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Abstract

We address the problem of segmenting a sequence of im-
ages of natural scenes into disjoint regions that are charac-
terized by constant spatio-temporal statistics. We model the
spatio-temporal dynamics in each region by Gauss-Markov
models, and infer the model parameters as well as the
boundary of the regions in a variational optimization frame-
work. Numerical results demonstrate that – in contrast to
purely texture-based segmentation schemes – our method is
effective in segmenting regions that differ in their dynamics
even when spatial statistics are identical.

1. Introduction

Consider the following problem, in relation to Fig. 1: An
autonomous vehicle must decide what is traversable terrain
(e.g. grass) and what is not (e.g. water). This problem
can be addressed by classifying portions of the image into
a number of categories, for instance grass, dirt, bushes or
water. For the most part, such a classification can be ac-
complished successfully by looking at simple image statis-
tics, such as color or intensity. However, in many situations
these are not sufficient, and therefore it may be beneficial
to look atspatio-temporalstatistics, and attempt to classify
different portions of the scene basednot on the statistics
of one single image, but on how the statistics of an image
change over time during a sequence. Modeling the (global)
spatio-temporal statistics of the entire image can be a daunt-
ing task due to the complexity of natural scenes. An alter-
native consists of choosing a simple class of models, and
simultaneously estimating regions and their model parame-
ters in such a way that the data in each region is optimally
modeled by the estimated parameters. This naturally results
in asegmentationproblem.

In this paper we study the problem of segmenting a se-
quence of images based on a simple model of its spatio-
temporal statistics.

Before we proceed with formalizing the problem, we

Figure 1. A typical outdoor scene:an autonomous
vehicle trying to classify the terrain based on spatial
image statistics fails to distinguish water from grass,
since the latter reflects on the former and therefore
their spatial statistics are very similar (courtesy of
Google Image Search).

would like to point out that segmentation, in this context,
is entirely dependent on theclass of modelschosen. Dif-
ferent models result in different partitions of the scene, and
there is no “right” or “wrong” result. Ultimately, the useful-
ness of a statistical segmentation method depends on how
well the chosen model captures the phenomenology of the
physical scene, but unless one has a physical model to start
with, this correspondence cannot be guaranteed. Therefore,
in Sect. 1.1 we describe the model we use, which implicitly
defines what we mean by “segmentation”. It is a Gauss-
Markov model of the intensity of the pixels which is known
as adynamic texture.

Another issue that we would like to raise at the outset is
that what we model isnot a point process, but rather sta-
tistical distributions both in space and in time. Therefore,
there will be a “minimum region of integration” in order to



capture such statistics, similarly to what is done in texture
segmentation. To segment the image plane into regions of
homogeneous dynamic textures, we revert to a region-based
segmentation approach pioneered by Mumford and Shah
[13]. The Mumford-Shah functional has been extended to
the segmentation of color, spatial texture [26] and motion
[4]. This work generalizes these approaches to the segmen-
tation of spatio-temporal textures.

1.1. Formalization of the problem

LetΩ ⊂ R2 be the domain of an image and{Ωi}i=1,...,N

be a partition ofΩ into N (unknown) regions1. We as-
sume that the pixels contained in the regionΩi are a Gauss-
Markov process2. In other words, there exist (unknown)
parametersAi ∈ Rn×n, Ci ∈ Rmi×n, covariance matri-
cesQi ∈ Rn×n, Ri ∈ Rmi×mi , white, zero-mean Gaus-
sian processes{v(t)} ∈ Rn, {wi(t)} ∈ Rmi and a process
{x(t)} ∈ Rn such that the pixels at each regionΩi at each
instant of time are given by

{
x(t + 1) = Aix(t) +

√
Qiv(t); x(t0) = xi,0

yi(t) = Cix(t) +
√

Riwi(t)
(1)

wherey(t) ∈ Rmi represents the vector of intensities at
time t of the pixels belonging toΩi. Note that we allow the
number of pixelsmi to be different in each region, as long
as

∑N
i=1 mi = m, the size of the entire image, and that we

require that neither the regions nor the parameters change
over time,Ωi, Ai, Ci, Qi, Ri, xi,0 = const.

Given this generative model, one way to formalize the
problem of segmenting a sequence of images is the fol-
lowing: Given a sequence of images{y(t) ∈ Rm, t =
1, . . . , T} with two or more distinct regionsΩi, i =
1, . . . , N ≥ 2 that satisfy the model(1), estimate both
the regionsΩi, and the model parameters of each region,
namely the matricesAi, Ci, the initial statexi,0, and the
covariance of the driving processQi (the covarianceRi is
not a parameter of interest since it does not have significant
discriminative power).

1.2. Relation to prior work

The model for the spatio-temporal statistics of one re-
gion, that we proposed in the previous section, was first
used in [5]. Similar statistical models were also used by oth-
ers [21, 6, 24, 9]. For synthesis of spatio-temporal textures,
statistical generative models can be replaced by procedural
techniques such as [19, 25].

The analytical tools we use to infer the model param-
eters are borrowed from the literature of subspace system

1That is,Ω = ∪N
i=1Ωi andΩi ∩ Ωj = ∅, i 6= j.

2Although this may seem a restrictive assumption, it has been shown
in [20, 6] that sequences such as foliage, water, smoke, and steam are well
captured by this model.

identification [15], and the discrepancy measure between
different models is inspired by [3]. Since textures can be
considered as a degenerate case of dynamic textures, our
work also relates to texture segmentation. For some recent
work on texture segmentation see [11, 8, 17] and references
therein.

We cast the problem of region segmentation in a vari-
ational framework following [13]. In particular, we revert
to a level set framework of the Mumford-Shah functional
introduced in [2]. The algorithm we propose allows to par-
tition the image domain of a video sequence into regions
with constant spatio-temporal statistics. To the best of our
knowledge, work in this area is new.

In the next section, we review existing work on how one
can infer the parameters of a dynamic texture (1) for each
region, assuming the region is known. In the following Sec-
tion 3.1 we address the dual problem of inferring the regions
if the models to which each pixel belongs are known. Since
neither is known, we address this chicken-and-egg problem
in Sect. 3.

2. Dynamic texture learning and comparison

If the regionsΩi, i = 1, . . . , N were known, one would
just be left with two problems: one is the learning of the
model parameters, which we review in Sect. 2.1, the other is
the computation of a discrepancy measure between different
dynamic textures, which we discuss in Sect. 2.2.

2.1. Learning

It is well known [10] that a positive-definite covariance
sequence with rational spectrum corresponds to an equiva-
lence class of second-order stationary processes. It is then
possible to choose as a representative of each class a Gauss-
Markov model with the given covariance. In other words,
for a given regionΩi, we can assume that there exist a
positive integern, a process{x(t)} with realizations in
Rn (the “state”) with initial conditionx(t0), some matrices
Ai andCi, and a symmetric positive semi-definite matrix[

Qi Si

ST
i Ri

]
≥ 0, whereSi = E[w(t)vT (t)], such that

{y(t)} is the output of model (1). Since we assume that
the noise affecting the statev(t) and the noise affecting the
outputw(t) are independent, we have thatSi = 0.

The choice of matricesAi, Ci, Qi, Ri is not unique, in
the sense that there are infinitely many models that give rise
to exactly the same measurement covariance sequence start-
ing from suitable initial conditions3. In other words, any
given process hasnot a unique model, but anequivalence
classof models. In order to identify a unique model of

3SubstitutingAi with TAiT
−1, Ci with CiT

−1, Qi with TQiT
−1,

and choosing the initial conditionTx(t0), whereT ∈ GL(n) is any in-
vertiblen× n matrix generates the same output covariance sequence.



the type (1) from a sample pathy(t), we choose a repre-
sentative of each equivalence class as suggested in [5], i.e.
we will make the following assumptions:mi >> n, and
rank(Ci) = n, and choose a model realization that makes
the columns ofCi orthonormal, i.e. CT

i Ci = In. This
guarantees that the model corresponding to a given dataset
is uniquely determined. This model corresponds to acanon-
ical realization[7].

The problem of going from data to models can be formu-
lated as follows:givenmeasurements of a sample path of
the process:y(1), . . . , y(T ); T >> n, estimateÂi, Ĉi, Q̂i,
a canonical model realization of the process{y(t)}. Ideally,
we would want the maximum likelihood solution from the
finite sample, that is

Âi,Ĉi, Q̂i, x̂i,0 (2)

= arg max
Ai,Ci

Qi,xi,0

log p
(
y(1), . . . , y(T )|Ai, Ci, Qi, xi,0

)
.

Notice that, as we said in Section 1.1, we do not model the
covariance of the measurement noiseRi, since that carries
no information on the underlying process. The asymptot-
ically efficient solution for the estimation problem (2), as
T → ∞, can be found in [23], while accurate description
of its implementation, named N4SID, can be found in [15].
In practice, for computational efficiency, we settle for the
suboptimal solution described in [5].

2.2. Discrepancy between dynamic textures

Assuming that the parametersAi, Ci, Qi, xi,0 have been
inferred for each region, in order to set the stage for a seg-
mentation procedure, one has to define a discrepancy mea-
sure among regions. The difficulty in doing so is that each
region is described not only by the parameters above, but
by an equivalence class of such parameters, obtained by
changes of basis of the state-space{x(t)} in model (1).
Therefore, a suitable discrepancy measure has to compare
not the parameters directly, but their equivalence classes.

One technique for doing so has been recently proposed
in [3]. It consists of building infinite observability matrices,
whose columns span the vector space generated by the mea-
surementsy(t) of the model (1), and that represent the high-
dimensional subspace of the infinite-dimensional space of
all possible measurements. Then one can compute the geo-
metric angles between such subspaces through their embed-
ding.

More formally, letA ∈ Rm×p andB ∈ Rm×q be two
matrices with full column rank, and suppose thatp ≥ q.
The q principal anglesθk ∈

[
0, π

2

]
between range(A) and

range(B) are recursively defined fork = 1, 2, . . . q as

cos θ1 = max
x∈Rp

y∈Rq

∣∣xT AT By
∣∣

‖Ax‖
2
‖By‖

2

(3)

=

∣∣xT
1 AT By1

∣∣
‖Ax1‖2

‖By1‖2

,

cos θk = max
x∈Rp

y∈Rq

∣∣xT AT By
∣∣

‖Ax‖
2
‖By‖

2

=

∣∣xT
k AT Byk

∣∣
‖Axk‖2

‖Byk‖2

, for k = 2, . . . , q

subject to xT
i AT Ax = 0 and yT

i BT By = 0,

for i = 1, 2, . . . , k − 1 .

Now, letM1 andM2 be two models of the type (1), with the
same output dimensionality, which are characterized in state
space terms by their system matricesA1 andA2 and output
matrix C1 andC2 respectively. Their infinite observability
matricesOi, for i = 1, 2, are defined as

Oi
.=

[
CT

i AT
i CT

i . . . (AT
i )nCT

i . . .
]T ∈ R∞×n,

(4)
and the principal angles between the ranges ofO1, andO2

are referred to assubspace angles. Their computation can
be carried out in closed form, and entails the computation of
the eigenvalues of the solution of a discrete-time Lyapunov
equation [3].

While more than one distance for single-input single-
output (SISO) linear dynamical systems have been defined
based on subspace angles [3, 12], the extension to the
multiple-input multiple-output (MIMO) case is not trivial
given the lack of the concept of the inverse of a MIMO
system. However, it has been shown in [18] that subspace
angles between infinite observability matrices have very
high discriminative power under the hypothesis of stabil-
ity and observability of the compared systems. With this in
mind, we measure the discrepancy between different spatio-
temporal statistics associated to different models by com-
paring either the set of subspace angles or their combination
via Martin’s distance [3] defined as

d2
M (M1,M2) = ln

n∏

k=1

1
cos2θk

. (5)

3. Dynamic texture segmentation

In Sect. 2.1 we have seen that, if the boundaries of each
region were known, one could easily estimate a simple
model of the spatio-temporal statistics within each region.
Unfortunately, in general one does not know the boundaries,



which are instead part of the inference process. If the dy-
namic texture associated with each pixel were known, then
one could easily determine the regions by thresholding or
by other grouping or segmentation techniques. However, a
dynamic texture associated with a certain pixelξ, as defined
in equation (1), depends on the whole regionΩi containing
the pixelξ. Therefore, we have a classic “chicken-and-egg”
problem: If we knew the regions, we could easily identify
the dynamical models, and if we knew the dynamical mod-
els we could easily segment the regions. Unfortunately, we
know neither.

One may be tempted to address this problem by setting
up an alternating minimization procedure, starting with an
initial guess of the regions,̂Ωi(0), estimating the model
parameters within each region,̂Ai(0), Ĉi(0), Q̂i(0)), x̂i,0,
and then at any given timet seeking for regionŝΩi(t), and
parametersÂi(t), Ĉi(t), Q̂i(t)), x̂i,0 that minimize a cho-
sen cost functional. Unfortunately, this approach would not
lead to a well-posed problem, since one can always explain
the image with a few high-order models with large support
regions (the entire image in the limit), or with many low-
order models with small support regions (individual pixels
in the limit). Therefore, a model complexity cost needs to
be added, for instance the description length of the model
parameters [16] and the boundaries of each region. This
significantly complicates the algorithms and the derivation.

Rather than seeking for an estimate of the regions and the
model parameters in one shot, we can instead adopt a two-
stage algorithm to circumvent the model-complexity issue:
We first associate a localsignatureto each pixel, by inte-
grating visual information on a fixed spatial neighborhood
of that pixel; then we group together pixels with similar sig-
natures in a region-based segmentation approach. The sig-
natures are computed from the subspace angles relative to
a reference model, following the ideas outlined in previous
sections. We describe this simple and yet effective approach
in the following subsections.

3.1. A geometric approach

We start by considering the neighborhoodsB(ξ) ⊂ Ω
around each pixelξ ∈ Ω. We then associate to each pixel
location ξ the dynamics of the spatio-temporal region by
computingO(ξ) from A(ξ), C(ξ) = N4SID{y(ξ̃, t) | ξ̃ ∈
B(ξ), t = 1, . . . , T}. For each pixelξ we generate a local
spatio-temporalsignaturegiven by the cosines of the sub-
space angles{θj(ξ)} betweenO(ξ) and a reference model,
O(ξ0):

s(ξ) =
(
cos θ1(ξ), . . . , cos θn(ξ)

)
. (6)

We call this approach “geometric” since the signatures are
constructed using subspace angles, rather than responses of
banks of filter as is more common in static texture segmen-
tation.

With the above representation, the problem of dynamic
texture segmentation can be formulated as one of grouping
regions of similar spatio-temporal signatures. We propose
to perform this grouping by reverting to the Mumford-Shah
functional [13]. A segmentation of the image planeΩ into
a set of pairwise disjoint regionsΩi of constant signature
si ∈ Rn is obtained by minimizing the cost functional

E(Γ, {si}) =
∑

i

∫

Ωi

(
s(ξ)− si

)2
dξ + ν |Γ|, (7)

simultaneously with respect to the region descriptors{si}
modeling the average signature of each region, and with re-
spect to the boundaryΓ separating these regions (an appro-
priate representation of which will be introduced in the next
section). The first term in the functional (7) aims at max-
imizing the homogeneity with respect to the signatures in
each regionΩi, whereas the second term aims at minimiz-
ing the length|Γ| of the separating boundary.

3.2. A level set formulation

In the following, we will restrict the class of possible so-
lutions of the proposed variational problem to two-phase so-
lutions, i.e. solutions in which each pixel is associated with
one of two dynamic texture models. All results do, however,
extend to the case of multiple phases. For the implementa-
tion of the boundaryΓ in the functional (7) we revert to the
implicit level set based representation proposed by Chan,
Sandberg and Vese [2, 22].

Compared to explicit contour representations, the level
set based representations [14] have several favorable prop-
erties. Firstly, they do not restrict the topology of the evolv-
ing boundary, thereby facilitating splitting and merging dur-
ing the evolution. And secondly, one does not need to take
care of a regridding of control or marker points.

Let the boundaryΓ in (7) be given by the zero level set
of a functionφ : Ω → R:

Γ = {ξ ∈ Ω |φ(ξ) = 0}. (8)

With the Heaviside function

H(φ) =
{

1 if φ ≥ 0
0 if φ < 0 , (9)

the functional (7) can be replaced by a functional on the
level set functionφ:

E(φ, {si}) =
∫

Ω

(
s(ξ)− s1

)2
H(φ) dξ

+
∫

Ω

(
s(ξ)− s2

)2 (
1−H(φ)

)
dξ

+ ν |Γ|. (10)



Figure 2. Example of a composition of dynamic
textures: fire on ocean waves. The time evolution of
the sequence is rendered by overlapping a few snap-
shots corresponding to different image frames.

3.3. Energy minimization

We minimize the functional (10) by alternating the two
fractional steps of:

• Estimating the mean signatures.

For fixedφ, minimization with respect to the region
signaturess1 ands2 amounts to averaging the signa-
tures over each phase:

s1 =
∫

s H(φ) dξ∫
H(φ) dξ

, s2 =
∫

s (1−H(φ)) dξ∫
(1−H(φ)) dξ

. (11)

• Boundary evolution.

For fixed region signatures{si}, minimization with re-
spect to the embedding functionφ can be implemented
by a gradient descent given by:

∂φ

∂t
= δ(φ)

[
ν∇

(∇φ

|∇φ|
)

+ (s−s2)2 − (s−s1)2
]

,

4. Experiments

The following experiments demonstrate various aspects
of dynamic texture segmentation. In all cases we use se-
quences of natural phenomena like ocean waves, smoke or
fire. Figure 2 shows a few snapshots from a sequence of fire
combined with the ocean waves.

In Section 4.1 we show experiments on a sequence where
two regions have both different texture and different dynam-
ics. In Section 4.2 we instead keep the dynamics identical,
but we change the texture. On the contrary, in Section 4.3
we keep the texture identical, but we change the dynamics.
As a last experiment, we test our algorithm on a very chal-
lenging sequence: we superimpose a flame on ocean waves.
In this case, the region occupied by the flame is changing
in time, as opposed to our assumptions (see Section 1.1)
of static regions. The contour evolutions are also available
on-line [1].

4.1. Smoke on the water. . .

In this experiment we generate a synthetic sequence by
superimposing two sequences: one with ocean waves, and
one with smoke. We select a disc in the middle of the im-
ages and overlap the sequence of smoke over the sequence
of the waves only on this disc. All the sequences are com-
posed of120 frames and each frame is of220× 220 pixels.
In this case both texture and dynamics are very different, re-
sulting in a very strong discrimination between the regions.
We identify the local dynamical systems at each pixel by
considering neighborhoods of11 × 11 pixels. The state of
each local system is of dimension10. Then, we compute
the subspace angles between these local dynamical systems
and a reference dynamical system. Finally, we segment the
signatures with the Mumford-Shah minimization scheme as
explained in Sections 3.1-3.3. In Figure 3 we show a few
snapshots of the contour evolution, starting from a circle.

4.2. Segmentation by spatial orientation

We generate a synthetic sequence by superimposing two
identical sequences of ocean waves, one of which has been
rotated of90 degrees. We select a disc and a square at the
opposite corners of the images and overlap the sequence of
rotated waves on the basic sequence only within the disc and
the square. All the sequences are composed of120 frames
and each frame is of221× 321 pixels.

The texture on the disc and the square regions is similar
to the texture in the background region in both gray-scale
values and dynamics. However, it can be distinguished on
the basis of the different orientation. As in the previous ex-
periment we identify the local dynamical systems at each
pixel by considering neighborhoods of11× 11 pixels. The
state of each local system is again of dimension10. Fig-
ure 4 shows a few snapshots of the contour evolution, start-
ing from a circle.

4.3. Segmentation by temporal properties

This experiment is complementary to the previous one.
To generate a sequence containing regions which only dif-
fer with respect to their dynamics, we overlap the ocean se-
quence in the regions corresponding to the disc and square
over an ocean sequence slowed down by a factor of 2.

The evolution of the contour during the cost functional
minimization is shown in Figure 5, starting from a circle.
We found this experiment to be one of the most compelling
ones, because the segmentation is obtained exclusively on
the basis of temporal properties of the dynamic texture –
this is one of the novelties of our approach.

4.4. . . . and fire in the sky

The following experiment is a very challenging one,
since we use an input sequence where the regions associated



Figure 3. Smoke on the water: in this first experiment the two dynamic textures (the smoke and the ocean waves)
are very different both in the dynamics and in the appearance.

Figure 4. Segmentation by changing texture:in this experiment we segment two dynamic textures that differ only
for the texture orientation, but that share the same dynamics and general appearance (grayscale values).

Figure 5. Segmentation by changing dynamics:in this experiment we segment two dynamic textures that are
identical in appearance, but differ in the dynamics. Note that this particular segmentation problem is quite difficult,
even for human observers. Segmentation is obtained exclusively on the basis of the temporal properties of the dynamic
texture. This demonstrates one of the novelties of our approach.

Figure 6. Fire in the sky: this segmentation problem is very challenging, since – contrary to our model assumption
– the regions where the dynamic textures are defined (in particular, the flame texture), are changing in time. The
segmentation returns an estimate of the average location of the flame, showing that our approach is robust to deviations
from the assumption of spatial stationarity.



with different dynamic textures are also moving in time. We
generate a synthetic sequence by superimposing a sequence
with fire to a sequence with ocean waves. The flame is con-
tinuously changing position in time, thereby mixing in some
regions both the fire dynamic texture and the ocean dynamic
texture.

In Figure 6 we show a few snapshots of the contour evo-
lution, starting from a circle. Notice that the final contour
is the contour of an “average” region obtained by combin-
ing the different regions in time. Therefore, our approach
shows robustness also to changes in the original hypotheses
that dynamic textures were spatially stationary.

5. Conclusions

We have presented a technique to segment an image se-
quence into regions based on their spatio-temporal statis-
tics. The assumption is that the regions are constant in time
or change slowly relative to the dynamics of the irradiance
within each region, which in turn is modeled as a second-
order stationary process with constant Markov parameters.
Our approach draws from the literature on region-based seg-
mentation as well as that on system identification; however,
it is not a straightforward concatenation of the two since that
would result in either having to compare state space models
of different dimensions, or in un-necessary blurring of the
region boundaries.

As we illustrate in the experiments, our technique is ef-
fective in segmenting regions that differ in their dynamic
behavior even when their spatial statistics are identical,
and it can be useful in outdoor autonomous navigation and
recognition of dynamic visual processes.
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