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Abstract

We address the problem of segmenting a sequence of im-
ages of natural scenes into disjoint regions that are charac-
terized by constant spatio-temporal statistics. We model the
spatio-temporal dynamics in each region by Gauss-Markov
models, and infer the model parameters as well as the
boundary of the regions in a variational optimization frame-
work. Numerical results demonstrate that — in contrast to
purely texture-based segmentation schemes — our method is
effective in segmenting regions that differ in their dynamics
even when spatial statistics are identical.

1. Introduction
Figure 1. A typical outdoor scene:an autonomous

Consider the following problem, in relation to Fig. 1: An vehicle trying to classify the terrain based on spatial
autonomous vehicle must decide what is traversable terrain image statistics fails to distinguish water from grass,
(e.g. grass) and what is not (e.g. water). This problem  since the latter reflects on the former and therefore
can be addressed by classifying portions of the image into  their spatial statistics are very similar (courtesy of
a number of categories, for instance grass, dirt, bushes or Google Image Search).
water. For the most part, such a classification can be ac-
complished successfully by looking at simple image statis-
tics, such as color or intensity. However, in many situations
these are not sufficient, and therefore it may be beneficialwould like to point out that segmentation, in this context,
to look atspatio-temporastatistics, and attempt to classify is entirely dependent on th#ass of modelghosen. Dif-
different portions of the scene basgedt on the statistics ~ ferent models result in different partitions of the scene, and
of one single image, but on how the statistics of an image there is no “right” or “wrong” result. Ultimately, the useful-
change over time during a sequence. Modeling the (global)ness of a statistical segmentation method depends on how
spatio-temporal statistics of the entire image can be a dauntwell the chosen model captures the phenomenology of the
ing task due to the complexity of natural scenes. An alter- physical scene, but unless one has a physical model to start
native consists of choosing a simple class of models, andwith, this correspondence cannot be guaranteed. Therefore,
simultaneously estimating regions and their model parame-in Sect. 1.1 we describe the model we use, which implicitly
ters in such a way that the data in each region is optimally defines what we mean by “segmentation”. It is a Gauss-
modeled by the estimated parameters. This naturally resultdVlarkov model of the intensity of the pixels which is known
in asegmentatioproblem. as adynamic texture

In this paper we study the problem of segmenting a se-  Another issue that we would like to raise at the outset is
quence of images based on a simple model of its spatio-that what we model isot a point processbut rather sta-
temporal statistics. tistical distributions both in space and in time. Therefore,

Before we proceed with formalizing the problem, we there will be a “minimum region of integration” in order to



capture such statistics, similarly to what is done in texture identification [15], and the discrepancy measure between
segmentation. To segment the image plane into regions ofdifferent models is inspired by [3]. Since textures can be
homogeneous dynamic textures, we revert to a region-basedonsidered as a degenerate case of dynamic textures, our
segmentation approach pioneered by Mumford and Shahwork also relates to texture segmentation. For some recent
[13]. The Mumford-Shah functional has been extended to work on texture segmentation see [11, 8, 17] and references
the segmentation of color, spatial texture [26] and motion therein.
[4]. This work generalizes these approaches to the segmen- We cast the problem of region segmentation in a vari-
tation of spatio-temporal textures. ational framework following [13]. In particular, we revert
to a level set framework of the Mumford-Shah functional
introduced in [2]. The algorithm we propose allows to par-
LetQ c R? be the domain of an image afi®; };_1._ x titjon the image d(_)main of a videp sequence into regions
be a partition ofQ2 into N' (unknown) region’s We as- with constant spatlo—tgmporgl statistics. To the best of our
sume that the pixels contained in the regidnare a Gauss-  Knowledge, workiin this area is new.

Markov proces& In other words, there exist (unknown) In. the next section, we review eX|st.|ng work on how one
parametersd; € R"*" (; € R™*" covariance matri- can infer the parameters of a dynamic texture (1) for each

cesQ, € R™*" R, ¢ R™*mi white, zero-mean Gaus- region, assuming the region is known. In the following Sec-
sian p;rocesse@’(t)z} c R™ {w-,(t)} c R™ and a process  ion 3.1we address the dual problem of inferring the regions

{z(t)} € R" such that the pixels at each regifn at each if the models to which each pixel belongs are known. Since
instant of time are given by neither is known, we address this chicken-and-egg problem

in Sect. 3.

1.1. Formalization of the problem

{x(t P = Aw(t) 4 VQuld); alto) =m0 (1) 2. Dynamic texture learning and comparison

yi(t) = Ciz(t) + VRiw;(t)

wherey(t) € R™ represents the vector of intensities at
time ¢ of the pixels belonging t€);. Note that we allow the
number of pixelsn; to be different in each region, as long
as>Y | m; = m, the size of the entire image, and that we
require that neither the regions nor the parameters chang
over time2;, 4;, C;, Q;, R;, xi o = const. 2.1. Learning

Given this generative model, one way to formalize the
problem of segmenting a sequence of images is the fol- |t is well known [10] that a positive-definite covariance

If the regions2;, i = 1, ..., N were known, one would
just be left with two problems: one is the learning of the
model parameters, which we review in Sect. 2.1, the otheris
the computation of a discrepancy measure between different
gynamic textures, which we discuss in Sect. 2.2.

lowing: Given a sequence of imagég(t) € R™, t = sequence with rational spectrum corresponds to an equiva-
1,...,T} with two or more distinct region€2;, i = lence class of second-order stationary processes. It is then
1,...,N > 2 that satisfy the mode{l), estimate both  possible to choose as a representative of each class a Gauss-

the regions();, and the model parameters of each region, Markov model with the given covariance. In other words,
namely the matricesl;, C;, the initial statex; o, and the  for a given region(;, we can assume that there exist a
covariance of the driving procesg; (the covarianceR; is  positive integern, a process{z(t)} with realizations in
not a parameter of interest since it does not have significant R (the “state”) with initial conditionz(t,), some matrices

discriminative power). A; andC;, and a symmetric positive semi-definite matrix
1.2. Relation to prior work g} ]‘Z’ ] > 0, whereS; = Efw(t)vT(t)], such that

The model for the spatio-temporal statistics of one re- 1¥(¢)} is the output of model (1). Since we assume that
gion, that we proposed in the previous section, was first the noise affect_mg the staté¢) and the noise affecting the
used in [5]. Similar statistical models were also used by oth- ©UtPutw(t) are independent, we have tifat=0.
ers [21, 6, 24, 9]. For synthesis of spatio-temporal textures, ~1he choice of matricesl;, C;, Q;, R; is not unique, in
statistical generative models can be replaced by procedurafh€ sense that there are infinitely many models that give rise
techniques such as [19, 25]. to exactly the same measurement covariance sequence start-

The analytical tools we use to infer the model param- ing from suitable initial conditions In other words, any

eters are borrowed from the literature of subspace systerr@iVén process hasot a unique model, but aequivalence
classof models. In order to identify a unique model of

Thatis,Q = UN | Q; andQ; N Q; = 0,1 # 5.
2Although this may seem a restrictive assumption, it has been shown  3SubstitutingA; with TA; T, C; with C; T, Q; with TQ; T~ 1,
in [20, 6] that sequences such as foliage, water, smoke, and steam are welnd choosing the initial conditiof'z(to), whereT € GL(n) is any in-
captured by this model. vertiblen x n matrix generates the same output covariance sequence.




the type (1) from a sample paif(t), we choose a repre- range() are recursively defined fdr=1,2,...qg as
sentative of each equivalence class as suggested in [5], i.e.
we will make the following assumptionsn; >> n, and
rank(C;) = n, and choose a model realization that makes
the columns ofC; orthonormal, i.e.CiTCZ- = I,. This

9 }xTATBy| 3)
cosfy = max —————
wekr || Axl|, [| Byll,
yeRY

guarantees that the model corresponding to a given dataset B \a:lTATBylj
?s uniqugly Qetermined. This model correspondsdaron- || Az I, 1 Byall, ’
ical realization[7]. [T AT By|

The problem of going from data to models can be formu- costy = ﬁ% m
lated as follows:givenmeasurements of a sample path of yERY 2 2
the proc.essy(l), . ,y(.T);.T >> n, estimated;, C;, Q;, ‘xEATByk}
a canonical model realization of the procégét) }. Ideally, = Aze] 1Byrll.’ fork=2,...,q
we would want the maximum likelihood solution from the Fll, 12YEIL
finite sample, that is subject to foTAm =0 and yiTBTBy =0,

fori=1,2,...,k—1.
Ai 7éi7 ) [z 'Ci.l 2 .
Qs i A @ Now, let M; andM> be two models of the type (1), with the
=arg Ijlacx logp(y(1), -, y(T)|As, Ci, Qi wi0)- same output dimensionality, which are characterized in state
Qi space terms by their system matricksand A, and output

matrix C; andCsy respectively. Their infinite observability

Notice that, as we said in Section 1.1, we do not model the matricesO;, fori = 1,2, are defined as

covariance of the measurement noigg since that carries C tAT AT AT TN mT T o coxn
no information on the underlying process. The asymptot- 0i = [C'i LG (AD)G ] €R ’
ically efficient solution for the estimation problem (2), as . (4)
T — oo, can be found in [23], while accurate description @Nd the principal angles between the range®afandO,

of its implementation, named N4SID, can be found in [15]. &€ referred to asubspace anglesTheir computation can
In practice, for computational efficiency, we settle for the be carried out in closed form, and entails the computation of

suboptimal solution described in [5]. the eigenvalues of the solution of a discrete-time Lyapunov
equation [3].
While more than one distance for single-input single-
2.2. Discrepancy between dynamic textures output (SISO) linear dynamical systems have been defined
based on subspace angles [3, 12], the extension to the
. multiple-input multiple-output (MIMO) case is not trivial
Assuming that the parameteds, C', Q;, ;0 have been given the lack of the concept of the inverse of a MIMO

mfer[etq for each dreg|on, mhord(tar t(;a ?et the d;tage fora seg'system. However, it has been shown in [18] that subspace
mentation procedure, one has to define a discrepancy me""éngles between infinite observability matrices have very
sure among regions. The difficulty in doing so is that each

on is d ‘bed not onlv by th ‘ b b thigh discriminative power under the hypothesis of stabil-
Leglon IS .eS(Im € nlo on¥ y h € paramte ers i)to've’d gity and observability of the compared systems. With this in
y an equivalence class of such paramelers, obtaine ¥nind, we measure the discrepancy between different spatio-
changes of basis of the state-spdedt)} in model (1).

Theref itable di has t temporal statistics associated to different models by com-
erelore, a sutable discrepancy measure has to ComparBaring either the set of subspace angles or their combination
notthe parameters directly, but their equivalence classes.

via Martin’s distance [3] defined as
One technique for doing so has been recently proposed

in [3]. It consists of building infinite observability matrices, o - 1

whose columns span the vector space generated by the mea- diy(My, Mz) = In H cos20;, ®)
surementg(t) of the model (1), and that represent the high- k=1 ’

dimensional subspace of the infinite-dimensional space of

all possible measurements. Then one can compute the geo3, Dynamic texture segmentation
metric angles between such subspaces through their embed-

ding. In Sect. 2.1 we have seen that, if the boundaries of each
More formally, letA € R™*P andB € R"*? be two region were known, one could easily estimate a simple
matrices with full column rank, and suppose that- q. model of the spatio-temporal statistics within each region.

The ¢ principal angle9);, € [0, g] between range{) and Unfortunately, in general one does not know the boundaries,



which are instead part of the inference process. If the dy- With the above representation, the problem of dynamic
namic texture associated with each pixel were known, thentexture segmentation can be formulated as one of grouping
one could easily determine the regions by thresholding orregions of similar spatio-temporal signatures. We propose
by other grouping or segmentation techniques. However, ato perform this grouping by reverting to the Mumford-Shah
dynamic texture associated with a certain pieds defined  functional [13]. A segmentation of the image planento
in equation (1), depends on the whole regidncontaining a set of pairwise disjoint regiorf3; of constant signature
the pixel¢. Therefore, we have a classic “chicken-and-egg” s; € R™ is obtained by minimizing the cost functional
problem: If we knew the regions, we could easily identify
the dynamical models, and if we knew the dynamical mod- E(T,{s;:}) Z/ dg +v|T, (7)
els we could easily segment the regions. Unfortunately, we
know neither.

One may be tempted to address this problem by settingsimultaneously with respect to the region descriptorsg
up an alternating minimization procedure, starting with an modeling the average signature of each region, and with re-
initial guess of the regions(;(0), estimating the model  spect to the boundaty separating these regions (an appro-

parameters within each regior;(0), C;(0), Q;(0)), Zi.0, priate representation of which will be introduced in the next
and then at any given timeseeking for regiong (t), and section). The first term in the functional (7) aims at max-
parametersfl (t), C‘q;(t), Q (t)),#:0 that minimize a cho- imizing the homogeneity with respect to the signatures in

sen cost functional. Unfortunately, this approach would not €ach regior2;, whereas the second term aims at minimiz-
lead to a well-posed problem, since one can always explaining the lengthT'| of the separating boundary.
the image with a few high-order models with large support 5 5 A |evel set formulation
regions (the entire image in the limit), or with many low-
order models with small support regions (individual pixels |n the following, we will restrict the class of possible so-
in the limit). Therefore, a model complexity cost needs to |ytions of the proposed variational problem to two-phase so-
be added, for instance the description length of the modeljytions, i.e. solutions in which each pixel is associated with
parameters [16] and the boundaries of each region. Thispne of two dynamic texture models. All results do, however,
Significantly Complicates the algorithms and the derivation. extend to the case of mu|t|p|e phases_ For the imp|ementa_
Rather than seeking for an estimate of the regions and theion of the boundary in the functional (7) we revert to the
model parameters in one shot, we can instead adopt a twoimplicit level set based representation proposed by Chan,
stage algorithm to circumvent the model-complexity issue: Sandberg and Vese [2, 22].
We first associate a localgnatureto each pixel, by inte- Compared to explicit contour representations, the level
grating visual information on a fixed spatial neighborhood set based representations [14] have several favorable prop-
of that pixel; then we group together pixels with similar sig- erties. Firstly, they do not restrict the topology of the evolv-
natures in a region-based segmentation approach. The siging boundary, thereby facilitating splitting and merging dur-
natures are computed from the subspace angles relative tehg the evolution. And secondly, one does not need to take
a reference model, following the ideas outlined in previous care of a regridding of control or marker points.

sections. We describe this simple and yet effective approach [et the boundany in (7) be given by the zero level set
in the following subsections. of a functiong : Q@ — R:

3.1. A geometric approach I={¢e Q¢ =0} (8)

We start by considering the neighborhodBigs) C © With the Heaviside function
around each pixef € Q2. We then associate to each pixel

location ¢ the dynamics of the spatio-temporal region by H(¢) = { (1) :I ii 8 ) 9)
computingO (&) from A(§), C(€) = N4SID{y(,t) | € €
B(&),t = 1,...,T}. For each pixet we generate a local the functional (7) can be replaced by a functional on the
spatio-temporasignaturegiven by the cosines of the sub- |evel set functiony:
space angle§d; (¢)} betweenO(§) and a reference model,
O(): E@As)) = [ (59— s1)* H(o) de

s(&) = (00561(5),...,(?089”(5)). (6) 5
We call this approach “geometric” since the signatures are n / (s(6) - 52)2 (1 H($)) de
constructed using subspace angles, rather than responses of
banks of filter as is more common in static texture segmen- o

+ vIT|. (10)

tation.



4.1. Smoke on the water. .

In this experiment we generate a synthetic sequence by
superimposing two sequences: one with ocean waves, and
one with smoke. We select a disc in the middle of the im-
ages and overlap the sequence of smoke over the sequence
of the waves only on this disc. All the sequences are com-
posed ofl20 frames and each frame is 220 x 220 pixels.

In this case both texture and dynamics are very different, re-
sulting in a very strong discrimination between the regions.

Figure 2. Example of a composition of dynamic We identify the local dynamical systems at each pixel by

textures: fire on ocean waves. The time evolution of considering neighborhoods of x 11 pixels. The state of

the sequence is rendered by overlapping a few snap-  each local system is of dimensidf. Then, we compute

shots corresponding to different image frames. the subspace angles between these local dynamical systems

and a reference dynamical system. Finally, we segment the
L signatures with the Mumford-Shah minimization scheme as
3.3. Energy minimization explained in Sections 3.1-3.3. In Figure 3 we show a few
shapshots of the contour evolution, starting from a circle.

We minimize the functional (10) by alternating the two
fractional steps of: 4.2. Segmentation by spatial orientation

» Estimating the mean signatures. We generate a synthetic sequence by superimposing two
For fixed ¢, minimization with respect to the region identical sequences of ocean waves, one of which has been
signaturess; and s, amounts to averaging the signa- rotated of90 degrees. We select a disc and a square at the
tures over each phase: opposite corners of the images and overlap the sequence of

rotated waves on the basic sequence only within the disc and
51 = M7 89 = M (11) the square. All the sequences are composeloframes
JH(¢)dE J(1=H(¢))d¢ and each frame is &f21 x 321 pixels.

The texture on the disc and the square regions is similar
to the texture in the background region in both gray-scale
For fixed region signatures; }, minimization withre-  values and dynamics. However, it can be distinguished on
spect to the embedding functigrcan be implemented  the basis of the different orientation. As in the previous ex-

e Boundary evolution.

by a gradient descent given by: periment we identify the local dynamical systems at each
96 Vo pixel by considering neighborhoods bf x 11 pixels. The
Fri 5() [VV (|V¢|> + (s—s9)% — (s—s1)?|, state of each local system is again of dimensién Fig-

ure 4 shows a few snapshots of the contour evolution, start-
ing from a circle.
4. Experiments 4.3. Segmentation by temporal properties

The following experiments demonstrate various aspects This experiment is complementary to the previous one.

of dynamu; texturelz sr(?gmentatlo[lk In all cases we usekse-To generate a sequence containing regions which only dif-
;q_uenlf_es 0 2na:1ura P fenomenahl € c;cean waves, smof?_ Ofer with respect to their dynamics, we overlap the ocean se-
ire. Figure 2 shows a few snapshots from a sequence ot fire, ;o ce in the regions corresponding to the disc and square

comblned- with the ocEan waves. h over an ocean sequence slowed down by a factor of 2.
In Se.CtIOI’r]]4.1WGi O\f{fv experiments on a;ftfequencew €' The evolution of the contour during the cost functional
two regions have both different texture and different dynam- iz ation is shown in Figure 5, starting from a circle.

ics. In Section 4.2 we instead keep the dynar_nics idt_entical,we found this experiment to be one of the most compelling
but we change the texture. On the contrary, in Section 4.3,,55  hecause the segmentation is obtained exclusively on
we keep the texture identical, but we change the dynamlcs,[he basis of temporal properties of the dynamic texture —
As a last experiment, we test our algorithm on a very chal- this is one of the novelties of our approach.

lenging sequence: we superimpose a flame on ocean waves.

In this case, the region occupied by the flame is changing4.4.. .. and fire in the sky

in time, as opposed to our assumptions (see Section 1.1)

of static regions. The contour evolutions are also available
on-line [1].

The following experiment is a very challenging one,
since we use an input sequence where the regions associated



Figure 3. Smoke on the water:in this first experiment the two dynamic textures (the smoke and the ocean waves)
are very different both in the dynamics and in the appearance.

Figure 4. Segmentation by changing texture:in this experiment we segment two dynamic textures that differ only
for the texture orientation, but that share the same dynamics and general appearance (grayscale values).

Figure 5. Segmentation by changing dynamics:in this experiment we segment two dynamic textures that are
identical in appearance, but differ in the dynamics. Note that this particular segmentation problem is quite difficult,
even for human observers. Segmentation is obtained exclusively on the basis of the temporal properties of the dynamic
texture. This demonstrates one of the novelties of our approach.

Figure 6. Fire in the sky: this segmentation problem is very challenging, since — contrary to our model assumption

— the regions where the dynamic textures are defined (in particular, the flame texture), are changing in time. The
segmentation returns an estimate of the average location of the flame, showing that our approach is robust to deviations
from the assumption of spatial stationarity.



with different dynamic textures are also moving intime. We [6] A. W. Fitzgibbon. Stochastic rigidity: image registration for
generate a synthetic sequence by superimposing a sequence nowhere-static scenes. Rroc. Int. Conf. on Computer Vi-
with fire to a sequence with ocean waves. The flame is con- __ sion volume 1, pages 662-669, July 2001. _
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regions both the fire dynamic texture and the ocean dynamic 8] nget%%g'l C. Schiverr. C. Schellewald. and D. Cremers. Bi-

texture. nary partitioning, perceptual grouping, and restoration with
In Figure 6 we show a few snapshots of the contour evo- semidefinite programminglo appear in PAM|2003.

lution, starting from a circle. Notice that the final contour [9] Y. Li, T. Wang, and H.-Y. Shum. Motion texture: a two-
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Our approach draws from the literature on region-based seg{15] p. V. Overschee and B. D. Moor. N4sid: subspace algorithms
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