = Px × Py N1 ×N2 Previous Proposed Previous Proposed

320× 240 8× 8 112 28 196 6
320× 240 16× 16 450 56 ∗ 21
320× 240 32× 32 1800 112 ∗ 75
320× 240 64× 64 7200 225 - 314
640× 480 8× 8 448 112 789 22
640× 480 16× 16 1800 224 ∗ 80
640× 480 32× 32 7200 448 - 297
640× 480 64× 64 28800 900 - 1112

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2 4 6 8 10 12 14

Proposed
Previous

Iteration

E
n
er

g
y

Fig. 4. The table shows the total amount of memory required for a FISTA implemen-
tation of the previous and proposed methods depending on the size of the problem. Also
shown is the total runtime for 15 iterations, which usually suffices for convergence.
Numbers shown in red cannot be stored within even the largest of todays CUDA capable
cards, so an efficient parallel implementation is not possible. Failures marked with a
“∗” are due to another limitation: the shared memory is only sufficient to store the
temporary variables for the simplex projection up until dimension 128. In the graph, we
see a comparison of the convergence rate between the original scheme and the proposed
scheme. Despite requiring significantly less memory and runtime, the relaxation is still
sufficiently tight to arrive at an almost similar solution.

The theorem is proved in the appendix. More general classes of metrics on
the labels can also be used, see [1]. For the sake of simplicity, we only included
the most important example of distances with Euclidean representations. This
class includes, but is not limited to, the following special cases:

– The Potts or uniform distance, where di(λ, µ) = 1 if and only if λ = µ, and
zero otherwise. This distance function can be achieved by setting aiλ = 1

2eλ,
where (eλ)λ∈Λi is an orthonormal basis in RNi . All changes between labels
are penalized equally.

– The typical case is that the aiλ denote feature vectors or actual geometric
points, for which |·|2 is a natural distance. For example, in the case of optic
flow, each label corresponds to a flow vector in R2. The representations
a1
λ, a

2
µ are just real numbers, denoting the possible components of the flow

vectors in x and y-direction, respectively. The Euclidean distance is a natural
distance on the components to regularize the flow field, corresponding to the
regularizer of the TV-L1 functional in [19].

The convex functional we wish to minimize is now fully defined, including the
regularizer. The ROF type problems with the vectorial total variation as a reg-
ularizer, which are at the core of the resulting FISTA scheme, can be minimized
with algorithms in [20]. For the also required backprojections onto simplices
we recommend the method in [21]. Thus, we can turn our attention towards
computing a minimizer in practice. In the remaining section, we will apply the
framework to a variety of computer vision problems.

10 Bastian Goldluecke and Daniel Cremers

Fig. 5. Results for the multi-label segmentation. The input image on the left was la-
belled with 8 × 8 labels in the hue and lightness components of HSL color space. The
label distance is set so that smoothing is stronger in darker regions, which creates an
interesting visual effect.

4 Experiments

We implemented the proposed algorithm for the case d = 2 on parallel processing
GPU architecture using the CUDA programming language, and performed a
variety of experiments, with completely different data terms and regularizers.
All experiments were performed on an nVidia Tesla C1060 card with 4GB of
memory.

When the domain Ω is discretized into P pixels, the primal and dual variables
required for the FISTA minimization scheme are represented as matrices. In
total, we have to store P · (N1 + ...+Nd) floating point numbers for the primal
variables, and Pn · (r1 + ...+rd) floating point numbers for the dual variables. In
contrast, without using our reduction scheme, this number would be as high as
P ·N1 · ... ·Nd for the primal variables and Pn · r1 · ... · rd for the dual variables,
respectively. For the FISTA scheme, we need space for four times the primal
variables in total, so we end up with the total values shown in Fig. 4. Thus,
problems with large number of labels can only be handled with the proposed
reduction technique.

4.1 Multi-label Segmentation

For the first example, we chose one with a small label space, so that we can
compare the convergence rate and solution energy of the previous method [1]
with the proposed one. We perform a segmentation of an image based on the
HSL color space. The hue and lightness values of the labeling are taken from the
discrete sets of equidistant labels Λ1 and Λ2, respectively. Their size is |Λ1| =
|Λ2| = 8, so there are 64 labels in total, which can still be handled by the old
method as well, albeit barely. The labels shall be as close as possible to the
original image values, so the cost function penalizes the L1-distance in HSV
color space. We choose the regularizer so that the penalty for discontinuities is
proportionally larger in regions with higher lightness. The relaxation constant ε
is reduced from 0.2 to 0.05 during the course of the iterations. The result can be

Lecture Notes in Computer Science: Authors’ Instructions 11

Fig. 6. The proposed method can be employed to simultaneously optimize for a dis-
placement and an occlusion map. This problem is also too large to be solved by alterna-
tive relaxation methods on current GPUs. From left to right: (a) Left input image IL.
(b) Right input image IR. (c) Computed disparity and occlusion map, red areas denote
occluded pixels.

seen in Fig. 5, while a comparison of the respective convergence rates are shown
in the graph in Fig. 4. The proposed method, despite requiring only a fraction of
the memory and computation time, achieves a visually similar result with only
a slightly higher energy. Note that the runtime of our method is far lower, since
the simplex projection becomes disproportionally more expensive if the length
of the vector is increased.

4.2 Depth and Occlusion map

In this test, we simultaneously compute a depth map and an occlusion map for
a stereo pair of two color input images IL, IR : Ω → R3. The occlusion map
shall be a binary map denoting wether a pixel in the left image has a matching
pixel in the right image. Thus, the space of labels is two-dimensional with Λ1

consisting of the disparity values and a binary Λ2 for the occlusion map. We use
the technique in [1] to approximate a truncated linear smoothness penalty on
the disparity values. A Potts regularizer is imposed for the occlusion map. The
distance on the label space thus becomes

d(γ, χ) = s1 min(t1, |γ1 − χ1|) + s2 |γ2 − χ2| , (14)

with suitable weights s1, s2 > 0 and threshold t1 > 0. We penalize an occluded
pixel with a constant cost cocc > 0, which corresponds to a threshold for the
similarity measure above which we believe that a pixel is not matched correctly
anymore. The cost associated with a label γ at (x, y) ∈ Ω is then defined as

cγ(x, y) =

{
cocc if γ2 = 1,
‖IL(x, y)− IR(x− λ1, y)‖2 otherwise.

(15)

The result for the “Moebius” test pair from the Middlebury benchmark is shown
in Fig. 6. The input image resolution was scaled to 640× 512, requiring 128 dis-
parity labels, which resulted in a total memory consumption which was slightly
too big for previous methods, but still in reach of the proposed algorithm. Total
computation time required was 597 seconds.

12 Bastian Goldluecke and Daniel Cremers

First image I0 Second image I1 Flow field and color code

Fig. 7. When employed for optic flow, the proposed method can successfully capture
large displacements without the need for coarse-to-fine approaches, since a global opti-
mization is performed over all labels. In contrast to existing methods, our solution is
within a known bound of the global optimum.

4.3 Optic Flow

In the final test, we compute optic flow between two color input images I0, I1 :
Ω → R3 taken at two different time instants. The space of labels is again two-
dimensional, with Λ1 = Λ2 denoting the possible components of flow vectors in
x and y-direction, respectively. We regularize both directions with a truncated
linear penalty on the component distance, i.e.

d(γ, χ) = smin(t, |γ1 − χ1|) + smin(t, |γ2 − χ2|) , (16)

with a suitable weight s > 0 and threshold t > 0. The cost function just compares
pointwise pixel colors in the images, i.e.

cγ(x, y) = ‖I0(x, y)− I1(x+ γ1, y + γ2)‖2 . (17)

Results can be observed in Fig. 1 and 7. Due to the global optimization of a
convex energy, we can successfully capture large displacements without having
to implement a coarse-to-fine scheme. The number of labels is 50×50 at an image
resolution of 640×480, so the memory requirements are so high that this problem
is currently impossible to solve with previous convex relaxation techniques by
a large margin, see Fig. 4. Total computation time using our method was 678
seconds. A comparison of the energies of the continuous and discretized solution
shows that we are within 5% of the global optimum for all examples.

5 Conclusion

We have introduced a continuous convex relaxation for multi-label problems
where the label space is a product space. Such labeling problems are plentiful in
computer vision. The proposed reduction method improves on previous methods
in that it requires orders of magnitude less memory and computation time, while
retaining the advantages: a very flexible choice of distance on the label space, a
globally optimal solution of the relaxed problem and an efficient parallel GPU
implementation with guaranteed convergence.

Lecture Notes in Computer Science: Authors’ Instructions 13

Because of the reduced memory requirements, we can successfully handle
specific problems with very large number of labels, which could not be attempted
with previous convex relaxation techniques. Among other examples we presented
a convex relaxation for the optic flow functional with truncated linear penalizer
on the distance between the flow vectors. To our knowledge, this is the first
relaxation for this functional which can be optimized globally and efficiently.

References

1. Lellmann, J., , Becker, F., Schnörr, C.: Convex optimization for multi-class im-
age labeling with a novel family of total variation based regularizers. In: IEEE
International Conference on Computer Vision (ICCV). (2009)

2. Nikolova, M., Esedoglu, S., T.Chan: Algorithms for finding global minimizers of
image segmentation and denoising models. SIAM Journal of Applied Mathematics
66 (2006) 1632–1648

3. Pock, T., Schoenemann, T., Graber, G., Bischof, H., Cremers, D.: A convex formu-
lation of continuous multi-label problems. In: European Conference on Computer
Vision (ECCV). (2008) 792–805

4. Pock, T., Chambolle, A., Bischof, H., Cremers, D.: A convex relaxation approach
for computing minimal partitions. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). (2009) 810–817

5. Zach, C., Gallup, D., Frahm, J., Niethammer, M.: Fast global labeling for real-time
stereo using multiple plane sweeps. In: Vision, Modeling and Visualization. (2009)
243–252

6. Szeliski, R.: Bayesian modeling of uncertainty in low-level vision. International
Journal of Computer Vision 5 (1990) 271–301

7. Kindermann, R., Snell, J.: Markov Random Fields and Their Applications. Amer-
ican Mathematical Society (1980)

8. Boykov, Y., Kolmogorov, V.: Computing geodesics and minimal surfaces via graph
cuts. In: IEEE International Conference on Computer Vision (ICCV). (2003) 26–33

9. Greig, D., Porteous, B., Seheult, A.: Exact maximum a posteriori estimation for
binary images. J. Royal Statistics Soc. 51 (1989) 271–279

10. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph
cuts. IEEE Trans. Pattern Anal. Mach. Intell. 26 (2004) 147–159

11. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via
graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23 (2001) 1222–1239

12. Schlesinger, D., Flach, B.: Transforming an arbitrary min-sum problem into a
binary one. Technical report, Dresden University of Technology (2006)

13. Wainwright, M., Jaakkola, T., Willsky, A.: Map estimation via agreement on trees:
message-passing and linear programming. IEEE Trans. Inf. Theory 51 (2005)
3697–3717

14. Ishikawa, H.: Exact optimization for markov random fields with convex priors.
IEEE Trans. Pattern Anal. Mach. Intell. 25 (2003) 1333–1336

15. Klodt, M., Schoenemann, T., Kolev, K., Schikora, M., Cremers, D.: An experi-
mental comparison of discrete and continuous shape optimization methods. In:
European Conference on Computer Vision (ECCV). (2008) 332–345

16. Popov, L.: A modification of the arrow-hurwicz method for search of saddle points.
Math. Notes 28 (1980) 845–848

14 Bastian Goldluecke and Daniel Cremers

17. Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Prog. 103
(2004) 127–152

18. Beck, A., Teboulle, M.: Fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM J. Imaging Sciences 2 (2009) 183–202

19. Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV − L1

optical flow. In: Pattern Recognition (Proc. DAGM). (2007) 214–223
20. Duval, V., Aujol, J.F., Vese, L.: Projected gradient based color image decom-

position. In: Scale Space and Variational Methods in Computer Vision. (2009)
295–306

21. Michelot, C.: A finite algorithm for finding the projection of a point onto the
canonical simplex of Rn. J. Optimization Theory and Applications 50 (1986)
195–200

Appendix

Proof of Proposition 1. In order to proof the proposition, we have to show
that the mapping induces a point-wise bijection from ∆× onto

∆ =

x ∈ {0, 1}N :
N∑
j=1

xj = 1

 .

We first show it is onto: for u(x) in ∆, there exists exactly one γ ∈ Γ with
uγ(x) = 1. Set uiλ(x) = 1 if λ = γi, and uiλ(x) = 0 otherwise. Then u(x) =
u1(x) · ... · ud(x), as desired. To see that the map is one-to-one, we just count
the elements in ∆×. Since ∆i contains Ni elements, the number of elements in
∆× is N1 · ... ·Nd = N , the same as in ∆. �

Proof of Theorem 1.
The regularizers of the original and smoothened problems are the same, so

because of condition (7),

∣∣Eε(u×ε)− E(u×0)
∣∣ ≤

∣∣∣∣∣∣
∑
γ∈Γ

∫
Ω

εcγ dx

∣∣∣∣∣∣ ≤ |Ω|
∑
γ∈Γ
‖cγ‖∞ ε . (18)

This completes the proof. �

Proof of Theorem 2.
The first two claims are basic properties of the total variation. For the last

claim, we combine Corollary 1 in [1] with the definition of the metric in equa-
tions (11) and (12) to find

J(γ1S + χ1Sc) =
d∑
i=1

TVi
v(Ai(γ1S + χ1Sc)) =

d∑
i=1

∣∣aiγ − aiχ∣∣2 Per(S)

= d(γ, χ) Per(S).

(19)

This completes the proof. �

