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Abstract—In this paper, we present an approach that allows
a robot to observe, generalize, and reproduce tasks observed
from multiple demonstrations. Motion capture data is recorded
in which a human instructor manipulates a set of objects. In
our approach, we learn relations between body parts of the
demonstrator and objects in the scene. These relations result
in a generalized task description. The problem of learning
and reproducing human actions is formulated using a dynamic
Bayesian network (DBN). The posteriors corresponding to the
nodes of the DBN are estimated by observing objects in the
scene and body parts of the demonstrator. To reproduce a task,
we seek for the maximum-likelihood action sequence according
to the DBN. We additionally show how further constraints
can be incorporated online, for example, to robustly deal with
unforeseen obstacles. Experiments carried out with a real 6-DoF
robotic manipulator as well as in simulation show that our
approach enables a robot to reproduce a task carried out by
a human demonstrator. Our approach yields a high degree of
generalization illustrated by performing a pick-and-place and
a whiteboard cleaning task.

I. INTRODUCTION

Several techniques exist for transferring new skills to

robots. A very promising technique is called “imitation

learning”: Here, a robotic system observes an instructor while

performing a task [4], [2]. From multiple demonstrations,

the robot then needs to infer a generalized task description

and reproduce it accordingly even under slightly modified

conditions. As an example, consider Fig. 1. The task of

cleaning a whiteboard is demonstrated by a human and

transferred to a simulated as well as to a real robotic

manipulator.

Teaching skills by direct demonstration is a very natural

way of skill transfer in humans and animals. In the aim to

create more versatile, adaptable, and sociable robotic plat-

forms, research on the mechanisms of learning new behaviors

by observation has a very high potential. Furthermore, such

social learning can speed up learning complex behaviors

enormously, as it provides strong prior information for the

learning process, thereby scaling back the learning task for

the robot. This can reduce the search space for traditional

learning algorithms significantly, such that previously in-

tractable tasks can be learned.

In this paper, we show that imitation learning is well

suited as a user-friendly instruction method for manipulation

tasks. Our approach uses motion capture data generated

by a vision system to track body parts of the instructor
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Fig. 1. Learning the whiteboard cleaning task. Left: The human instructor
demonstrates how to clean the whiteboard using visual motion capturing.
Middle: After the first demonstration, the robot can replay the recorded
trajectory. Right: After several demonstrations, the robot can generalize
the task and reproduce it under changed conditions, for example, on a
whiteboard with different size and position.

and the 3D positions of relevant objects in the scene. The

body configuration as well as the relations between objects

and body parts of the demonstrator are in turn modeled

as normally distributed observation nodes of a dynamic

Bayesian network (DBN). For reproducing an observed skill,

the network is evaluated at each time step in order to infer the

most-likely action. Within our framework, new constraints

can be dynamically added to the network, e.g., to incorporate

collision avoidance during reproduction in order to deal with

unforeseen obstacles.

Our relation-based approach extends the recent work of

Calinon and Billard [6] by formalizing the problem by means

of a DBN. We furthermore allow for incorporating additional

constraints for modeling unexpected obstacles that should be

considered during imitation.

The remainder of the paper is organized as follows: We

briefly review related work on imitation learning in Sec. II.

Our framework on imitation learning via inference in a DBN

is introduced in Sec. III, followed by Sec. IV on learning

the parameters of the DBN from motion capture data and

Sec. V on reproducing the generalized skill. Experimental

results obtained with a real 6-DoF robotic manipulator as

well as in simulation are presented in Sec. VI.

II. RELATED WORK

In the past, various techniques have been used for trans-

ferring task knowledge to a robotic system. Initially, the

required motion trajectories were hand-coded by an en-

gineer [10], [19]. However, the more complex the task

description becomes, the more difficult it is to create and

maintain large controllers. Alternatively, the required joint

angle trajectories of the robot can be shown by a single

demonstration, for example, by a human teacher using a

joystick, a motion capturing system, or kinesthetic training.

The resulting sequence is recorded and can then be replayed

by the robot. However, if the observations are noisy or



unpredicted disturbances in the task environment occur,

simple playback of the recorded motion is in general not

sufficient to reliably reproduce a given task. To deal with

noise in the observations and to generalize over multiple

demonstrations of the same tasks, several authors suggested

hidden Markov models (HMM) to encode and reproduce a

demonstrated action, e.g., [1], [7], [20].

Reinforcement learning techniques have been successfully

applied to learn controllers for an individual skill or for

motor primitives [12], [3], [17]. As the size of the search

space grows exponentially with the dimensionality of the

learning problem, Ijspeert and Schaal [13], [18] proposed

to learn parameterized controllers instead that are based on

differential equations.

Pardowitz and Dillmann presented a system that general-

izes over household tasks in a hierarchical manner [16]. Ac-

tions performed by the human demonstrator are recognized

as a sequence of “elementary operators”, of which a graph-

based task representation is learned. In this approach, the

incrementally updated network topology reflects the learned

temporal ordering of the individual actions.

Although symbolic representations are well suited for

planning and reasoning, their limitation to higher-level skills

renders them inapplicable in domains where a continuous

motor control is required. By contrast, trajectory learning

directly starts by encoding each demonstration by a sequence

of continuous observations. Due to the massive amounts of

captured data, dimensionality reduction techniques are often

applied. Chalodhorn et al. [8] used principal component anal-

ysis (PCA) to reduce the high-dimensional motion capture

data of a recorded human walk. While a direct playback

of the human data on a humanoid robot would make the

robot fall, the authors showed that after a few trials the robot

was able to modify the imitated gait incrementally. There, a

sensory-motor predictor was learned and used to produce

dynamically stable actions. Similarly, Grimes et al. [11]

also used PCA to reduce the high-dimensional configuration

space and applied a DBN to infer dynamically stable imita-

tive actions using constraint variables and a learned forward

model of the robot dynamics.

In our approach, we also use a DBN to learn and re-

produce tasks. By means of the DBN, relations between

objects in the environments and body parts are learned

and considered during reproduction. We show that by using

this framework, it becomes also possible to incorporate

additional constraints (such as collision avoidance) during

skill reproduction.

We use the idea presented by Calinon and Billard [6] to

describe actions using relations between objects. In contrast

to their approach which is based on Gaussian mixture mod-

els, we use a kernel estimator to model the relations. This

way, we can deal with a small number of demonstrations and

avoid fitting Gaussian mixtures.

III. IMITATION LEARNING FRAMEWORK

As most techniques for generating imitative actions, our

approach uses two steps. First, a set of repeatedly carried-out
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Fig. 2. Dynamic Bayesian network (DBN) illustrating the conditional
independence assumptions used for learning and reproducing tasks. The
arrows indicate conditional dependencies between variables. Here, z̃ denotes
the observation of the demonstrators body configuration which is represented
by q (joint angles). z is the observation of the world state x that encodes the
position of relevant object in the scene. The object-manipulator relations r

as well as the constraints on joint angles r̃ are used to model the action
that should be learned and carried out by the robot. During learning, the
distributions over the relations p(r̃) and p(r) is determined. During repro-
duction, these relations are known and the most likely body configuration
of the robot is to be estimated and executed by the robot.

actions of a human demonstrator is observed by the robot.

The robot has to infer the relevant parts of the demonstrated

task and to build an internal representation. This is done in

the so-called learning step. Second, the robot must be able

to reproduce an action to actually imitate the demonstrator.

This step is called imitation or reproduction step.

From a more formal point of view, we treat the problems

as a stochastic process that can be described by means of

the dynamic Bayesian network depicted in Fig. 2. The DBN

is an intuitive graphical description of the conditional inde-

pendence assumptions made in the model. While the teacher

demonstrates the task several times during the first phase of

our imitation learning approach, we learn relevant relations,

also called constraints, between n objects in the world and

the manipulator as well as the joint angle constraints for

each point in time. Thus, the constraints encode the actions

necessary to carry out the task which is being demonstrated.

The corresponding latent variables are denoted r(t) ∈ R
3n

– the constraints between objects in world space, encoded

as the 3D displacement from end-effector to each object –

and r̃(t) ∈ R
m the constraints in configuration space – i.e.,

the joint angles of the m-DoF manipulator – respectively.

The relations r̃(t) regarding the joint angles are only

meaningful if the demonstrator and the imitator have a

similar body structure. They are important in case actions

should be imitated as precise as possible.

In the second phase, we use the learned relations to infer

actions of the robot. At this time, the relation variables are

observable variables in the DBN and generate the actions of

the robot given the estimated world state.

For reasons of simplicity, let us consider first the DBN

for one time step t (neglecting the index t). Let q ∈ R
m

refer to the configuration of the m-DoF arm of the demon-

strator (during learning) or the robot (during reproduction).

Let x ∈ R
3n+3 be the vector of the 3D positions of relevant

objects in the scene

x = {xE , x1, . . . , xn} , (1)

where x1, . . . , xn are the positions of the n objects in



the scene. In the remainder of the paper, we use a robot

manipulator for imitating humanoid arm movements and xE

is the position of the end effector. Note that any set of body

parts can be used in case full body actions should be imitated

without changing the math except for adding additional

variables and indices (xE would become xE1
, . . . , xEM

).

The observation of 3D poses x is called z ∈ R
3n+3,

and the observations of joint configurations q ∈ R
m will

be referred to as z̃ ∈ R
m.

Our DBN depicted in Fig. 2 implies the following inde-

pendence assumptions:

p(r̃, q, z̃, r, x, z) = p(z | x) · p(z̃ | q) · p(r̃) · p(r) ·

p(x | q, r) · p(q | r̃) (2)

In our model, we assume the following distributions in

the nodes of the DBN: The observation models p(z | x) and
p(z̃ | q) are assumed to be Gaussian distributions and so are

the distributions over the relations p(r) and p(r̃). Since we

have no information about the distributions over relations in

the beginning, we set their variance to infinity.

The posterior about the objects in the scene can be written

as follows:

p(x | q, r) = p(xE | q) · p(x1, . . . xn | xE , r) (3)

Eq. (3) is obtained by applying the product rule and by

assuming that the poses of objects are independent from the

joint configuration given the position of the end effector. By

further applying the product rule, we obtain:

p(x | q, r) = p(xE | q) · p(x1 | xE , r) ·

p(x2, . . . xn | xE , r) (4)

= p(xE | q) · Πn
i=1p(xi | xE , ri) (5)

≈ p(xE | q) · Πn
i=1Nri

(xi − xE ; Σi) (6)

Eq. (4) is obtained by assuming that given the relations r

as well as xE , the positions of two objects in the scene are

independent. By applying this assumption n times, we obtain

Eq. (5).

We additionally assume that also the posterior about the

pose of the end effector p(xE | q) is Gaussian, which is a

reasonable assumption for the robots equipped with accurate

joints (such as Schunk modules in our case). p(xE | q) then

corresponds to the kinematic function.

Finally, we make the assumption that the differences

between actions carried out during the individual demonstra-

tions can be described by Gaussian distributions. Thus, the

individual ri ∈ r are represented by a mean and a variance

for the three dimensions. This leads to Eq. (6). Similarly,

the individual joint constraints rj ∈ r̃ are represented by

Gaussians. Thus, p(q | r̃) can also be computed by a product

as in Eq. (6).

IV. LEARNING PHASE

In the first phase, the robot observes a person that re-

peatedly carries out the task the robot has to perform. Given

the DBN structure explained above, the key challenge of this

learning phase is to learn the object-manipulator relations (r)

and – if needed – the joint constraints (r̃).

A. Motion Capturing and Object Pose Estimation

To estimate the motion trajectories of the human demon-

strator while executing a task and the 3D position of relevant

objects in the scene, we use passive markers and images of a

monocular camera. In particular, we use the ARToolKit [14],

which is a software library providing the means to extract the

6D pose (orientations and position) of fiducial markers (black

squares on a white background) from single camera images.

We attach compounds of 4 markers around the teacher’s

arm (see left image of Fig. 1) to bypass the problem

of occlusions. In most cases, not more than one marker

of the same compound is visible. To deal with the case

that two markers are visible simultaneously (sensing more

markers at the same time is impossible due to their mutual

orthogonality within one compound), we perform a linear

interpolation between their poses depending on the degree of

visibility of the markers. Finally, we apply a Kalman filter to

track the 3D marker position estimates over time. To derive

the demonstrator’s joint angles from marker poses, we use

an anthropomorphic arm model and apply straightforward

geometric operations. As a result, we are able to reliably

estimate the probability distributions over q and x during

the demonstrations.

B. Multiple Demonstrations

Our approach relies on demonstrating the same task mul-

tiple times in order to achieve a good generalization. One

problem when generalizing task descriptions from multiple

demonstrations is the fact that the repeatedly observed ac-

tions are not time-synchronized, even though the different

demonstrations typically do not vary largely. To deal with

varying movement velocity profiles, we apply derivative

dynamic time warping (DDTW) [15] which is able to account

for local distortions in the time domain by computing a

nonlinear transformation of the time axis of the individual

demonstrations. Based on the aligned demonstrations, we

can derive the relations r and r̃ which encode the action

to imitate.

C. Deriving Relations for Generalized Task Descriptions

By assuming that all relations in r and r̃ are (individual)

Gaussians, we can directly infer a mean and a variance

estimate for the individual relations for each point in time

given the estimates for x and q. Especially the variance is a

key element for the tasks descriptions since it describes how

accurately the demonstrator enforced this relation during the

demonstrations.

Formally, a relation ri is fully described by a 3D mean

µi and 3D variance σ2
i vector (assuming the relations in the

three dimensions to be independent).

In theory, we could compute µi and σ2
i directly from the

estimates for x and q during learning. In practice, however,

we typically have to deal with a rather small number of

demonstrations and therefore rather rough and non-smooth

estimates are obtained if the values are computed directly. To

overcome this problem, we apply a Parzen window kernel

estimator for computing smooth function approximations.



This is a non-parametric technique that allows for estimating

a function µ based on a set of sample points. To compute

estimates of the relations between objects in the scene ri and

the end effector, we compute relation samples consisting of

time and position {t, l(t, d, i)} with l(t, d, i) = xd
i (t)−xd

E(t),
t = 1, . . . , T and d = 1, . . . , D where D are the number of

demonstrations. Then, we obtain

µi(t
′) =

D
∑

d=1

T
∑

i=1

K( t′−t
h

) l(t, d, i)

D
∑

d=1

T
∑

i=1

K( t′−t
h

)

, (7)

where h is the Parzen window size (empirically determined,

h = 0.2 s) and K is a kernel function. We use the standard

choice for the K, namely the squared exponential kernel

K(x) = exp (−
1

2
||x||2). (8)

The variance given the sample points can be estimated

similarly as

σ2
i (t′) =

D
∑

d=1

T
∑

i=1

K( t′−t
h

) (l(t, d, i) − µ(t))2

D
∑

d=1

T
∑

i=1

K( t′−t
h

)

. (9)

This procedure is carried for each object in the scene and

accordingly done for the joint relations r̃.

V. REPRODUCTION PHASE

The goal of the reproduction or imitation phase is to carry

out the demonstrated task to achieve the same result. Given

the DBN, we can seek for the configuration of joints q∗ that

maximizes the likelihood given the demonstrations.

A. Incremental Optimization

If we consider only one time step during the optimiza-

tion, we seek for the configuration q∗ that maximizes the

joint probability. During reproduction, r and r̃ are known.

Furthermore, the robot can control its body/manipulator by

specifying a joint configuration and does not have to rely

on noisy marker observations of its body. Therefore, the

maximization turns into

q∗ = argmax
q

p(q | r̃)p(x | r, q)p(z | x). (10)

As discussed before in Sec. III, the posteriors p(q | r̃),
p(x | r, q), and p(z | x) are basically products of Gaussians

and lead to a Gaussian distribution again. Thus, to maximize

the joint probability, we need to determine the mean of that

Gaussian. To do so, we proceed as follows. Consider that

we are currently at time step t and want to seek for the

joint configuration that maximizes Eq. (10) at t + 1. Each
relation between xi and xE generates a relative displacement

vector ∆i:

∆i(t + 1) = xi(t) − xE(t) − µi(t + 1) (11)

Since we want to compute a new joint configuration for

the robot, we need to convert the constraints expressed in

world coordinates in joint space. We achieve this by applying

a variant of the damped-least squares method described by

Buss [5]. This approximative technique performs a lineariza-

tion of the kinematic function. According to this method, a

desired movement in world coordinates (∆) is transformed

to an executable movement in joint space (∆̃) by

∆̃i(t + 1) = J
(

JJT + λ2I
)−1

∆i(t + 1) (12)

Σ̃i(t + 1) =
(

J
(

JJT + λ2I
)−1
)

·

Σi(t + 1)
(

J
(

JJT + λ2I
)−1
)T

(13)

where λ is the so-called damping factor and J refers to the

Jacobian. Σi(t + 1) is a 3×3 matrix encoding the variances

from the relation ri with the corresponding variances for

dimension x, y, and z on the diagonal. Due to the linear

mapping, we obtain also a Gaussian in configuration space.

The constraints defined by r̃(t + 1) can be easily used to

compute a desired movement

∆̃r̃(t + 1) = r̃(t + 1) − qt (14)

while the variances Σ̃(t + 1) do not need to be transformed.

All constraints resulting from the observation of the

demonstrator’s joint angle configurations or from the ar-

rangement of objects in the scene are expressed in terms of

updates in joint space. This allows us to combine them by

multiplying the normal distributions as it has also been done

by Calinon and Billard [6]. The resulting distribution is the

product over the N +1 Gaussians resulting from the N task

space relations plus the joint space relations. We can use it to

directly obtain the next configuration q∗(t + 1) according to

Eq. (10) by selecting the mean from this combined Gaussian,

as given by

q̂(t + 1) = qt + Σ̃(t + 1)

(

(Σ̃r̃(t + 1))−1∆̃r̃(t + 1)

+

n
∑

i=1

(Σ̃i(t + 1))−1∆̃i(t + 1)

)

, (15)

with

Σ̂(t + 1) =

(

n
∑

i=1

(Σ̃i(t + 1))−1 + (Σ̃r̃(t + 1))−1

)

−1

(16)

The mean of that distribution defines the configuration of

the robot at the next time step that maximizes the probability

distribution specified in Eq. (10).

B. Local Optimization with Obstacles

The technique described in the previous section can di-

rectly be applied to deal with unforeseen obstacles in the

scene during reproduction. Consider that the robot observes

an obstacle during the imitation that was not there during

the demonstrations. To avoid this obstacle during the repro-

duction task, we can add additional constraints between the

observed obstacle and the closest point on the robot’s body,

as used in approaches based on potential fields for collision

avoidance.



Without changing the framework described above, the

robot can reactively introduce constraints for avoiding ob-

stacles while carrying out its task as close a possible to the

human demonstrator. Let xO be the position of the obstacle.

Instead of adding a repellent force, we add an attractor at

the opposite side of the end-effector,

∆O = −α
xE − xO

‖xE − xO‖
(17)

ΣO = β · exp
(

‖xE − xO‖
2
)

· I, (18)

where α determines the desired distance to the obstacle and

β gives the relative importance with respect to the other

constraints.

It should be noted that this technique works well for small

or rather simple structured obstacles added to the scene. In

case complex or, for example, U-shaped obstacles are found

in the environment, this approach is likely to suffer from

local minima caused by contradictory constraints.

C. Global Optimization

The problem of local minima, however, can be avoided by

not incrementally optimizing the joint probability distribution

of the DBN for the upcoming time step but optimizing it over

all time steps 1 . . . T of the task sequence at once:

q∗1:T = argmax
q1:T

p(q1:T , x1:T , r̃1:T , r1:T , z1:t) (19)

Note that at a particular time step t, only the first 1 . . . t

observations z1:t are already available and can be included

for planning. Doing this optimization on a global level,

however, comes with significantly increased computational

cost due to the high dimensionality of q∗1:T .

One way of rather efficiently estimating q∗1:T is to make

use of probabilistic roadmaps or rapidly-exploring random

trees (RRTs) [9], and find the shortest path using A∗ on the

sampled set of nodes since we are only interested in the most-

likely imitation sequence. Given that we properly encode the

likelihoods of all constraints in the cost function later used

by A∗, the solution of the planner will approximate Eq. (19)

well.

We propose to base the cost function on the Mahalanobis

distance to the combined Gaussian N (q̂(t); Σ̂(t + 1)) com-

puted in (15) and (16), as this Gaussian already incorporates

all constraints r, r̃ and the obstacle constraints in a time-

dependent way. For a configuration q at time t, we define the

cost as the likelihood with respect to the previously computed

combined Gaussian, i.e.,

cost(q, t) = (q − q̂(t))
T

Σ̂(t + 1)−1 (q − q̂(t)) . (20)

Then, finding the cost-optimal sequence of configurations

q∗1:T is equivalent to maximizing the likelihood of the trajec-

tory q∗1:T in (19).

VI. EXPERIMENTS

We carried out a set of experiments to analyze our ap-

proach. We always observed a human demonstrator equipped

with markers of the ARToolKit, see Fig. 3. We used this

Fig. 3. Photos of the demonstrated pick-and-place task. The trajectory is
recorded both, in task and joint space.

Fig. 4. Reproduction of the pick-and-place task by a human-like manipu-
lator using both, task and joint space constraints.

Fig. 5. Reproduction of the same pick-and-place task by our 6-DoF
manipulator. Note that the robot successfully generalized the task, as the
target and source location have been swapped.

data to learn the relations and thus constraints for the task

reproduction online. The motions were sampled at a rate

of 5 Hz. We segmented the training trajectories manually.

A. Imitating Human Actions

To imitate the observed behavior, we reproduced the tasks

using a real robot equipped with a manipulator and two

simulated robots, one with a manipulator and one with a

human-like arm.

Fig. 4 shows the reproduction of the pick-and-place task

after being demonstrated four times (see Fig. 3). The human-

like simulated robot considers both, the joint and the task

constraints, which leads to the fluent, human-like movement.

In Fig. 5, the same task is reproduced by our robotic

manipulator. As the demonstrator and the imitator have a

significantly different body scheme, the joint constraints r̃

have been disabled. As can be seen, the robot is able to

reproduce the task even though the setup between demon-

stration and imitation has been changed by setting a different

target location.

We furthermore analyzed the number of demonstrations

needed until a task could be reproduced reliable. For this

analysis, a teacher picked up a cup and placed it at a distance

of 1m. As can be seen in Fig. 6, our approach converged

after 4 iterations.
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B. Dealing with Obstacles during Imitation

The additional obstacle constraints described in Sec. V-

B allow the robot to deal with unforeseen obstacles during

the task execution. The obstacle constraints act similar to a

potential field pushing the robot away from obstacles, which

are labeled by predefined markers.

Fig. 7 illustrates an example for a constraint in a pick and

place task. The figure shows a reproduced trajectory for the

obstacle free case and a trajectory that was selected in the

presence of an obstacle. As can be seen, the robot moved its

arm over the obstacle in order to avoid a collision.

We carried out a whiteboard cleaning task that nicely

illustrates the properties of the presented methods. First, a

human repeatedly cleaned a whiteboard in an area bounded

by 4 markers with the same number of ups and downs (see

left image of Fig. 1). Then, we attached a sponge to the

robot and let it perform the demonstrated task. In the first

experiment, we modified the size of the area to clean for

illustrating the capabilities of generalization. Photos from

this experiment can be seen in Fig. 8. Note that in case

the area to clean is much larger than during learning, the

whiteboard may not be cleaned well. The reason for that is

that our approach then scales the trajectory to reproduce and

thus there might be parts that will not be covered by the

sponge.

In the second experiment, we showed the robot during

reproduction phase an obstacle marker that was not there
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Fig. 10. The plot shows the end effector position of the robot over time
during two experiments. When applying the incremental method, the end
effector gets stuck in a U-shaped obstacle while the global method solves
the task and the end effector reaches the target location.

during the learning phase, see first image of Fig. 9. Then, the

robot had to clean the whiteboard while avoiding obstacles

(and thus not cleaning the area of the marker). For reasons

of illustration, we removed the marker during the experiment

but kept it in the internal memory of the robot. In this way,

the reader can see that the robot did not clean the correspond-

ing area. Eight photos were taken during the reproduction

and are depicted in Fig. 9. To avoid the area marked as

an obstacle area, the robot lifts the sponge away from the

whiteboard (in the direction of the observing camera).

C. Imitation by Planning

The experiments presented above used the reproduction by

means of incrementally computing the maximum-likelihood

configuration of the DBN. This is can be done efficiently

online, but the approach can suffer from local minima, for

example, in the presence of U-shaped obstacles. Such an

example is presented in Fig. 10 where the robot gets stuck.

If one applies the global optimization technique described

in Sec. V-C, one can overcome this problem since the optimal

solution over all time steps is computed. Thus, the robot is

able to reproduce the task including the avoidance of the U-

shaped obstacle. This global method, however, comes with

a significantly increased computational load.

VII. CONCLUSION

In this paper, we presented an approach to imitation

learning that extends a recently published method of Calinon

and Billard. It enables a robot to observe, generalize, and

reproduce tasks from observing a human demonstrator. We

formalized the problem using a dynamic Bayesian network

that is used for learning relations between the observed

positions of the objects and body parts of the instructor.

Additional constraints, for example, to avoid unforeseen

obstacles can be added online. To imitate the action of a

human, we estimate the actions that maximize the joint prob-

ability distribution represented by the DBN. We evaluated

the approach and showed that a real robot equipped with a

manipulator can learn and reproduce demonstrated actions.

Based on a pick-and-place and a whiteboard cleaning task,



Fig. 8. The reproduction of the board cleaning task by our robot. It imitates the zig-zag movement for cleaning the board with the sponge. Note that the
learned task representation allows for cleaning differently sized surfaces based on the markers.

obstacle

not cleaned

Fig. 9. The board cleaning task with an obstacle reproduced by our 6-DoF manipulator. In the first frame, the position of the obstacle is shown to the
system via a marker. Next, the manipulator cleans the whiteboard similar to the previous experiment shown in Fig. 8 but additionally avoids the obstacle. In
our current implementation, the obstacle is supposed to have the size and position of the corresponding marker that can be perceived using the ARToolkit
system. As can be seen in the last frame, part of the text in the area of the obstacle marker was not wiped.

we illustrated the flexibility of the method to generalize over

different spatial setups.
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