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Fig. 1. Optical flow for the backyard and mini cooper scene of the Middlebury optical flow bench-
mark. Optical flow captures the dynamics of a scene by estimating the motion of every pixel
between two frames of an image sequence. The displacement of every pixel is shown as displace-
ment vectors on top of the commonly used flow color scheme (see Figure 5).

Abstract. A look at the Middlebury optical flow benchmark [5] reveals that
nowadays variational methods yield the most accurate optical flow fields between
two image frames. In this work we propose an improvement variant of the original
duality based TV-L" optical flow algorithm in [31] and provide implementation
details. This formulation can preserve discontinuities in the flow field by employ-
ing total variation (TV) regularization. Furthermore, it offers robustness against
outliers by applying the robust L' norm in the data fidelity term.

Our contributions are as follows. First, we propose to perform a structure-texture
decomposition of the input images to get rid of violations in the optical flow
constraint due to illumination changes. Second, we propose to integrate a median
filter into the numerical scheme to further increase the robustness to sampling
artefacts in the image data. We experimentally show that very precise and robust
estimation of optical flow can be achieved with a variational approach in real-
time. The numerical scheme and the implementation are described in a detailed
way, which enables reimplementation of this high-end method.
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1 Introduction

The recovery of motion from images (see Figure 1) is a major task of biological and
artificial vision systems. The objective of optical flow methods is to compute a flow field
representing the motion of pixels in two consecutive image frames. Since optical flow
is an highly ill-posed inverse problem, using pure intensity-based constraints results in
an under-determined system of equations, which is known as the aperture problem. In
order to solve this problem some kind of regularization is needed to obtain physically
meaningful displacement fields.

In their seminal work [18], Horn and Schunck studied a variational formulation of
the optical flow problem.
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Here, Iy and I is the image pair, u = (uj(x),uz(x))? is the two-dimensional dis-
placement field and A is a free parameter. The first term (regularization term) penalizes
high variations in u to obtain smooth displacement fields. The second term (data term)
is also known as the optical flow constraint. It assumes, that the intensity values of Io(x)
do not change during its motion to I; (& +u(x)). The free parameter A weighs between
the data fidelity term and the regularization force. Generally speaking, u registers the
pixels of the source image I, onto the pixels of the target image ;.

Since the Horn-Schunck model penalizes deviations in a quadratic way, it has two
major limitations. It does not allow for discontinuities in the displacement field, and
it does not handle outliers in the data term robustly. To overcome these limitations,
several models including robust error norms and higher order data terms have been pro-
posed. Since discontinuities in the optical flow appear often in conjunction with high
image gradients, several authors replace the homogeneous regularization in the Horn-
Schunck model with an anisotropic diffusion approach [21,29]. Others substitute the
squared penalty functions in the Horn-Schunck model with more robust variants. Black
and Anandan [7] apply estimators from robust statistics and obtain a robust and dis-
continuity preserving formulation for the optical flow energy. Aubert et al. [3] analyze
energy functionals for optical flow incorporating an L' data fidelity term and a general
class of discontinuity preserving regularization forces. Papenberg et al. [22] employ a
differentiable approximation of the TV (resp. L) norm and formulate a nested iteration
scheme to compute the displacement field.

Most approaches for optical flow computation replace the nonlinear intensity profile
I (x + u(x)) by a first order Taylor approximation to linearize the problem locally.
Since such approximation is only valid for small displacements, additional techniques
are required to determine the optical flow correctly for large displacements. Scale-space
approaches [1] and coarse-to-fine warping (e.g. [2, 19, 9]) provide solutions to optical
flow estimation with large displacements.

In several applications, such as autonomous robot navigation, it is necessary to cal-
culate displacement fields in real-time. Real-time optical flow techniques typically con-
sider only the data fidelity term to generate displacement fields [12,25]. One of the
first variational approaches to compute the optical flow in real-time was presented by
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Bruhn et al. [10, 11]. In their work a highly efficient multi-grid approach is employed
to obtain real-time or near real-time performance. The aim of their approach is very
similar to our objective: obtaining robust and discontinuity preserving solutions for op-
tical flow with highly efficient implementations. Nevertheless, we utilize a completely
different solution strategy, namely a duality based TV-L! optical flow algorithm intro-
duced in [31]. In the following section, we reproduce this approach before we present
some improvements to increase the robustness and flow accuracy.

2 TV-L! Optical Flow [31]

In the basic setting two image frames I and I; : (2 C R?) — R are given. The objec-
tive is to find the disparity map u : {2 — R2, which minimizes an image-based error
criterion together with a regularization force. In this work we focus on the plain inten-
sity difference between pixels as the image similarity score. Hence, the target disparity
map w is the minimizer of

/Q {36 (Io(@) ~ I (@ + u(@))) + (u, Vu,..) b dz, o)

where ¢ (In(x) — I (x + u(x))) is the image data fidelity, and ¢ (u, Vu, . ..) depicts
the regularization term. The parameter \ weighs between the data fidelity and the regu-
larization force. Selecting ¢(z) = 22 and ¢)(Vu) = |Vu|? results in the Horn-Schunck
model [18].

The choice of ¢(x) = |z| and ¥(Vu) = |Vu| yields to the following functional
consisting of an L' data penalty term and total variation regularization:

E:/Q{)\|Io(a:)—Il(a:+u(a:))|+|Vu\}da:. 3)

Although Eq. 3 seems to be simple, it offers computational difficulties. The main reason
is that both, the regularization term and the data term, are not continuously differen-
tiable. One approach is to replace ¢(z) = |z| and ¥(Vu) = |Vu| with differentiable
approximations, ¢. (z2) = V22 + €2 and 1. (Vu) = 1/|Vu|?2 + €2, and to apply a nu-
merical optimization technique on this slightly modified functional (e.g. [15, 9]).

In [13] Chambolle proposed an efficient and exact numerical scheme to solve the
Rudin-Osher-Fatemi energy [23] for total variation based image denoising. In the fol-
lowing we show how this approach was adopted in [31] to the optical flow case, yielding
a different approach to solve Eq. 3.

2.1 The 1D Stereo Case

In this section we restrict the disparities to be non-zero only in the horizontal direction,
e.g. a normalized stereo image pair is provided. Hence, u(x) reduces to a scalar u(x),
and we use the (sloppy) notation x +u(z) for  + (u(x), 0)”. The following derivation
is based on [4], but adapted to the stereo/optical flow setting. At first, we linearize image
I near x + uy, i.e.

Li(z +u) = Li(z +uo) + (u—uo) I (T + uo),
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where v is a given disparity map and I7 is the derivative of the image intensity Iy
wrt. the z-direction. Using the first order Taylor approximation for I; means, that the
following procedure needs to be embedded into an iterative warping approach to com-
pensate for image nonlinearities. Additionally, a multi-level approach is employed to
allow large disparities between the images.

For fixed ug and using the linear approximation for I, the TV-L! functional (Eq. 3)
now reads as:

E:/ [N I + L+ o) — o I — Io| + |V} dar @
2

In the following, we denote the current residual I (z + ug) + (v — uo) I¥ — Iy by
p(u, ug, ) (or just p(u) by omitting the explicit dependency on ug and x). Moreover,
we introduce an auxiliary variable v and propose to minimize the following convex
approximation of Eq. 4:

1
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where 6 is a small constant, such that v is a close approximation of u. This convex
minimization problem can be optimized by alternating steps updating either v or v in
every iteration:

1. For v being fixed, solve

ngn/n{wuu;a(u—v)?} da. ©)

This is the total variation based image denoising model of Rudin, Osher and Fatemi [23].
2. For u being fixed, solve

min | {550+ Ap(o)l } e o

This minimization problem can be solved point-wise, since it does not depend on
spatial derivatives of v.

An efficient solution for the first step (Eq. 6) is based on gradient descent and sub-
sequent re-projection using the dual-ROF model [14]. It is based on a dual formulation
of Eq. 6 and yields a globally convergent iterative scheme. Since this algorithm is an
essential part of our method, we reproduce the relevant results from [14]:

Proposition 1 The solution of Eq. (6) is given by

u=v+0divp. 8)
The dual variable p = [p1, p2] is defined iteratively by
P =p+ g (V (v + 0 div p")) and )
~n+1
(AR N — 10
P max{l,|f9”+1|} (10)

where p° = 0 and the time stepT < 1/4.
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Proposition 2 The solution of the minimization task in Eq. 7 is given by the following
thresholding step:

AOIF if plu) < —=X0(I7)?
v=u+ < —ANOIF if plu) > N0 (IF)? (11)
—p(u)/I¥ if |p(u)] < X0 (IF).

This means, that the image residual p(v) is allowed to vanish, if the required step from
u to v is sufficiently small. Otherwise, v makes a bounded step from u, such that the
magnitude of the residual decreases. The proposition above can be shown directly by
analyzing the three possible cases, p(v) > 0 (inducing v = u — A I{), p(v) < 0
(wv=u+A0I{)and p(v) =0 (v =u— p(u)/I{).

2.2 Generalization to Higher Dimensions

In this section we extend the method introduced in the previous section to optical flow
estimation, i.e. a N-dimensional displacement map w is determined from two given N-
D images Iy and I;. The first order image residual p(u, ug, x) wrt. a given disparity
map wg is now Iy (x +ug) + (VI1, u —ug) — Ip(x). Additionally, we write uy for the
d-th component of w (d € {1,...,N}).

The generalization of Eq. 5 to more dimensions is the following energy:

1
Ey = Vug| + —(ug — vq)* + N|p(v de. 12
0 /Q{;l dl §%<d a)” + Al >|} (12)
Similar to the stereo setting, minimizing this energy can be performed by alternating
optimization steps:

1. For every d and fixed vy, solve

min/ {|Vud| + i(ud - vd)Q} de. (13)
o 26

Ud

This minimization problem is identical to Eq. 6 and can be solved by the same
procedure. Note, that the dual variables are introduced for every dimension, e.g.
Eq. 8 now reads as

ug = vg — 0div py. (14)

2. For u being fixed, solve
mmz (ug — va)* + Xp(v)]|. (15)

The following proposition generalizes the thresholding step from Proposition 2 to higher
dimensions:
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Proposition 3 The solution of the minimization task in Eq. 15 is given by the following
thresholding step:

AOVI, if plu) < —A\O|VI?
v=u+ —AOVI if p(u)>\0|VIL|? (16)
o) VL/IVE if |p(w)] < 6|V ]2

This proposition essentially states, that the N-dimensional optimization problem can
be reduced to a one-dimensional thresholding step, since v always lies on the line [+
going through u with direction VI; (for every x). This can be seen as follows: The first
part in Eq. 15, > ;(uq — vq)?/26, is basically the squared distance of v to u, and the
second part, A |p(v)], is the unsigned distance to the line [ : p(w) = 0, i.e. [;(x+ug)+
(VI1, w—uo) —Ip(x) = 0.If we consider all v, with a fixed distance  to u, then the
functional in Eq. 15 is minimized for the v, closest to the line / (with minimal normal
distance). This is also valid for the true minimizer, hence the optimum for Eq. 15 is
on [+, In addition, the one-dimensional thresholding step in gradient direction can be
applied (Proposition 2), resulting in the presented scheme.

3 Increasing Robustness to Illumination Changes

The image data fidelity term ¢ (Io(x) — I1 (2 + u(x))) states that the intensity values
of Ip(z) do not change during its motion to I;(z + u(x)). For many sequences this
constraint is violated due to sensor noise, illumination changes, reflections, and shad-
ows. Thus, real scenes generally show artifacts that violate the optical flow constraint.
Figure 2 shows an example, where the ground truth flow is used to register two images
from the Middlebury optical flow benchmark data base [5]. Although the two images
are registered at the best using the ground truth flow, the intensity difference image
between the source image and the registered target image reveals the violations of the
optical flow constraint. Some of these regions, showing artifacts of shadow and shading
reflections, are marked by blue circles in the intensity difference image.

| | O o
(a) Source (b) Target (c) Difference image

Fig. 2. The source and target images of the rubber-whale sequence in the Middlebury optical flow
benchmark have been registered using the ground truth optical flow. Still, intensity value differ-
ences are visible due to sensor noise, reflections, and shadows. The intensity difference image
is encoded from white (no intensity value difference) to black (10% intensity value difference).
Pixels which are visible in a single image due to occlusion are shown in white.
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A physical model of brightness changes was presented in [17], where brightness
change and motion is estimated simultaneous; shading artefacts however have not been
addressed. In [30] and [20] the authors used photometric invariants to cope with bright-
ness changes, which requires color images. A common approach in literature to tackle
illumination changes is to use image gradients besides, or instead of, the plain image
intensity values in the data term [9]. This implies that multiple data fidelity terms have
to be used and images are differentiated twice, which is known to be noisy.

Here we propose a structure-texture decomposition similar to the approach used
in [26] to model the intensity value artifacts due to shading reflections and shadows.
The basic idea behind this splitting technique is that an image can be regarded as a
composition of a structural part, corresponding to the main large objects in the image,
and a textural part, containing fine scale-details [4]. See Figure 3 for an example of
such a structure-texture decomposition, also known as cartoon-texture decomposition.
The expectation is, that shadows show up only in the structural part which includes the
main large objects.

(a) Original (b) Structure part (c) Texture part

Fig. 3. The original image is decomposed into a structural part, corresponding to the main large
objects in the image, and a textural part, containing fine-scale details. All images are scaled into
the same intensity value range after decomposition.

The structure-texture decomposition is accomplished using the total variation based
image denoising model of Rudin, Osher and Fatemi [23]. For the intensity value image
I(x), the structural part is given as the solution of

. 1 2
H};n/n{|VIs|+%(IS—I) }dw. (17)

The textural part I () is then computed as the difference between the original image
and its denoised version, I (x) = I(x)—Ig(x). Figure 4 shows the intensity difference
images between the source image and the registered target image using the ground truth
flow for the original image and its decomposed parts. For most parts the artifacts due
to shadow and shading reflections show up in the original image and the structural part.
The intensity value difference using the textural part, which contains fine-scale details,
is noisier than the intensity value difference in the structural part. These intensity value
differences are mainly due to sensor noise and sampling artifacts while shadow and
shading reflection artifacts have been almost completely removed. This is best visible
in the area of the punched hole of the rotated D-shaped object.
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T

(a) Original (b) Structure part (c) Texture part

Fig. 4. Intensity difference images between the source image and the registered target image using
ground truth optical flow for the original image and its structure-texture decomposed versions
(intensity coding as in Figure 2). Note the presence of shading reflection and shadow artifacts in
the original image and in the structure image.

This observation leads to the assumption that the computation of optical flow using
the textural part of the image is not perturbed by shadow and shading reflection artifacts,
which cover large image regions. To prove this assumption experimentally, we use a
blended version of the textural part, I7(«, ) = I(x) — alg(x), as input for the optical
flow computation. Figure 5 shows the accuracy for optical flow computation using a
fixed parameter set and varying the blending factor o.. The plot reveals that for larger
values of « the accuracy of the optical flow is 30% better than using a small value
for . This confirms the assumption that removing large perturbations due to shadow
and shading reflections yields better optical flow estimates. In the experiments we set
a = 0.95 and compute the image decomposition as follows:

The original source and target images are scaled into the range [—1, 1] before com-
puting the structure part. We use Aror = 0.125 and 100 iterations of the re-projection
step presented in Proposition 1 to solve Eq. (17). In the CPU implementation, the result-
ing source and target texture images are also equivalently scaled into the range [—1, 1]
prior to optical flow computation.

w

e &
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Average End Point Error

L L L L L
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Blending Factor

8 1 Il Il
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Fig. 5. The plot shows the optical flow accuracy, measured as the average end point error, using
different « values for the blending of the textural part of the image (same image pair as Figure 3).
The improvement using the textural part for the optical flow computation becomes visible.
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4 Implementation

This section gives details on the employed numerical procedure and on the implemen-
tation for the proposed TV-L! optical flow approach. Although the discussion in Sec-
tion 2.2 is valid for any image dimension N > 2, the discussion in this Section is
specifically tailored for the case N = 2.

4.1 Numerical Scheme

The generally non-convex energy functional for optical flow (Eq. 3) becomes a con-
vex minimization problem after linearization of the image intensities (Eq. 4). But this
linearization is only valid for small displacements. Hence, the energy minimization pro-
cedure is embedded into a coarse-to-fine approach to avoid convergence to unfavorable
local minima. We employ image pyramids with a down-sampling factor of 2 for this
purpose. The resulting numerical scheme is summarized in Algorithm 1.

Input: Two intensity images Ip and 1
Output: Flow field u from I to I;
Preprocess the input images; (Sec. 3)
for L = 0 to max_level do
Calculate restricted pyramid images “Io and “I;;
end
Initialize Lu = 0, Lp =0, and L = max_level,
while L > 0 do
for W = 0 to max_warps do
Re-sample coefficients of p using LI, 11, and £w; (Warping)
for Out = 0 to max_outer_iterations do
Solve for Lv via thresholding; (Eq. 16)

for In = 0 to max_inner_iterations do
Perform one iteration step to solve for u; (Prop. 1)
end
Median filter Fu;
end
end
if L > 0 then
Prolongate Lu and 'p to next pyramid level L — 1;
end
end

Algorithm 1: Numerical scheme of the TV-L! optical flow. In the numerical
scheme, a super-scripted © denotes the pyramid level.
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Beginning with the coarsest level, we solve Eq. 3 at each level of the pyramid and
propagate the solution to the next finer level. This solution is further used to compute
the coefficients of the linear residual function p by sampling Iy and I; using the cor-
responding pyramid levels. Thus, the warping step for I; takes place every time, the
solution is propagated across pyramid levels. We use additional warps on each level
to get more accurate results. Avoiding poor local minima is not the only advantage of
the coarse-to-fine approach. It turns out, that the filling-in process induced by the regu-
larization occurring in texture-less region is substantially accelerated by a hierarchical
scheme as well. In the following subsections the single steps of the numerical scheme
are outlined and implementation details are provided.

4.2 Pyramid Restriction and Prolongation

The pyramid restriction and prolongation operations for image intensities, flow vectors,
and the dual variable p are quite different. While gray values can simply be averaged,
flow vectors need to be scaled with the scaling factor between the pyramid levels to
yield valid displacement vectors on every pyramid level. In our case we employ image
pyramids with a down-sampling factor of 2.

The restriction operator, which is used for the intensity images is a combination of
alow pass 5 x 5 binomial filter and subsequent down-sampling [24]. That is, odd rows
and columns are removed from the image (note, that such procedure does require the
size of the input image to be a power of 2 times the size of the lowest resolved image).
The mask used is

1 146 41
el L 41624164
— |6 x—=[14641]=— |62436246] . (18)
16 |, 16 256 | 4 1624 16 4

1 146 41

The prolongation operator up-samples the image, that is, inserts odd zero rows and
columns, and then applies the 5 x 5 binomial filter multiplied by 4 to it. Here we have
to differentiate between up-sampling of flow vectors u, which have to be multiplied by
a factor of 2 and up-sampling of the dual variable p.

The dual variable p is not multiplied by a factor. Instead, Dirichlet boundary con-
ditions are enforced by first setting the border of the dual variable to 0 and then up-
sampling the dual variable.

4.3 Outer Iteraion: Re-sampling the Data Term Coefficients via Warping

Similarly to the 1D stereo case (Sec. 2.1), the image I; is linearized using the first order
Taylor approximation near  + wg, where u is a given optical flow map:

L(x+u)=I(x+uy) + (u+u) VI (z+up) . (19)
The data fidelity term p(u) now reads

p(u) = uVii(x + ug) + I(x + ug) —uVIi(x + ug) — Iy(x), (20)

C
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where the right part, denoted by c, is independent of u, and hence fixed. We use bi-cubic
look-up to calculate the intensity value I (x + wo) and the derivatives of I; (bi-linear
lookup on the GPU). The derivatives on the input images are approximated using the
five-point stencil 5 [—1 8 0 —8 1].If the bi-cubic look-up falls onto or outside the
original image boundary, a value of 0 is returned.

Assuming that ug is a good approximation for u, the optical flow constraint states
that Iy(x) ~ I;(x + up). Taking this further onto image derivatives, we obtain that
V() is a good approximation for VI (x + ug). Note, that replacing VI (z + ug)
with VIy(x) implies that no bi-cubic look-up for the image gradients has to be em-
ployed and the computation time can be sped up. However, it turns out that using
blended versions of the derivatives larger flow vectors can be matched and hence better
results are achieved. Figure 6 shows the accuracy for blended versions of the derivative
VI = (1-pB)VILi(x+ ug) + SVIy(x) keeping all other parameters fix. Values for (3
around 0.5 show the best results in terms of optical flow accuracy. This can be explained
by the fact that both images contribute to the gradient, increasing the redundancy. In our
experiments we use a fixed value of 3 = 0.4. A similar approach has been proposed
for symmetric KLT tracking by Birchfield in [6].

0.1 02 03 04 0.5 06 07 08 09 1

Fig. 6. The plot shows the optical flow accuracy, measured as the average end point error, using
different 3 values for the blending of the gradients from image I, and I; (same image pair
as Figure 3). The improvement using a blended version of the gradients for the optical flow
computation becomes visible.

4.4 Inner Iteration: Minimization Procedure of u and v

Within every outer iteration (Proposition 3 followed by Proposition 1), a given num-
ber of fixed-point scheme steps (inner iterations) are perfomed to update all p; (and
therefore u, Proposition 1), followed by a median filtering of w.

The implementation of Proposition 1 uses backward differences to approximate
div p and forward differences for the numerical gradient computation in order to have
mutually adjoint operators [13].

The discrete version of the forward difference gradient (Vu); ; = (Vu)
at pixel position (4, j) for a data field of width NV and height M is defined as

E

1 ) Ui, — Uij ifi <N
(V)i = {0 ifi=N 2D
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and

o _ Ui —uy ifj<M
(Vu)?; = {0 YR (22)

The discrete version of the backward differences divergence operator is

pzl,j _pzlq,j ifl<i<N pij —p?,j,l ifl<j<M
(divp)i; =< pi; ifi=1 + O Pi; ifj=1 . (23)
—piy;  ifi=N Pl ifj=M

The iterative re-projection scheme to update w using the a quadratic coupling term
with v essentially assumes the differences between v and u to be Gaussian. After up-
dating u, we still find that the solution contains outliers. With the median filtering of
u we discard these outliers successfully. The median filter employed is a 3 x 3 median
filter, which can be efficiently implemented [16].

4.5 Acceleration by Graphics Processing Units

Numerical methods working on regular grids, e.g. rectangular image domains, can be
effectively accelerated by modern graphics processing units (GPUs). We employ the
huge computational power and the parallel processing capabilities of GPUs to obtain a
fully accelerated implementation of our optical flow approach. The GPU-based proce-
dure is essentially a straightforward CUDA implementation of the numerical scheme in
Algorithm 1. We currently use a fixed but tunable number of warps and iterations on
each level in our implementations. Results using both, the CPU version and the GPU-
based optical flow can be found in the next section.

5 Results

In this section we provide three sets of results. The first set quantitatively evaluates the
accuracy increase for the proposed improved optical flow algorithm on the Middlebury
flow benchmark. The benchmark provides a training data set where the ground truth
optical flow is known and an evaluation set used for a comparison against other al-
gorithms in literature. For visualization of the flow vectors we used the color coding
scheme proposed in [5] (See also Figure 5).

A

Fig.7. Color coding of the flow vectors: Direction is
coded by hue, length is coded by saturation.
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The second set evaluates real scenes, taken from a moving vehicle. It demonstrates
the performance of the improved optical flow algorithm under different illumination
conditions and under large image motion.

In the third set of results we show optical flow results of our core real-time imple-
mentation (no texture images and no median filter) on a graphics card to evaluate our
algorithm in indoor scenes.

3 ] o N

)

Dimetrodon Grove2 Grove3 Hydrangea RubberWhale Urban2  Urban3 Venus

P(GPU) 0.259 0.189 0.757 0.258 0.218 0.652 1.069  0.482

P 0.236 0.190 0.803 0.240 0.302 0.598 0.897  0.486
P-MF(GPU) 0.224 0.173 0.671 0.251 0.183 0.508 0.889 0433
P-MF 0.202 0.161 0.666 0.236 0.161 0.468 0.679  0.428
P-I7-MF(GPU) 0.186 0.200 0.743 0.186 0.118 0.487 1.026  0.314
P-I7-MF 0.171 0.191 0.730 0.173 0.109 0.390 0.812  0.311

TV-L'-improved 0.190 0.154 0.665 0.147 0.092 0.319 0.630  0.260

Table 1. Evaluation results on the Middlebury training data. The evaluation is splittet into real-
time Performance results and the results of the proposed TV-L!-improved algorithm, employing
additional warps and bi-cubic lookup. The table shows the average end point error of the esti-
mated flow fields. Parameters have been carefully chosen for algorithm comparison (see text for
parameters and run-time).

Algorithm Processor Avg. Accuracy Run-time

P(GPU) NVidia® GeForce® GTX 285 0.486 0.039 [sec]

P Intel® Core™?2 Extreme 3.0GHz 0.468 0.720 [sec]
P-MF(GPU) NVidia® GeForce® GTX 285 0.416 0.055 [sec]
P-MF Intel® Core™?2 Extreme 3.0GHz 0.375 0.915 [sec]
P-I7-MF(GPU) NVidia®) GeForce®) GTX 285 0.408 0.061 [sec]
P-I7-MF  Intel®) Core™?2 Extreme 3.0GHz 0.361 1.288 [sec]

Table 2. Run-time comparison for the Performance section in Table 1. Using the par-
allel power of a GPU yields performance gain at the cost of accuracy loss. The run-time
is measured on the Grove3 test image (640 x 480 px).
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5.1 Evaluation on the Middlebury Benchmark

The performance section in Table 1 compares real-time capable implementations for
optical flow. Both, the TV-L! optical flow algorithm and the image decomposition de-
scribed in Section 3, employ the Rudin-Osher-Fatemi denoising algorithm. This de-
noising step can be efficiently implemented on modern graphics cards, putting up with
small accuracy losses: For parallel processing, the iterative denoising (Proposition 1)
is executed on sub-blocks of the image in parallel, where boundary artifacts may oc-
cur. Hence, high accuracy is exchanged versus run-time performance (see Table 2). The
measured timings do not include the image uploads to video memory and the final vi-
sualization of the obtained displacement field. These times are included in the timings
of the optical flow algorithm for video sequences in Section 5.3.

In all three algorithm settings, P, P-MF, and P-1-MF, the linearized optical flow
constraints (19) is used as data term. The number of outer iterations is set to one. In the
plain version, algorithm P, 5 inner iterations are used in every warping step. The num-
ber of refinement warps on every pyramid level was set to 25. The parameter settings
are A = 25 and 6 = 0.2. Gray value look-up is bi-linear, as this can be done without
additional costs on modern graphics cards. The image gradient is computed via central
derivatives from the average of both input images.

The P-MF algorithm extends the basic algorithm by an additional Median filter step,
hence 5 iterations of the Proposition 1, followed by a median filter step, are performed
for each warp. The Median filter makes the whole scheme more robust against outliers.
For this reason the influence of the data term, weighted by A can be increased to A= 50
All other parameters are kept fix.

In the third algorithm, P-I-MF, the textural part of the image is used, as described
in Section 3. Note that for real-time purposes the input images are only scaled into
the range [—1, 1] once, prior to texture extraction, by using the maximum gray value.
For real-time computation the min/max computation in the texture image is quite time-
consuming on a GPU. Again the increase of accuracy at the cost of a longer execution
time can be seen in the quantitative evaluation. It is interesting to note that only the
flow fields for the real scenes within the test set benefit from the image decomposition.
The optical flow for the rendered scenes, Grove and Urban, is actually worse. This is
not surprising as texture-extraction removes some structure information in the images;
such procedure is only beneficial if the images contain illumination artifacts. Because
this is the fact for all natural scenes (which are for obvious reasons more interesting
and challenging), in the remaining experiments the texture-structure decomposition is
performed inherently.

In the settings for the proposed TV-LI-improved algorithm we set the focus on ac-
curacy. For this, we use 35 warps, 5 outer iterations, and 1 inner iteration. We set A= 30
and #=0.25, and use bi-cubic lookup as well as five-point differences for the gradients.
The result on the test data set are shown in the last row of Table 1. Run-time on the
Grove3 sequence was 3.46 seconds. Figure 8 shows the benchmark results. Currently,
as on October 22nd 2008, there are results of 19 different optical flow algorithms in
the benchmark. Our method outperforms all approaches in terms of angle error and
end point error. Figures 14 and 15 show the obtained results for all eight evaluation
sequences. For most part, the remaining flow errors are due to occlusion artifacts.
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(a) Average angle error on the Middlebury optical flow benchmark.
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(b) Average end point error on Middlebury optical flow benchmark.

Fig. 8. Error measurements on the Middlebury optical flow benchmark as on October 22nd 2008.
The proposed method (TV-LI-improved) outperforms other current state-of-the-art methods for
optical flow on the Middlebury optical flow benchmark in both measurement categories, angle
error and end point error.

5.2 Traffic Scenes

The computation of optical flow is important to understand the dynamics of a scene.
We evaluated our optical flow in different scenarios under different illumination condi-
tions (night, day, shadow). Images are taken from a moving vehicle where the camera
monitors the road course ahead.

The first experiment in Figure 9 shows the optical flow computation on an image
sequence with a person running from the right into the driving corridor. Due to illumina-
tion changes in the image (compare the sky region for example) and severe vignetting
artifacts (images intensity decreases circular from the image middle), standard opti-
cal flow computation fails. Using the proposed structure-texture decomposition, a valid
flow estimation is still possible. Note the reflection (note: this is not a shading reflection)
of the moving person on the engine hood which is only visible in the structure-texture
decomposed images. Artifacts due to vignetting and illumination change are not visible
in the structure-texture decomposed images. This demonstrates the increase in robust-
ness for the optical flow computation under illumination changes using the proposed
decomposition of the input images.

A second example in Figure 10 shows a scene at night with reflections on the ground
plane. In the intensity images the scene is very dark and not much structure is visible.
The structure-texture decomposed images reveal much more about the scene. Note,
that this information is also included in the intensity image but most structure in the
original images is visible in the cloud region. The figure shows the optical flow using
the decomposed images. Note the correct flow estimation of the street light on the left
side.
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Fig. 9. Optical flow computation with illumination changes. Due to illumination changes, the op-
tical flow constraint in the two input images (upper left images) is violated and flow computation
on the pixel intensities (left) fails. Using the structure-texture decomposed images (upper right
images), a valid flow estimation is still possible (right side). The optical flow color is saturated
for flow vector length above 15pz.

»
- B

Fig. 10. Computation of optical flow for a night scene. The left images are the original intensity
images. The middle images are the structure-texture decomposed images used for optical flow
computation. The optical flow result is shown on the right, where flow vectors with length above
10px are saturated in the color coding.
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The next two examples demonstrate the accurate optical flow computation for large
displacements. In Figure 11 the image is taken while driving under a bridge on a country
road. Note, that the shadow edge of the bridge is visible in the original images but not
in the decomposed image. The large flow vectors on the reflector post are correctly
matched. Only in the vicinity of the car optical flow is perturbed due to missing texture
on the road surface.

Fig. 11. The scene shows the computation of optical flow with large displacement vectors. The
original input images are shown on the left. The middle images are the blended structure-texture
images. Flow vectors above 20px are color-saturated in the optical flow color image.

Figure 12 shows a scene with shadows on the road. The structure-texture decom-
posed image reveals the structure on the road surface better then the original intensity
images. We have used different scales for the optical flow color scheme to demonstrate
the accuracy of our optical flow algorithm. Although nothing about epipolar geometry
is used in the flow algorithm (as opposed to e. g. [27]), the effect of expansion (and
hence depth) corresponding to flow length becomes visible. Note, that optical flow for
the reflection posts is correctly estimated even for flow length above 8px. Optical flow
is correctly estimated for the road surface up to 30px. The shadows in the scene have
no negative impact on the flow calculation. The engine hood behaves like a mirror and
optical flow on the engine hood is perturbed due to reflections. Although the optical
flow for the engine hood is very much different for flow vectors on the road surface,
this has no negative impact on the estimation of the optical flow for the road surface.
Note the accurate flow discontinuity boundary along the engine hood.



18 A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers

Fig.12. Optical flow field for the scene depicted in the upper left with the origi-
nal and structure-texture image. The flow is saturated for flow vector length above
1,2,3,4,5,6,8,10, 15, 20, 25, 30 pixels from left to right.
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5.3 Real-Time Optical Flow

We provide timing results for our optical flow approach depicted in Table 3. We used
a standard personal computer equipped with a 2.13 GHz Core2-Duo CPU, 2 GB of
main memory and a NVidia GTX280 graphics card. The computer runs a 64-bit Linux
operating system and we used a recent NVidia graphics driver. The timings in Table 3
are given in frames per second for the depicted fixed number of outer iterations on each
level of the image pyramid. We used one warp on each level, the number of fixed point
steps was set to 5. The measured timings include the image uploads to video memory
and the final visualization of the obtained displacement field. The timing results indi-
cate, that real-time performance of 32 frames per second can be achieved at a resolution
of 512 x 512 pixels. Frames from a live video demo application are shown in Figure
13, which continuously reads images from a firewire camera and visualizes the optical
flow for consecutive frames. Note that the entire algorithm (including the building of
the image pyramids) is executed on the GPU. The only part of the host computer is to
upload the images on the GPU. In [11] Bruhn et al. obtained a performance of about
12 frames per second for 160 x 120 images and a variational model very similar to our
TV-L! model. From this we see that our approach is about 26 times faster. However we
should also note that their approach is computed on the CPU.

Graphics Card: NVidia GTX280
Image resolution 25 Iterations 50 Iterations 100 Iterations

128 x 128 153 81 42
256 x 256 82 44 23
512 x 512 32 17 9

Table 3. Observed frame rates at different image resolutions and with varying number of outer
iterations on our tested hardware.

®

°

(a) First frame (b) Second frame (c) Optical flow field

Fig. 13. Captured frames and generated optical flow field using our live video application. The
image resolution is 640 x 480.The performance is about 30 frames per second in this setting.
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6 Conclusion and Future Research

We have proposed an improved algorithm for the TV-L! optical flow method of [31].
We improved the core algorithm using blended versions of the image gradients and a
median filter to reject flow outliers. In this paper, the numerical scheme was outlined
which can efficiently be implemented on either CPUs or modern graphics processing
units. We gave implementation details and showed that the proposed improvements
increase the accuracy of the optical flow estimation.

We additionally proposed to use a blended version of the structure-texture decom-
position, originally proposed for optical flow computation in [26]. The decomposition
of the input image into its structural and textural parts allows to minimize illumination
artifacts due to shadows and shading reflections. We showed that this leads to more
accurate results in the optical flow computation.

Our improved algorithm for TV-L! optical flow was evaluated on the Middlebury
optical flow benchmark, showing state-of-the-art performance. Our proposed algorithm
is solely based on the image intensities in terms of gray values. Future work includes
the extension of our approach to handle color images as well.

An interesting research area is the extension of the proposed optical flow algorithms
to use multiple data terms. One direct application is the computation of scene flow,
incorporating three data terms [28]. We are currently investigating extensions of the
proposed optical flow method to adopt it to this stereo scene flow case.

The edge preserving nature of total variation can be enhanced, if a suitable weighted
TV-norm/active contour model is applied [8]. Future work will address the incorpora-
tion of such feature for stereo and optical flow estimation.
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Fig. 14. Optical flow results for the army, mequon, schefflera, and wooden sequence of the Mid-
dlebury flow benchmark. The left images show the first input image and the ground truth flow.
The middle image shows the optical flow using the proposed algorithm. The right image shows
the end point error of the flow vector, where black corresponds to large errors.
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Fig. 15. (continued) Optical flow results for the grove, urban, yosemite, and teddy sequence of
the Middlebury flow benchmark. The left images show the first input image and the ground truth
flow. The middle image shows the optical flow using the proposed algorithm. The right image
shows the end point error of the flow vector, where black corresponds to large errors.



