
Computational Visual Media
DOI 10.1007/s41095-016-0075-z Vol. 3, No. 2, June 2017, 107–129

Research Article

Fast and accurate surface normal integration on
non-rectangular domains

Martin Bähr1, Michael Breuß1 (�), Yvain Quéau2, Ali Sharifi Boroujerdi1, and Jean-Denis
Durou3

c© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract The integration of surface normals for the
purpose of computing the shape of a surface in 3D
space is a classic problem in computer vision. However,
even nowadays it is still a challenging task to devise a
method that is flexible enough to work on non-trivial
computational domains with high accuracy, robustness,
and computational efficiency. By uniting a classic
approach for surface normal integration with modern
computational techniques, we construct a solver that
fulfils these requirements. Building upon the Poisson
integration model, we use an iterative Krylov subspace
solver as a core step in tackling the task. While such
a method can be very efficient, it may only show its
full potential when combined with suitable numerical
preconditioning and problem-specific initialisation. We
perform a thorough numerical study in order to
identify an appropriate preconditioner for this purpose.
To provide suitable initialisation, we compute this
initial state using a recently developed fast marching
integrator. Detailed numerical experiments illustrate
the benefits of this novel combination. In addition, we
show on real-world photometric stereo datasets that the
developed numerical framework is flexible enough to
tackle modern computer vision applications.

Keywords surface normal integration; Poisson
integration; conjugate gradient method;

1 Brandenburg Technical University, Institute for
Mathematics, Chair for Applied Mathematics, Platz
der Deutschen Einheit 1, 03046 Cottbus, Germany.
E-mail: M. Bähr, martin.baehr@b-tu.de; M. Breuß,
michael.breuss@b-tu.de (�); A. S. Boroujerdi, ali.
sharifiboroujerdi@b-tu.de.

2 Technical University Munich, 85748 Garching, Germany.
E-mail: yvain.queau@tum.de.

3 Université de Toulouse, IRIT, UMR CNRS 5505,
Toulouse, France. E-mail: durou@irit.fr.

Manuscript received: 2016-10-18; accepted: 2016-12-21

preconditioning; fast marching method;
Krylov subspace methods; photometric
stereo; 3D reconstruction

1 Introduction

The integration of surface normals is a fundamental
task in computer vision. Classic examples of
processes where this technique is often applied
are image editing [1], shape from shading as
analysed by Horn [2], and photometric stereo (PS)
for which we refer to the pioneering work of
Woodham [3]. Modern applications of PS include
facial recognition [4], industrial product quality
control [5], object preservation in digital heritage [6],
and new utilities with potential use in the video
(game) industry and robotics [7], among many
others.

In this paper we consider surface normal
integration in the context of the PS problem, which
serves as a role model for potential applications.
The task of PS is to compute the 3D surface of an
object from multiple images of the same scene under
different illumination conditions. The standard PS
method for reconstructing an unknown surface has
two stages. In a first step, the surface is represented
as a field of surface normals, or equivalently, a
corresponding gradient field. In a subsequent step
this is integrated to obtain the depth of the surface.

To handle the integration step, many different
approaches and methods have been developed
during recent decades. However, despite all these
developments there is still the need for approaches
that combine a high accuracy reconstruction with
robustness against noise and outliers, and reasonable
computational efficiency for working with high-

107

108 M. Bähr, M. Breuß, Y. Quéau, et al.

resolution cameras and corresponding imagery.
Computational issues. Let us briefly elaborate

on the demands on an ideal integrator. As discussed,
e.g., in Ref. [8], a practical issue is robustness with
respect to noise and outliers. Since computer vision
processes such as PS rely on simplified assumptions
that often do not hold for realistic illumination and
surface reflectance, artefacts may often arise when
estimating surface normals from real-world input
images. Therefore, the determined depth gradient
field is not noise-free and may also contain outliers.
These may strongly influence the integration process.

Secondly, objects to be reconstructed in 3D are
typically in the centre of a photographed scene.
Therefore, they only form part of each input
image. The sharp gradient usually representing
the transition from foreground to background is a
difficult feature for most surface normal integrators
and generally influences the estimated shape of the
object of interest. Because of this it is desirable
to consider only image segments that represent the
object of interest and not the background. Although
similar difficulties (sharp gradients) also arise for
discontinuous surfaces that may appear at self-
occlusions of an object [9], we do not tackle this
issue in the present article. Instead, we neglect
self-occlusion and focus on reconstructing a smooth
surface on the (possibly non-rectangular) subset of
the image domain representing the object of interest.
Related to this point, another important aspect is
the computational time and cost saving that can be
achieved by the concomitant decrease in the number
of elements of the computational domain. For
reasons of both reconstruction quality and efficiency,
an ideal solver for surface normal integration should
thus work on non-rectangular domains.

Finally, to capture ever more detail in 3D
reconstruction, camera technology evolves and the
resolution of images tends to increase continually.
This means, the integrator has to work accurately
and quickly for various sizes of input images,
including images of size at least 1000 × 1000 pixels.
Consequently, the computational efficiency of a
solver is a key requirement for many possible modern
and future applications.

To summarise, one can identify the desirable
properties of robustness with respect to noise and
outliers, ability to work on non-rectangular domains,

and efficiency of the method: one aims for an
accurate solution using reasonable computational
resources (such as time and memory).

Related work. Many methods taking into
account the abovementioned issues individually have
been developed to solve the problem of surface
normal integration during recent decades.

According to Klette and Schlüns [10], such
methods can be classified as local and global
integration methods.

The most basic local method, also referred to
as direct line-integration scheme [11–13], is based
on the line integral technique and the fact that
a closed path on a continuous surface should be
zero. These methods are in general quite fast,
but due to their local nature, the reconstructed
solution depends on the integration path. Another
more recent local approach for normal integration
is based on an eikonal-type equation, which can be
solved by applying the computationally efficient fast
marching (FM) method [14–16]. However, a common
disadvantage of all local approaches is sensitivity
with regard to noise and discontinuities, which lead
to error accumulation in the reconstruction.

In order to minimise error accumulation, it is
preferable to adopt a global approach based on the
calculus of variations. Horn and Brooks [2] proposed
the classic and most natural variational method
for the intended task by casting the corresponding
functional in a form that results in a least-squares
approximation. The necessary optimality condition
represented by the Euler–Lagrange equation of the
classic functional is given by the Poisson equation,
which is an elliptic partial differential equation.
This approach to surface normal integration is often
called Poisson integration. The practical task arising
amounts to solving the linear system of equations
that corresponds to the discretised Poisson equation.

Direct methods for solving the latter system, as
for instance Cholesky factorisation, can be fast, but
this type of solver may use a substantial amount of
memory and appears to be rather impractical for
images of larger than 1000×1000 pixels. Moreover, if
based on matrix factorisation, the factorisation itself
is relatively expensive to compute. Generally, direct
methods offer an extremely highly accurate result,
but one must pay a high computational price. In
contrast, iterative methods are not naturally noted

Fast and accurate surface normal integration on non-rectangular domains 109

for extremely high accuracy but are very fast when
computing approximate solutions. They require less
memory and are thus inherently more attractive
candidates for this application, but involve some
non-trivial aspects (see later) which make them less
straightforward to use.

An alternative approach to solving the least-
squares functional was introduced by Frankot and
Chellappa [17]. The main idea is to transform
the problem to the frequency domain where a
solution can be computed in linear time through
the fast Fourier transform, if periodic boundary
conditions are assumed. The latter unfavourable
condition can be resolved by use of the discrete
cosine transform (DCT) as shown by Simchony et
al. [18]. However, these methods remain limited to
rectangular domains. To apply these methods on
non-rectangular domains requires introducing zero-
padding in the gradient field which may lead to an
unwanted bias in the solution. Some conceptually
related basis function approaches include the use
of wavelets [19] and shapelets [20]. The method of
Frankot and Chelappa was enhanced by Wei and
Klette [21] to improve its accuracy and robustness to
noise. Another approach was proposed by Karaçali
and Snyder [22] who make use of additional adaptive
smoothing for noise reduction.

Among all of the mentioned global techniques,
variational methods offer a high robustness with
respect to noise and outliers. Therefore, many
extensions have been developed in modern works [9,
23–28]. Agrawal et al. [23] use anisotropic instead
of isotropic weights for the gradients during
integration. Durou et al. [9] give a numerical
study of several functionals, in particular with non-
quadratic and non-convex regularisations. To reduce
the influence of outliers, the L1 norm has also
become an important regularisation instrument [25,
26]. In Ref. [24] the extension to Lp minimisation
with 0 < p < 1 is presented. Two other recent
works are Ref. [27] where the use of alternative
optimisation schemes is explored and Ref. [28]
where the proposed formulation leads to the task
of solving a Sylvester equation. Nevertheless, these
methods have some drawbacks. By the application of
additional regularisation as in Refs. [9, 23–27], depth
reconstruction becomes quite time-consuming and
the correct setting of parameters is more difficult,

while the approach of Harker and O’Leary [28] is
only efficient for rectangular domains Ω.

Summarizing the achievements of previous works,
the problem of surface normal integration on non-
rectangular domains has not yet been perfectly
solved. The main challenge is still to find a balance
between quality and time needed to generate the
result. One should take into account that to achieve
better quality in 3D object reconstruction, the
resolution of images tends to increase continually,
and so computational efficiency is surely a key
requirement for many potential current and future
applications.

Our contributions. To balance the aspects of
quality, robustness, and computational efficiency, we
go back to the powerful classic approach of Horn
and Brooks as the variational framework has the
benefit of high modeling flexibility. In detail, our
contributions when extending this classic path of
research are:
1. Building upon a recent conference paper where

we compared several Krylov subspace methods
for surface normal integration [29], we investigate
the use of the preconditioned conjugate
gradient (PCG) method for performing Poisson
integration over non-trivial computational
domains. While such methods constitute
advanced yet standard methods in numerical
computing [30, 31], they are not yet standard
tools in image processing, computer vision, and
graphics. To be more precise, we propose
to employ the conjugate gradient (CG)
scheme as the iterative solver and we explore
modern variations of incomplete Cholesky
(IC) decomposition for preconditioning. The
thorough numerical investigation here represents
a significant extension of our conference paper.

2. For computing a good initialisation for the PCG
solver, we employ a recent FM integrator [15]
already mentioned above. Its main advantages
are its flexibility for use with non-trivial domains
coupled with low computational requirements.
While we proposed this means of initialisation
already in Ref. [29], our numerical extensions
mean that the conclusion we draw in this paper
is much sharper.

3. We prove experimentally that our resulting,
combined novel method unites the advantages of

110 M. Bähr, M. Breuß, Y. Quéau, et al.

flexibility and robustness of variational methods
with low computational time and low memory
requirements.

4. We propose a simple yet effective modification for
gradient fields containing severe outliers, for use
with Poisson integration methods.

The abovementioned building blocks of our
method represent a pragmatic choice among current
tools for numerical computing. Moreover, as
demonstrated by our new integration model that is
specifically designed for tackling data with outliers,
our numerical approach can be readily adapted
to other Poisson-based integration models. This,
together with the well-engineered algorithm for our
application, i.e., FM initialisation and fine-tuned
algorithmic parameters, makes our method a unique,
efficient, and flexible procedure.

2 Surface normal integration

The mathematical set-up of surface normal
integration (SNI) can be described as follows.
We assume that for a domain Ω, a normal field n :=
n(x, y) = [n1(x, y), n2(x, y), n3(x, y)]T is given for
each grid point (x, y) ∈ Ω. The task is to recover a
surface S, which can be represented as a depth map
v(x, y) over (x, y) ∈ Ω, such that n is the normal
field of v. Assuming orthographic projection 1©, the
normal field n of a surface at (x, y, v(x, y)) ∈ R3 can
be written as

n(x, y) := [−vx,−vy, 1]T√
‖∇v‖2 + 1

(1)

with vx := ∂v/∂x, vy := ∂v/∂y, and ∇v := [vx, vy]T.
Moreover, the components of n are given by partial
derivatives of v:

(vx, vy) =
(
−n1

n3
,−n2

n3

)
= (p, q) (2)

where we think of p and q as given data.
In this section, we present the building blocks

of our new algorithm in two steps, first the fast
marching integrator, and afterwards the iterative
Poisson solver relying on the conjugate gradient
method supplemented by (modified) incomplete
Cholesky preconditioning. When presenting Poisson
integration, we also demonstrate the flexibility of the
resulting discrete computational model by a novel
adaptation for handling data with outliers.

1©The perspective integration problem can be formulated in a similar
way, using the change of variable v = log v [32].

A detailed description of the fast marching
integrator can be found in Refs. [15, 16], and the
presentation of the components of the CG scheme
can be found in literature on Krylov subspace solvers,
e.g., Ref. [31]. We still summarize the algorithms
in some detail here because there are important
parameters that need to be set and some choices
to make: since the efficiency of integrators depends
largely on such practical implementation details, our
explanations provide additional value beyond a plain
description of the methods.

While our discretisation of the Poisson equation is
a standard one, we deal with non-trivial boundary
conditions in our application, necessitating a
thorough description. The construction of our
non-standard numerical boundary conditions, which
is often overlooked in the literature, is another
technical contribution to the field.

2.1 Fast marching integrator

We recall for the convenience of the reader some
relevant developments from Refs. [14–16], which
showed that it is possible to tackle the problem of
surface normal integration via the following PDE-
based model in w = v + λf :

‖∇w‖ =
√

(p+ λfx)2 + (q + λfy)2 (3)

where λ > 0 and f : R2 → R are user-defined. Using
PDE (3) we do not compute the depth function
v directly, but instead we solve in a first step
for a function w. This means, to obtain v one
has to solve the eikonal-type equation for w, in
which ∇v = (p, q) and ∇f are known, and recover
v in a second step from the computed w by
subtracting the known function f . The intermediate
step of considering a new function w is necessary for
successful application of the FM method, in order
to avoid local minima and ensure that any initial
point can be considered [14]. It turns out that a
natural candidate for f is the squared Euclidean
distance function with its minimum in the centre of
the domain (x0, y0) = (0, 0), i.e.,

f := f(x, y) = x2 + y2 (4)
Other choices for f are also possible [16]. As
boundary condition we may employ w(0, 0) = 0.
After computation of w we easily compute the sought
depth map v via v = w − λf . Let us note that the
FM integrator requires parameter λ to be tuned, but
it is not a crucial choice as any large number λ� 0

Fast and accurate surface normal integration on non-rectangular domains 111

will work [15] 1©.
Numerical upwinding. A crucial issue for

the FM integrator is correct discretisation of the
derivatives of f in Eq. (3). In order to obtain
a stable method, an upwind discretisation of the
partial derivatives of f is required:

fx :=
[

max
(fi,j − fi−1,j

∆x ,
fi,j − fi+1,j

∆x , 0
)]2

(5)

and analogously for fy, for grid widths ∆x and ∆y.
Making use of the same discretisation for the

components of ∇w, one obtains a quadratic equation
that must be solved for every pixel except at
the initial pixel (0, 0) where some depth value is
prescribed.

Let us note that the initial point can be chosen
in practice anywhere, i.e., there is no restriction to
(0, 0).

Non-convex domains. If the above method is
used without modification over non-convex domains,
the FM integrator fails to reconstruct the solution.
The reason is that the original, unmodified squared
Euclidean distance does not yield a meaningful
distance from the starting point to pixels which
are not connected by a direct line lying within the
integration domain. In other words, the unmodified
scheme just works over convex domains.

To overcome the problem, a suitable distance
which calculates the shortest path from the starting
point to every point on the computational domain is
necessary. To this end, the use of a geodesic distance
function d is advocated [15]. We proceed as follows,
relying on similar ideas to those in, e.g., Ref. [33] for
path planning. In a first step we solve an eikonal
equation ‖∇d‖ = 1 over all the points of the domain
with d := 0 at the chosen start point. This can of
course be done again with the FM method. Then, in
a second step we are able to compute the depth map
v. Therefore, we use Eq. (3) for w, with the squared
geodesic distance function d instead of f and using
Eq. (5). Afterwards we recover v via v = w − λd.

Fast marching algorithm. The idea of FM
goes back to Refs. [34–36]. For a comprehensive
introduction see Ref. [37]. The benefit of FM is its
relatively low complexity of O(n logn) where n is the
number of points in the computational domain 2©.

Let us briefly describe the FM strategy. The

1©In our experiments, we used the value λ = 105.
2©When using the untidy priority queue structure [38] the complexity

may even be lowered to O(n).

principle behind FM is that information advances
from smaller values of w to larger values of w, thus
visiting each point of the computational domain just
once. To this end, one may employ three disjoint
sets of nodes as discussed in detail in Refs. [37, 39]:
{s1} accepted nodes, {s2} trial nodes, and {s3} far
nodes. The values wi,j for set {s1} are considered
known and will not be changed. A member wi,j in
set {s2} is always at a neighbour of an accepted node.
This is the set where the computation actually takes
place and the values of wi,j can still change. Set
{s3} contains those nodes wi,j where an approximate
solution has not yet been computed as these are not
in a neighbourhood of a member of {s1}.

The FM algorithm iterates the following procedure
until all nodes are accepted:
(a) Find the grid point A in {s2} with the smallest

value and move it to {s1}.
(b) Place all neighbours of A into {s2} if not already

there and compute the arrival time for all of
them, if they are not already in {s1}.

(c) If the set {s2} is not empty, return to (a).
For initialisation, one may start by putting the

node at (0, 0) into set {s1}; it bears the boundary
condition of the PDE (3).

An efficient implementation amounts to storing
the nodes in {s2} in a heap data structure, so the
smallest element in step (a) can be chosen as quickly
as possible.

2.2 Poisson integration

The first part of this section is dedicated to modeling.
We first briefly review the classic variational
approach to the Poisson integration (PI) problem [2,
18, 27, 28, 32]. The handling of extremely noisy data
motivates modifications of the underlying energy
functional (6), e.g., see Ref. [27]. By proposing a new
model dealing with outliers, we demonstrate that the
Poisson integration framework is flexible enough to
deal with such modern approaches.

The second part is devoted to the numerics. We
propose a dedicated, and somewhat non-standard,
discretisation for our application.

Classic Poisson integration model. In order
to recover the surface it is common to minimise
the least-squares error between the input and the
gradient field of v by minimising:

J(v) =
∫∫

Ω
‖∇v − g‖2 dx dy

112 M. Bähr, M. Breuß, Y. Quéau, et al.

=
∫∫

Ω

[
(vx − p)2 + (vy − q)2]dxdy (6)

where g = [p, q]T.
A minimiser v of Eq. (6) must satisfy the

associated Euler–Lagrange equation which is
equivalent to the following Poisson equation:

∆v = div(p, q) = px + qy (7)
that is usually complemented by (natural) Neumann
boundary conditions (∇v − g) · µ = 0, where the
vector µ is normal to ∂Ω. In this case, uniqueness of
the solution is guaranteed, apart from an additional
constant. Thus, one recovers the shape but not
absolute depth (as in FM integration).

A modified PDE for normal fields with
outliers. We now demonstrate by giving an example
that the PI framework is flexible enough to also deal
with gradient fields featuring strong outliers. To
this end, we propose a simple, yet effective way to
modify the PI model in order to limit the influence of
outliers. Other variations for different applications,
e.g., self-occlusions [9, 27], are of course also possible.

Let us briefly recall that the classic model in
Eq. (6) which leads to the Poisson equation in Eq. (7)
is based on a simple least-squares approach. At
locations (x, y) corresponding to outliers, the values
p(x, y) and q(x, y) are not reliable, and one would
prefer to limit the influence of such corrupt data.

Therefore, we modify the Poisson equation in
Eq. (7) by introducing a space-dependent fidelity
term ν := ν(x, y) by

∆v = ∇ ·
(1

1 + ν
. [p, q]T

)
(8)

Let us note that a similar strategy, namely to
introduce modeling improvements in a PDE that is
originally the Euler–Lagrange equation of an energy
functional, instead of modifying it, is occasionally
employed in computer vision: see, e.g., Ref. [40].
However, we do not tinker here with the core of
the PDE, i.e., the Laplace operator ∆, but merely
include preprocessing by modifying the right hand
side of the Poisson equation.

The key to effective preprocessing is of course
to consider the role of ν so that it smooths the
surface only at locations where the input gradient
is unreliable. Thus, we seek a function ν(x, y) which
is close to zero if the input gradient is reliable, and
takes high values if it is not.

The integrability term
I(x, y) := py − qx = ∇ · [−q, p]T (9)

should vanish if the surface is C2-smooth. This
argument was used in Ref. [27] to suggest an
integrability-based weighted least-squares functional
able to recover discontinuity jumps, which generally
correspond to a high absolute value of integrability.

Since integrability not only indicates the location
of discontinuities, but also that of the outliers, we
suggest use of this integrability term to find a smooth
surface explaining a corrupted gradient. To do so,
we use the following choice for our regularisation
parameter:

ν(x, y) = exp
(
I(x, y)2)− 1 (10)

for which the desired properties (i) vanish when
integrability is low (reliable gradients), and (ii) take
a high value when integrability is high (outliers).

Putting Eqs. (9) and (10) in Eq. (8), our new
model amounts to solving the following equation:

∆v =∇ ·
(

1
1 + exp

(
(py − qx)2

)
− 1

[p, q]T
)

=∇ ·
[

p

exp
(
(py − qx)2

) , q

exp
(
(py − qx)2

)]T

=:∇ · [p̄, q̄]T (11)
which is another Poisson equation, where the right
hand side can be computed a priori from the input
gradient.

Let us clarify explicitly that the meaning of
Eq. (11) is to replace the vector of given data [p, q]T
describing the normal field by a modified version
[p̄, q̄]T as defined in Eq. (11).

In addition, we emphasise that all methods for SNI
based on such a Poisson equation are straightforward
to adapt: it suffices to replace (p, q) by (p, q). The
algorithmic complexity of all of such approaches
remains exactly the same. The practical validity
of this simple new model and its benefit of better
numerics are demonstrated in Section 4.

In the main part of our paper, for simplicity
of presentation, we will simply consider the classic
model in Eq. (7) and come back to the proposed
modification in Section 4.5.

Discretisation of the Poisson equation. A
useful standard numerical approach to solving the
Poisson PDE as in Eqs. (7) or (11) makes use of finite
differences. Often, div(p, q) and ∆v = vxx + vyy are
approximated by central differences. For simplicity,
we suppose that the grid size is ∆x = ∆y = 1
as common practice in image processing. Then, a

Fast and accurate surface normal integration on non-rectangular domains 113

suitable discrete version of the Laplacian is given in
stencil notation by

∆v(xi, yj) ≈
1

1 -4 1
1

· vi,j (12)

so the divergence is given by

div(pi,j , qi,j) ≈ 1
2 -1 0 1 ·pi,j+1

2

1
0
-1
·qi,j (13)

where the measured gradient g = [p, q]T. Making
use of Eqs. (12) and (13) to discretize Eq. (7) leads
to

− 4vi,j + (vi+1,j + vi−1,j + vi,j+1 + vi,j−1)

=pi+1,j − pi−1,j + qi,j+1 − qi,j−1

2 (14)
which corresponds to a linear system Ax = b, where
the vectors x and b are obtained by stacking the
unknown values vi,j and the given data, respectively.
The matrix A contains the coefficients arising by
discretizing the Laplace operator ∆.

We employ in all experiments here the above
discretisation, as it is very simple and gives high
quality results. While other discretisations, e.g., of
higher order, are of course possible [28], let us
note that this requires one to change the parameter
settings we propose for the method. One would
also have to adapt the dedicated numerical boundary
conditions.

Non-standard numerical boundary
conditions. At this point it should be noted that
the stencils in Eqs. (12), (13), and the subsequent
equation Eq. (14) are only valid for inner points of
the computational domain. Indeed, when pixel (i, j)
is located near the border of Ω, some of the four
neighbour values {vi+1,j , vi−1,j , vi,j+1, vi,j−1} in
Eq. (14) refer to depths outside Ω. The same holds
for the data values {pi+1,j , pi−1,j , qi,j+1, qi,j−1}:
some of these values are unknown when (i, j) is near
the border. To handle this, a numerical boundary
condition must be invoked.

Using empirical Dirichlet (e.g., using the discrete
sine transform [18]) or homogeneous Neumann
boundary conditions [23] may result in biased
3D reconstructions near the border. The so-called
“natural” condition (∇v− g) ·µ = 0 [2] is preferred,
because it is the only one which is justified.

Let us emphasise that it is not a trivial
task to define suitable boundary conditions for

{pi+1,j , pi−1,j , qi,j+1, qi,j−1}. As we opt for a
common strategy for discretising values of p, q, v, we
employ the following non-standard procedure which
has turned out to be preferable in experimental
evaluations. Whenever p, q, v values outside Ω are
involved in Eq. (14), we discretise this boundary
condition using the mean of forward and backward
first-order finite differences. This allows us to express
the values outside Ω in terms of values inside Ω.
To clarify this idea, we distinguish the boundaries
according to the number of missing neighbours.

When only one neighbour is missing. There are
four types of boundary pixels having exactly one of
the four neighbours outside Ω (lower, upper, right,
and left borders respectively). Let us first consider
the case of a “lower boundary”, i.e., a pixel (i, j) ∈
Ω such that (i − 1, j), (i + 1, j), (i, j + 1) ∈ Ω3 but
(i, j − 1) /∈ Ω. Then, Eq. (14) involves the undefined
quantities vi,j−1 and qi,j−1. However, on one hand,
discretisation of the natural boundary condition at
pixel (i, j − 1) by forward differences provides the
following equation:

vi,j − vi,j−1 = qi,j−1 (15)
On the other hand the natural boundary condition
can be also discretised at pixel (i, j) by backward
differences, leading to

vi,j − vi,j−1 = qi,j (16)
Taking the mean of these forward and backward
discretisations, we obtain:

vi,j − vi,j−1 = qi,j−1 + qi,j

2 (17)

Now, plugging Eq. (17) into Eq. (14), the undefined
quantities actually vanish, and one obtains:

− 3vi,j + (vi+1,j + vi−1,j + vi,j+1)

=pi+1,j − pi−1,j + qi,j+1 + qi,j

2 (18)
In other words, the stencil for the Laplacian is
replaced by

∆v(xi, yj) ≈
1

1 -3 1 · vi,j

and that for the divergence by

div(pi,j , qi,j) ≈ 1
2 -1 0 1 ·pi,j + 1

2

1
1
0
·qi,j (19)

The corresponding stencils for upper, left, and right
borders are obtained by straightforward adaptations
of this procedure.

114 M. Bähr, M. Breuß, Y. Quéau, et al.

When two neighbours are missing. Boundary
pixels having exactly two neighbours outside Ω are
either “corners” (e.g., (i, j − 1) and (i + 1, j) inside
Ω, but (i − 1, j) and (i, j + 1) outside Ω) or “lines”
(e.g., (i − 1, j) and (i + 1, j) inside Ω, but (i, j − 1)
and (i, j + 1) outside Ω). For “lines”, the natural
boundary condition must be discretised four times
(both forward and backward, on the two locations
of missing data). Applying a similar rationale as in
the previous case, we obtain the following stencils for
“vertical” lines:

∆v(xi, yj) ≈
1
-2
1

· vi,j

and

div(pi,j , qi,j) ≈ 1
2 0 0 0 ·pi,j + 1

2

1
0
-1
·qi,j (20)

A straightforward adaptation provides the stencils
for the “horizontal” lines. Applying the same
procedure for corners, we obtain, for instance for the
“top-left” corner:

∆v(xi, yj) ≈ -2 1
1

· vi,j

and

div(pi,j , qi,j) ≈ 1
2 0 1 1 ·pi,j + 1

2

0
-1
-1
·qi,j (21)

Again, it is straightforward to find the other three
discretisations for the other corner types.

When three neighbours are missing. In this last
case, we discretise the boundary condition six times
(forward and backward, for each missing neighbour).
Most quantities actually vanish. For instance, for the
case where only the right neighbour (i+1, j) is inside
Ω, we obtain the following stencils:

∆v(xi, yj) ≈ -1 1 · vi,j

and

div(pi,j , qi,j) ≈ 1
2 0 1 1 ·pi,j + 1

2

0
0
0
· qi,j (22)

In the end, we obtain explicit stencils for all fourteen
types of boundary pixels. Let us emphasise that,

apart from 4-connectivity, we make no assumption
about the shape of Ω.

Summarising the discretisation. The
discretisation procedure defines a sparse linear
system of equations Ax = b. Incorporating Neumann
boundary conditions, the matrix A is symmetric,
positive semidefinite, diagonal dominant and its null
space contains the vector e := [1, . . . , 1]T. In other
words, A is a rank-1 deficient, singular matrix.

2.3 Iterative Krylov subspace methods

As indicated, in consequence of enormous memory
costs, application of a direct solver to deal with the
above linear system appears to be impractical for
large images. Therefore, we propose an iterative
solver to handle this problem.

Krylov subspace solvers are a modern class of
iterative solvers designed for use with large sparse
linear systems; for a detailed exposition see,
e.g., Refs. [31, 41]. The main idea behind the
Krylov approach is to search for an approximate
solution of Ax = b, where A ∈ Rn×n is a large
regular sparse matrix and b ∈ Rn, in a suitable
low-dimensional (affine) subspace of Rn that is
constructed iteratively.

This construction is in general not directly visible
in the formulation of a Krylov subspace method, as
these are often described in terms of a reformulation
where Ax = b is solved as an optimisation task.
An important example is given by the classic
conjugate gradient (CG) method of Hestenes and
Stiefel [42] which is still an adequate iterative solver
for problems involving sparse symmetric matrices of
the kind in Eq. (14) 1©.

Conjugate gradient method. As it is of special
importance for this work, let us briefly recall some
properties of the CG method; a more technical,
complete exposition can be found in many textbooks
on numerical computing (see, e.g., Refs. [31, 41, 43,
44]).

Note that a useful implementation of CG is given
in MATLAB. However, some knowledge of the
technique is useful in order to understand some of
its properties. Moreover, it is crucial for effective
application of the CG method to be aware of its
critical parameters. We now aim to make clear the
relevant points.

1©While in general also positive definiteness is required, this point is
more delicate. We comment later on the applicability in our case.

Fast and accurate surface normal integration on non-rectangular domains 115

The CG method requires a symmetric and positive
definite matrix A ∈ Rn×n. In its construction it
combines the gradient descent method with the
method of conjugate directions. It can be derived
from making use of the fact that, for such a matrix,
the solution of Ax = b is exactly the minimum of the
function:

F (x) = 1
2〈x,Ax〉2 − 〈b,x〉2 (23)

since
∇F (x) = 0 ⇔ Ax = b (24)

here, 〈·, ·〉2 means the Euclidean scalar product.
Let us now denote the kth Krylov subspace by Kk.

Then, Kk := Kk(A, r0) is a subspace of Rn defined
by
Kk := span

(
r0,Ar0,A2r0, . . . ,Ak−1r0

)
(25)

This means Kk is generated from an initial residual
vector r0 = b−Ax0 by successive multiplications by
the system matrix A.

Let us briefly highlight some important theoretical
considerations. The nature of an iterative Krylov
subspace method is that the computed approximate
solution xk is in x0 +Kk(A, r0), i.e., it is determined
by the kth Krylov subspace. Here, the index k is also
the kth iteration of the iterative scheme.

For the CG method, one can show that the
approximate solutions xk are optimal in the sense
that they minimise the so-called energy norm of the
error vector. Thus, if x∗ is a solution of the system
Ax = b, that xk minimises ||x∗ − xk||A for the A-
norm ||y||A :=

√
yTAy. Note again that xk must

lie in the kth Krylov subspace. In other words,
the CG method gives in the kth iteration the best
solution available in the generated subspace. Since
the dimension of the Krylov subspace increases in
each step of the iteration, theoretical convergence
is achieved at the latest after the nth step of the
method if the solution is in Rn.

Practical issues. A useful observation on Krylov
subspace methods is that they can obviously benefit
from a good educated guess of the solution for use
as the initial iterate x0. Therefore, we consider x0
as an important open parameter of the method that
should be addressed in a suitable way.

Moreover, an iterative method also requires the
user to set a tolerance defining the stopping criterion:
if the norm of the relative residual is below the
tolerance, the algorithm stops.

However, there is a priori no means to say in
which regime the tolerance has to be chosen. This

is one of the issues that make reliable and efficient
application of the method less than straightforward.
It is one of the aims of our experiments to determine
a reasonable tolerance for our application.

While our presentation of the CG method relates
to ideal theoretical properties, in practice, numerical
rounding errors appear and very large systems
may suffer from severe convergence problems.
Thus, preconditioning is recommended to ensure all
beneficial properties of the algorithm, along with
fast convergence. However, as it turns out, it
requires a thorough study to identify the most useful
parameters in the preconditioning method.

Let us note that the CG method is applicable even
though our matrix A is just positive semidefinite.
The positive definiteness is useful for avoiding
division by zero within the CG algorithm. If A
is positive semidefinite, theoretically it may happen
that one needs to restart the scheme using a different
initialisation. In practice this situation rarely occurs.

Preconditioning. The basic idea of
preconditioning is to multiply the original system
Ax = b on the left by a matrix P such that
P approximates A−1. The modified system
PAx = Pb is in general better conditioned and
much more efficient to solve. For sparse A, typical
preconditioners are defined over the same sparse
structure of entries of A.

When dealing with symmetric matrices as in our
case, incomplete Cholesky (IC) decomposition [45]
is often used to construct a common and very
efficient preconditioner for the CG method [46–48].
As a consequence of Ref. [29] we study here the
application of the IC preconditioner and its modified
version MIC.

Let us briefly describe the underlying ideas. The
complete decomposition of A is given by A = LLT +
F. If the lower triangular matrix L is allowed to have
non-zero entries anywhere in the lower matrix, then
F is the zero matrix and the decomposition is the
standard Cholesky decomposition. However, in the
context of sparse systems only the structure of entries
in A is used in defining L, so that the factorisation
will be incomplete. Thus, in our case the lower
triangular matrix L keeps the same non-zero pattern
as that of the lower triangular part of A. The general
form of the preconditioning then amounts to the
transformation from Ax = b to Apxp = bp with

Ap = L−1AL−T , xp = L−T x, and bp = L−1b (26)

116 M. Bähr, M. Breuß, Y. Quéau, et al.

Practical issues. Let us identify another
important computational parameter. The approach
mentioned of taking the existing pattern in A as
the sparsity pattern of L is often called IC(0). If
one extends the sparsity pattern of L by additional
non-zero elements (usually in the vicinity of existing
entries) then the closeness between the product LLT

and A may be potentially improved. This procedure
is often called a numerical fill-in strategy IC(τ),
with drop tolerance, where the parameter τ > 0
describes a dropping criterion [31]. The approach
can be described as follows: new fill-ins are accepted
only if the elements are greater than a local drop
tolerance τ . It turns out that the corresponding
PCG method is applicable for positive semidefinite
matrices [49, 50].

When dealing with a discretised elliptic PDE as in
Eqs. (7) or (8), the modified IC (MIC) factorisation
can lead to an even better preconditioner. For an
overview of MIC see Refs. [43, 48]. The idea behind
the modification is to force the preconditioner to
have the same row sums as the original matrix A.
This can be accomplished by adding dropped fill-ins
to the diagonal. The latter is known as MIC(0) and
can be combined with the drop tolerance strategy to
MIC(τ). We note that MIC can lead to possible pivot
breakdowns. This problem can be circumvented
by a global diagonal shift applied to A prior
to determining the incomplete factorisation [51].
Therefore, the factorisation 1© of Ã = A + α diag(A)
is performed, where α > 0 and diag(A) is the
diagonal part of A. Note that the diagonal part of
A never contains a zero value.

Adding fill-ins may obviously lead to a better
preconditioner and a potentially better convergence
rate. On the other hand, it becomes computationally
more expensive to compute the preconditioner itself.
Thus, there is a trade-off between speed and the
improved convergence rate, an important issue upon
which we will elaborate for our application.

2.4 On the FM-PCG normal integrator

Due to its local nature, the reconstructions computed
by FM often have a lower quality compared to
results of global approaches. On the other hand,
the empowering effect of preconditioning the Poisson
integration may still not suffice to achieve a high

1©We denote the combined methods of MIC(τ) and the shifted
incomplete Cholesky version as MIC(τ, α).

efficiency. The basic idea we follow now is that if
one starts the PCG with a proper initialisation x0
obtained by FM integration, instead of the standard
case x0 = 0, the PCG normal integrator could benefit
from a significant speed-up. This idea, together
with dedicated numerical evaluation using a well-
engineered choice of computational parameters for
the numerical PCG solver, is the core of our proposed
method.

In the following, we first given the important
building blocks and parameters of our algorithm, in
Section 3. It will become evident how the individual
methods perform and how they compare.

After that we will show in Section 4 that our
proposed FM-PCG normal integrator in which
suitable building blocks are put together is highly
competitive, and in many instances superior to
the state-of-the-art methods for surface normal
integration.

3 Numerical evaluation

We now demonstrate relevant properties of
several state-of-the-art methods for surface
normal integration. For this purpose, we give
a careful evaluation regarding the accuracy of the
reconstruction, the influence of boundary conditions,
flexibility to handle non-rectangular domains,
robustness to noisy data, and computational
efficiency—the main challenges for an advanced
surface normal integrator. On the technical side, we
note that the experiments were conducted on a i7
processor at 2.9 GHz.

Test datasets. To evaluate the proposed
surface normal integrators, we provide examples
of applications in gradient-domain image
reconstruction (PET imaging, Poisson image
editing) and surface-from-gradient (photometric
stereo). Gradients of the “Phantom” and “Lena”
images were constructed using finite differences,
while both the surface and the gradient of the
“Peaks”, “Sombrero”, and “Vase” datasets are
analytically known, preventing any bias due to finite
difference approximations.

We note that our test datasets demonstrate
fundamental issues that one may typically find in
gradient fields obtained from real-world problems:
sharp gradients (“Phantom”), rapidly fluctuating
gradients oriented in all grid directions in textured

Fast and accurate surface normal integration on non-rectangular domains 117

areas (“Lena”), and smoothly varying gradient fields
(“Peaks”). The gradient field of the “Vase” dataset
has a non-trivial computational domain.

3.1 Existing integration methods
Fast and accurate surface normal integrators are
not abundant. For a meaningful assessment we
compare our novel FM-PCG approach with the fast
Fourier transform (FFT) method of Frankot and
Chellappa [17] and the discrete cosine transform
(DCT) extended by Simchony et al. [18] which
are two of the most popular methods in use.
Furthermore, we include the recent method of Harker
and O’Leary [28] which relies on the formulation of
the integration problem as a Sylvester equation. It is
helpful to consider in a first step the building blocks
of our approach, i.e., FM and CG-based Poisson
integration separately. Hence, we also include in our
comparison the FM method from Ref. [15]. As for
Poisson integration, only Jacobi [9, 32] and Gauss–
Seidel [27] iterations have been employed so far, so
we consider Ref. [42] as a reference for CG-Poisson
integration.

To highlight the differences between the methods,
we start by comparing their algorithmic complexity,
the type of admissible boundary conditions they
admit, and the permissible the computational
domain Ω: see Table 1. Algorithmic complexity is
an indicator for the speed of a solver, while the
admissible boundary conditions and the handling of
non-rectangular domains influence its accuracy. The
ability to handle non-rectangular domains improves
also its computational efficiency.

The findings in Table 1 already indicate the
potential usefulness of a mixture of FM and CG-
Table 1 Comparison of five existing fast and accurate surface
normal integration methods based on three criteria: their algorithmic
complexity w.r.t. the number n of pixels inside the computational
domain Ω (the lower the better), the type of boundary condition
(BC) they use (free boundaries are expected to reduce bias), and
the permitted shape of Ω (handling non-rectangular domains can be
important for accuracy and algorithmic speed)

Method Ref. Complexity BC Non-rect.
FFT [17] n log n Periodic No
DCT [18] n log n Free No
FM [15] n log n Free Yes

Sylvester [28] n
3
2

1©
Free No

CG-Poisson [42] n3 2©
Free Yes

1©Assuming Ω is square. For rectangular domains of size nr ×nc, the
complexity is O(n3

c).
2©Without using preconditioning techniques.

Poisson approaches as both are free of constraints
in the last two criteria and so their combination
may lead to a reasonably computationally efficient
Poisson solver. Although other methods have their
strengths in algorithmic complexity and in the
application of boundary conditions (apart from
FFT), we see that the flexible handling of domains
is a fundamental task and a key requirement of an
ideal solver for surface normal integration.

3.2 Stopping criterion for CG-Poisson
Amongst the considered methods, the Poisson solver
(conjugate gradient method), where solving the
discrete Poisson equation Eq. (7) corresponds to a
linear system Ax = b, is the only iterative scheme.
As indicated in Section 2.3, a practical solution
can be reached quickly after a small number k of
iterations, but k cannot be predicted exactly. The
general stopping criterion for an iterative method
can be based on the relative residual (‖b−Ax‖)/‖b‖
which we analyse in this paragraph.

To guarantee the efficiency of the CG-Poisson
solver it is necessary to define the number k

of iterations depending on the quality of the
reconstruction in the iterative process. To tackle
this issue we compared the MSE 3© and the relative
residual during each CG iteration. As the solution
of the linear system Eq. (14) is not unique, an
additive ambiguity v 7→ v + c, c ∈ R in the
integration problem (c is the “integration constant”)
occurs. Therefore, in each numerical experiment we
chose the additive constant c which minimises the
MSE, for fair comparison. To determine a proper
relative residual, we considered the datasets “Lena”,
“Peaks”, “Phantom”, “Sombrero”, and “Vase” on
rectangular and non-rectangular domains. All test
cases showed results similar to the graphs in Fig. 1
for the reconstruction of the “Sombrero” surface (see
Fig. 2).

In this experiment the iterative solver CG-Poisson
was stopped when the relative residual was lower
than 10−6. However, it can be seen clearly that after
around iteration 250, the quality measured by the
MSE cannot be improved and therefore using more
than 400 iterations is redundant. This numerical
steady state of the MSE and therefore of the residual
occurs when the relative residual is between 10−3

3©The mean squared error (MSE) is used to quantify the error of the
reconstruction. We employed it to estimate the amount of the error
contained in the reconstruction compared to the original.

118 M. Bähr, M. Breuß, Y. Quéau, et al.

Fig. 1 MSE vs. relative residual during CG iterations, for the
“Sombrero” dataset. Although arbitrary relative accuracy can be
reached, it is not useful to go beyond a 10−3 residual, since
such refinements have very small impact on the quality of the
reconstruction, as shown by the MSE graph. Similar results were
obtained for all datasets used in this paper. Hence, we set as stopping
criterion a 10−4 relative residual, which can be considered as “safe”.

Fig. 2 “Sombrero” surface (256 × 256) used in this experiment,
whose gradient can be calculated analytically. Note that the depth
values are periodic on the boundaries.

and 10−4, so we use the suitable and “safe” stopping
criterion of 10−4 in subsequent experiments.

3.3 Accuracy of the solvers
First we analyse the general quality of the methods
listed in Table 1 for the “Sombrero” dataset over a
domain of size 256×256. In this example the gradient
can be calculated analytically and furthermore the
boundary conditions are periodic. Table 1 makes it
obvious that all methods have no restrictions and
consequently no discrimination.

Basically all methods provide a satisfactory
reconstruction, and only FM produces a less
accurate solution: see Figs. 3 and 4. This can be
seen more easily in Table 2, where the values of
the measurements 1© of MSE and SSIM and the
CPU time (in second) are given. The accuracy of
all methods is similar, although the solution for
FM, with 1.16 for MSE and 0.98 for SSIM, is slightly
worse.In contrast the CPU time varies strongly, and
1©We tested the two common measurements MSE and SSIM. A

superior reconstruction has value closer to zero for MSE and a value
closer to one for SSIM. The structural similarity (SSIM) index is a
method for predicting the perceived quality of an image, see Ref.
[52].

Ground truth FFT [17]

DCT [18] FM [15]

Sylvester [28] CG-Poisson [42]

Fig. 3 Results on the “Sombrero” dataset (cf. Table 2).

0

0.5

1

Ground truth FFT [17]

0

0.5

1

0

0.5

1

1.5

2

2.5

DCT [18] FM [15]

0

0.02

0.04

0.06

0.08

0

0.02

0.04

0.06

0.08

Sylvester [28] CG-Poisson [42]

Fig. 4 Absolute errors for the “Sombrero” dataset between the
ground truth and the numerical result of each method; see Table 2.
Note the different scales of the plots. To highlight the differences
between all methods we use three different scales. The absolute error
map of FM has its own scale due to the fact that the MSE and the
maximum error differ compared to the other methods. For FFT and
DCT, Sylvester and CG respectively, which have similar values for
the MSE and the maximum error, we used the same scale to point
out the differences.

Fast and accurate surface normal integration on non-rectangular domains 119

Table 2 Results on the “Sombrero” dataset (256 × 256).
As expected, all methods provide reasonably accurate solutions.
However, the FM result is slightly less accurate: this is due to error
accumulation by the local nature of FM, while the other methods are
global. The reconstructed surfaces are shown in Fig. 3

Method MSE (px) SSIM CPU (s)
FFT [17] 0.01 1.00 < 0.01
DCT [18] 0.04 1.00 0.01
FM [15] 1.00 0.98 0.07

Sylvester [28] 1.8 × 10−4 1.00 0.18
CG-Poisson [42] 4.6 × 10−5 1.00 1.06

in this case FFT and DCT, which need around 0.01 s,
are unbeatable. The time for FM and Sylvester is
in a reasonable range, and only the standard CG-
Poisson taking around 1.06 s being too slow and
inefficient. For problems of surface reconstruction
under these conditions, the choice of a solver is fairly
easy: the frequency domain methods FFT and DCT
are best.

3.4 Influence of boundary conditions
The handling of boundary conditions is a necessary
issue which cannot be ignored. As we will
show, different boundary conditions lead to
surface reconstructions of different accuracy. The
assumption of Dirichlet, periodic or homogeneous
Neumann boundary conditions is often not justified
and may even be unrealistic in some applications.
A better choice is to use “natural” boundary
conditions [2] of Neumann type.

The behaviour of the discussed solvers for
unjustified boundary conditions, particularly for
FFT, is illustrated by the “Peaks” dataset in Figs.
5 and 6 and the associated Table 3. Almost all
methods provide good reconstructions; the FM result
is also acceptable. Only FFT, with 7.19 for MSE and
0.96 for SSIM, is strongly inferior and unusable for
this real surface, as its accuracy is too low.

Our results show that FFT-based methods
enforcing periodic boundary conditions can be
discarded from the list of candidates for an ideal

Table 3 Results on the “Peaks” dataset (128 × 128). Methods
enforcing periodic BC fail to provide a good reconstruction. The
reconstructed surfaces are shown in Fig. 5

Method MSE (px) SSIM CPU (s)
FFT [17] 7.19 0.96 < 0.01
DCT [18] 0.09 1.00 < 0.01
FM [15] 0.80 0.99 0.03

Sylvester [28] 0.02 1.00 0.05
CG-Poisson [42] 0.02 1.00 0.29

Ground truth FFT [17]

DCT [18] FM [15]

Sylvester [28] CG-Poisson [42]

Fig. 5 Results on the “Peaks” dataset (see Table 3).

solver. Once again CG-Poisson is a very accurate
integrator, but DCT and Sylvester are much faster
and provide useful results. However, we may point
out again in advance that enforcing the domain
Ω to be rectangular may lead to difficulties w.r.t.
the transition from foreground to background of an
object.

3.5 Influence of noisy data
A key point in many applications is the question
of the influence of noise on the quality of the
reconstructions provided by different methods.
Usually, the correctness of the given data, without
noise, cannot be guaranteed. Therefore, it is essential
to have a robust surface normal integrator with
respect to noisy data.

To study the influence of noise, we should
consider a dataset which, apart from noise, is
perfect. Based on this aspect, a very reasonable
test example is the “Sombrero” dataset; see Fig. 2.
The advantage of “Sombrero” is that the gradient
of this object is known analytically, not just
approximately. Furthermore, the computational
domain Ω is rectangular and the boundary conditions
are periodic. For this test we added Gaussian noise
with a standard deviation σ varying from 0% to 20%

120 M. Bähr, M. Breuß, Y. Quéau, et al.

0

2

4

6

8

Ground truth FFT [17]

0

0.2

0.4

0.6

0.8

0

0.5

1

1.5

2

2.5

DCT [18] FM [15]

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

Sylvester [28] CG-Poisson [42]
Fig. 6 Absolute errors for the “Peaks” dataset between the ground
truth and the numerical result of each method; see Table 3. Note the
different scales of the plots. To highlight the differences between all
methods we consider three different scales. The absolute error maps
of FFT and FM have their own scales due to the fact that the MSE
and the maximum error are very different in contrast to the other
methods. For DCT, Sylvester, and CG, which have similar values for
the MSE and the maximum error, we used the same scale to point
out the differences.

of ‖[p, q]T‖∞ to the known gradients 1©.
The graph in Fig. 7, which compares the MSE

versus the standard deviation of Gaussian noise,
indicates the robustness of the tested methods. The
best performance is achieved by FFT, DCT, and CG-
Poisson, even for strong noisy data with a standard
deviation of 20%.

The results of Sylvester are similar, but the
method suffers from weaknesses in examples with
noise of higher standard deviation, i.e., larger than
10%.

As the FM integrator accumulates errors during
front propagation, we observe, as expected, for
highly noisy data this integrator is no longer a useful
choice.

To conclude, if the accuracy of the given data is
not known then FFT, DCT, and CG-Poisson are the
safest integrators.

1©In the context of photometric stereo, it would be more realistic to
add noise to the input images rather than to the gradients [53].
Nevertheless, evaluating the robustness of integrators given noisy
gradients remains useful in order to compare their intrinsic
properties.

0 5 10 15 20

σ (%)

0

5

10

15

M
S

E
 (

p
x
)

FFT

DCT

FM

Sylvester

CG-Poisson

Fig. 7 MSE as a function of the standard deviation of a Gaussian
noise, expressed as percentage of the maximal amplitude of the
gradient, added to the gradient. FFT, DCT, and CG-Poisson
methods provide the best results for different levels of Gaussian noise.
The Sylvester method leads to reasonable results for a noise level
lower than 10%. Since the FM approach propagates information in a
single pass, it obviously also propagates errors, resulting in reduced
robustness compared to all other approaches.

3.6 Handling non-rectangular domains
In this experiment we consider the situation when
the gradient values are only known on a non-
rectangular part of the grid. Applying methods
needing rectangular grids [17, 18, 28] requires
empirically fixing the values [p, q] := [0, 0] outside
Ω (see Fig. 8), inducing a bias.

This can be explained as follows: filling the
gradient with null values outside Ω creates
discontinuities between the foreground and
background, preventing one from obtaining
reasonable results, since all solvers considered
here are intended to reconstruct smooth surfaces.
This problem is illustrated in Figs. 9 and 10 for the
“Vase” dataset; Table 4 gives corresponding values
for MSE and SSIM.

The methods can be classified into two groups.
In contrast to FM and CG-Poisson, FFT, DCT,
and Sylvester methods, which cannot handle flexible

Fig. 8 Mask for the “Vase” dataset. The gradient values are only
known on a non-rectangular part Ω of the grid, represented by the
white region. The FM and the CG-Poisson integrators can handle
easily any form of domain Ω. In contrast FFT, DCT, and Sylvester
rely on a rectangular domain and therefore the values [p, q] := [0, 0]
need to be fixed outside Ω, in the black region.

Fast and accurate surface normal integration on non-rectangular domains 121

Ground truth FFT [17] DCT [18]

FM [15] Sylvester [28] CG-Poisson [42]

Fig. 9 Results on the “Vase” dataset; see Table 4.

0

2

4

6

8

10

Ground truth FFT [17]

0

2

4

6

8

10

0

2

4

6

8

10

DCT [18] FM [15]

0

2

4

6

8

10

0

0.5

1

1.5

Sylvester [28] CG-Poisson [42]
Fig. 10 Absolute errors for the “Vase” dataset between the ground
truth and the numerical result of each method; see Table 4. Note the
different scales of the plots. To highlight the differences between all
methods we use two different scales. The absolute error maps of FFT,
DCT, Sylvester, and FM have the same scale due as their maximum
errors are very close. For CG we use a different scale to point out the
differences.

domains, provide inaccurate reconstructions which
are not useful. The non-applicability of these
methods is a considerable problem, since real-
world input images for 3D reconstruction are
typically located within a photographed scene. This
requires the flexibility to tackle non-rectangular

Table 4 Results on the “Vase” dataset (320 × 320). Methods
dedicated to rectangular domains are clearly biased if Ω is not
rectangular. The corresponding reconstructed surfaces are shown in
Fig. 9

Method MSE (px) SSIM CPU (s)
FFT [17] 5.71 0.99 0.01
DCT [18] 5.69 0.99 0.02
FM [15] 0.71 1.00 0.15

Sylvester [28] 5.99 0.98 0.36
CG-Poisson [42] 0.01 1.00 0.52

domains, while providing accurate (and efficient)
reconstruction.

This experiment shows that all methods except
FM and CG-Poisson are not applicable as an
ideal, high-quality normal integrator for many
applications.

Let us note that we also have shown that FM
and CG-Poisson have complementary properties and
disadvantages: the former is fast but inaccurate,
and the latter is slow but accurate. This clearly
motivates the combination of FM as initialisation,
and a Krylov-based Poisson solver: these should
combine to give a fast and accurate solver.
3.7 Summary of the evaluation

In the previous experiments we tested different
scenarios which arise in real-world applications. It
was found that boundary conditions and noisy data
may have a strong effect on 3D reconstruction. If
rectangular domains can be considered, the DCT
method seems to be a realistic choice of a normal
integrator followed by Sylvester and CG-Poisson.

122 M. Bähr, M. Breuß, Y. Quéau, et al.

In fact the first is unbeatably fast. However, the
importance of handling non-rectangular domains,
which is a practical issue in many industrial
applications, cannot be underestimated. This
situation leads to inaccuracies in the reconstructions
of DCT and Sylvester methods. In this context FM
and CG-Poisson methods achieve better results.

One can observe a certain lack of robustness
w.r.t. noise of the FM integrator, especially along
directions not aligned with the grid structure: see
also the results in Ref. [29]. This is because of the
causality concept behind the FM scheme; errors that
once appear are transported over the computational
domain. This is not the case using Poisson
reconstruction, which is a global approach and
includes a regularising mechanism via the underlying
least squares model.

Due to the possibly non-rectangular nature of
the domains we aim to tackle, we cannot use fast
Poisson solvers as, e.g., in Ref. [18] to solve the
discrete Poisson equations numerically. Instead, we
explicitly construct linear systems and solve them
using the CG solver as often done by practitioners.
Nevertheless, the unmodified CG-Poisson solver is
still quite inefficient.

4 Accelerating CG-Poisson

Let us now demonstrate the advantages of the
proposed FM-PCG approach compared to other
state-of-the-art methods. In doing so, we give a
careful evaluation of all the components of our novel
algorithm.

4.1 Preconditioned CG-Poisson

In a first step we analyse the behaviour of the CG
solver when applying an additional preconditioner
intended to improve the condition number and
convergence speed w.r.t. the number k of iterations,
thus reducing time to reach the stopping criterion.

As examples of actual preconditioners, we
examined 1© IC(τ) and MIC(τ, α) for the test dataset
“Phantom” (see Fig. 11) for different input sizes.
It was observed that MIC(τ, α∗) beats IC(τ) if we
used α∗ = 10−3 for the global diagonal shift 2©. In

1©As pivot breakdowns for MIC(τ) are possible, we considered
the shifted MIC version MIC(τ, α). All methods are predefined
functions in MATLAB.

2©This is an experimentally determined value.

Fig. 11 “Phantom” image used in this experiment. Its gradient
is unknown, so we approximate it numerically by first-order forward
differences. We used this dataset for comparing preconditioners, for
different image sizes, from 64 × 64 to 4096 × 4096.

the following, for simplicity we write MIC(τ)∗ for
MIC(τ, α∗) 3©. The results for MIC(0)∗, without a
fill-in strategy, are shown in Table 5 (third column)
and demonstrate its usefulness compared to the non-
preconditioned CG-Poisson (second column). By
using MIC(0)∗ we save many iterations, greatly
reducing the time taken: for example one can save
around 2700 iterations and thus more than 1250 s
for an image of size 4096× 4096.

Now we show how useful a fill-in strategy can be.
In columns four to eight we tested different fill-in
strategies from MIC(10−1)∗ to MIC(10−5)∗. A closer
examination of Table 5 shows that MIC(10−3)∗
provides the best balance between the time needed
to compute the preconditioner and the time needed
to apply PCG. As an example, again for the image
of size 4096 × 4096, we can reduce the number of
iterations from 247 to 80, taking around 170 s instead
of 290 s.

Thus, the application of preconditioning, here
shifted MIC, seems to be useful in accelerating the
CG-Poisson integrator, but it is not sufficient to be
competitive with common fast methods. However,
we will see that with proper initialisation, this
standard preconditioner can already be considered
to be as efficient.

4.2 Appropriate initialisation

The suggested preconditioned CG-Poisson (PCG-
Poisson) method is not widely known in computer
vision, although this practical method is surely not
new and commonly used in numerical computing.
However, we propose a novel scheme for the surface
normal integration (SNI) task, using an appropriate

3© If the value τ in MIC(τ)∗ tends to zero then the preconditioned
matrix is more dense, with more non-zero elements. As a
consequence, the preconditioner is better; however it costs more
time to compute the preconditioner itself.

Fast and accurate surface normal integration on non-rectangular domains 123

Table 5 Number of iterations and CPU time required to reach a 10−4 relative residual for the conjugate gradient algorithm, using the shifted
modified incomplete Cholesky (MIC) preconditioner (α∗ = 10−3) with different drop tolerances and different “Phantom” sizes. The 10−3 drop
tolerance is the one which provides the fastest results. Using a larger drop tolerance allows a reduced number of required iterations, but the
time used for computing the preconditioner dramatically increases. Note that we were unable to compute the preconditioner MIC(10−5)∗ for
the 40962 dataset, because 32 GB of memory was insufficient

Size No precond. MIC(0)∗ MIC(10−1)∗ MIC(10−2)∗ MIC(10−3)∗ MIC(10−4)∗ MIC(10−5)∗

It. CPU (s) It. CPU (s) It. CPU (s) It. CPU (s) It. CPU (s) It. CPU (s) It. CPU (s)
642 131 0.04 19 0.01 19 0.01 10 0.01 5 0.01 4 0.01 4 0.02
1282 236 0.14 29 0.05 29 0.05 15 0.04 9 0.04 6 0.06 7 0.12
2562 432 0.86 40 0.30 40 0.26 23 0.21 11 0.18 7 0.25 11 0.53
5122 604 4.75 70 1.43 70 1.50 28 0.88 18 0.89 13 1.22 14 2.29
10242 1059 35.55 91 7.38 91 7.52 49 5.15 30 5.02 19 5.96 24 11.83
20482 1718 233.49 160 49.89 160 49.89 79 31.29 49 28.76 34 35.09 39 65.06
40962 2969 1577.81 247 290.93 247 290.54 134 196.1 80 171.44 41 173.5 N/A N/A

initialisation to decrease the number of iterations
and reduce the run time cost. Our proposed method
consists of two steps: in a first step the FM solution
is computed in a fast and efficient way; after that,
the Krylov-based technique with shifted modified
incomplete Cholesky (MIC) is applied.

To show the effect of the new FM initialisation,
the test for the “Phantom” dataset was repeated
and evaluated anew; see Table 6. Starting from
the FM solution, which needs comparatively short
computation time (see Table 7) even for large images,
gives a dramatic speed-up.

A closer look at Tables 5 and 6 shows a significant
difference, even without a fill-in strategy (compare
both third columns). At first, let us consider the
case without preconditioner: starting with the trivial
solution leads to a constant increase in iterations
(factor around 1.7) as the image size increases
concomitantly. In contrast the number of iterations
increases very slowly when using FM initialisation.
The effect of this phenomenon is a notable, strong
time cost reduction for large data: for 512 × 512
images, we can save more than 2 s (from 4.75 to

2.48 s), and for 4096× 4096 images the time can be
reduced from 1578 to 233 s.

Using additional preconditioning leads to similar
results. Testing anew MIC(τ)∗ with MIC(10−1)∗
to MIC(10−5)∗ shows once more that MIC(10−3)∗
provides the best results; see Table 6. Using FM
initialisation greatly reduces the required iterations
to reach the stopping criterion and therefore the
combination of FM and shifted MIC leads to fast
reconstructions. In the case of an image of size
4096× 4096, the novel approach, including the time
taken to perform FM performing of 21.79 s (see Table
7), saves around 100 s (from 171 to 74 s) and 71
iterations compared with the trivial initialisation and
MIC(10−3)∗.

Finally, using the novel approach instead of the
standard CG-Poisson solver leads to a significant
speed-up; see Table 8. Without considering
the computation of the FM initialisation, the
construction of the system and the preconditioner,
the time to purely solve the system is vastly
reduced from 1552 to 19 s. The findings of this
experiment show impressively that choosing FM as

Table 6 Number of iterations and CPU time for applying the PCG algorithm, starting from the FM solution rather than from the trivial
state. The indicated CPU time includes the time for computing the FM initialisation. Using FM as an initial guess saves many computations:
the time to solve the 40962 problem is reduced from 26 min (with neither FM initialisation nor preconditioning, see second column in Table 5,
to 1 min (with FM initialisation and preconditioning, see column 6)

Size No precond. MIC(0)∗ MIC(10−1)∗ MIC(10−2)∗ MIC(10−3)∗ MIC(10−4)∗ MIC(10−5)∗

It. CPU (s) It. CPU (s) It. CPU (s) It. CPU (s) It. CPU (s) It. CPU (s) It. CPU (s)
642 119 0.05 16 0.02 16 0.02 8 0.02 4 0.02 3 0.02 3 0.04
1282 210 0.17 25 0.10 25 0.10 13 0.09 7 0.09 5 0.12 6 0.16
2562 240 0.74 35 0.32 35 0.31 15 0.24 7 0.23 5 0.30 6 0.54
5122 281 2.48 36 1.18 36 1.21 15 0.92 9 0.93 5 1.07 6 2.22
10242 316 12.80 40 5.19 40 5.20 18 4.06 9 3.97 5 4.92 8 9.28
20482 339 55.44 45 23.14 45 23.28 19 13.08 9 17.12 5 21.47 8 39.91
40962 349 232.95 46 98.70 46 99.30 19 76.34 9 74.04 5 107.24 N/A N/A

124 M. Bähr, M. Breuß, Y. Quéau, et al.

Table 7 CPU time to perform FM on the “Phantom” dataset of
different sizes

Size 642 1282 2562 5122 10242 20482 40962

CPU (s) < 0.01 0.03 0.08 0.28 1.20 5.14 21.79

Table 8 Division of CPU time between system construction,
preconditioning and system resolution, for the 40962 example.
Knowing that the system and the preconditioner can often be pre-
computed, this makes even more obvious the gain one can expect
by choosing an appropriate initialisation such as the FM result. CG
refers to the resolution of the system by conjugate gradient, and +CG
to accelerated resolution by using FM initialisation (time does not
include the 21.79 s required for FM)

Syst. constr. Precond. CG +CG
No precond. 25.85 0 1551.96 185.31
MIC(10−3)∗ 25.85 7.50 138.09 18.90

initialisation accelerates the method greatly when
it comes to standard preconditioners like (shifted
modified) incomplete Cholesky. Thus, we believe
that our novel FM-PCG method with shifted MIC
preconditioning is a relevant contribution to the field
of fast and accurate surface normal integrators.

4.3 Evaluation of the FM-PCG solver

To clarify the strength of our proposed FM-PCG
solver against the standard FFT and DCT solvers
and the “Sylvester” method of Harker and O’Leary,
we use MSE to evaluate the reconstructions of
the datasets “Phantom”, “Lena”, “Peaks”, and
“Vase” on rectangular and non-rectangular domains.
At first we examine the “Phantom”, “Lena”,
and “Peaks” datasets on a rectangular domain
in Tables 9–11. All examples contain the natural
boundary equation; “Phantom” and “Lena” have
sharp gradients and are more realistic.

It should be clear that FFT and DCT are
the fastest methods, but the quality of FFT
is inadequate and the results are unusable.
Furthermore, it can be seen that the FM-PCG
solver is the best integrator for sharp gradients (see
Table 10).

Finally, the method with the best speed–quality
balance on rectangular domains is probably DCT,

Table 9 Results on the “Phantom” dataset (1024 × 1024)

Method MSE (px) CPU (s)
FFT [17] 138.6 0.06
DCT [18] 127.31 0.13
FM [15] 163.13 1.20

Sylvester [28] 169.41 5.78
FM-PCG 127.89 4.23

Table 10 Results on the “Lena” dataset (512 × 512)

Method MSE (px) CPU (s)
FFT [17] 402.37 0.02
DCT [18] 132.08 0.03
FM [15] 509.15 0.28

Sylvester [28] 113.92 0.71
FM-PCG 94.07 1.24

Table 11 Results on the “Peaks” dataset (128 × 128)

Method MSE (px) CPU (s)
FFT [17] 7.19 < 0.01
DCT [18] 0.09 < 0.01
FM [15] 0.8 0.03

Sylvester [28] 0.01 0.07
FM-PCG 0.02 0.07

followed by Sylvester and our proposed FM-PCG
solver. However, as already mentioned, simple
rectangular domains are quite unrealistic in many
applications in science and industry. Hence, we
analyse in Tables 12–15 the results on flexible
domains, as shown in Fig. 12. The given CPU time
includes FM initialisation.

All experiments show the expected behaviour of
the employed methods. The FM-PCG solution has
by far the best quality. It is even faster than the
Sylvester method. An assessment in relation to the
best balance of speed versus quality is not easy and
depends on the exact application. If speed is of
secondary importance then the best choice is FM-
PCG, otherwise DCT.

4.4 Real-world photometric stereo data

The previous examples are rather simple. For this
reason we consider a more realistic real-world
application in photometric stereo, which definitely
contains noisy data. We used the “Scholar”

(a) (b)

Fig. 12 Masks for the “Phantom”, “Lena”, “Peaks”, and “Vase”
datasets. It should be noted that FM and CG-Poisson work only
on the Ω represented by the white regions. By contrast, FFT,
DCT, and Sylvester work on the whole rectangular domain. (a) The
synthetic mask used for “Phantom”, “Lena”, and “Peaks” datasets.
(b) Realistic mask for the “Vase” dataset.

Fast and accurate surface normal integration on non-rectangular domains 125

Table 12 Results on the “Phantom” dataset for the non-rectangular
domain in Fig. 12(a)

Method MSE (px) CPU (s)
FFT [17] 351.72 0.06
DCT [18] 309.72 0.14
FM [15] 162.43 0.70

Sylvester [28] 348.98 5.54
FM-PCG 131.02 2.06

Table 13 Results on the “Lena” dataset for the non-rectangular
domain in Fig. 12(a)

Method MSE (px) CPU (s)
FFT [17] 199.59 0.01
DCT [18] 149.00 0.03
FM [15] 444.02 0.19

Sylvester [28] 175.82 0.70
FM-PCG 123.64 0.65

Table 14 Results on the “Peaks” dataset for the non-rectangular
domain in Fig. 12(a)

Method MSE (px) CPU (s)
FFT [17] 15.69 < 0.01
DCT [18] 7.23 < 0.01
FM [15] 0.86 0.01

Sylvester [28] 7.20 0.06
FM-PCG 0.03 0.03

Table 15 Results on the “Vase” dataset for the non-rectangular
domain in Fig. 12(b)

Method MSE (px) CPU (s)
FFT [17] 5.71 0.01
DCT [18] 5.69 0.02
FM [15] 0.71 0.06

Sylvester [28] 5.99 0.38
FM-PCG 0.03 0.14

dataset 1©, which consists of 20 images of a
Lambertian surface, taken from the same angle
of view but under 20 known, non-coplanar lightings
(see Fig. 13).

The normals and the albedo were calculated
using the classical photometric stereo approach of
Woodham [3]. Then, we integrated the normals using
the different solvers. Eventually, we a posteriori
recomputed the normals by finite differences from
the recovered depth map, before “reprojecting” the
images using the estimated shape and albedo. By
comparing the initial images with the reprojected
ones, we obtain two criteria (MSE and SSIM)
for evaluating the methods on each image. The
results shown in Table 16 are the mean of the 20

1©http://vision.seas.harvard.edu/qsfs/Data.html

(a) (b) (c)

(d) (e)

(f) (g)

Fig. 13 Application to photometric stereo (PS). (a)–(c) Three
images (among 20), of size 1070×1070, acquired from the same point
of view but under different lightings. After estimating the surface
normals by PS, we integrated them by (d) FM, before (e) refining this
initial guess by PCG iterations. The full integration process required
a few seconds. (f)–(g) MSE (in pixel) of the reprojected images,
computed from the surface estimated by (f) FM and (g) FM-PCG.
(blue is 0, and red is > 1000). Due to the local nature of FM, radial
propagation of errors is visible. After correction by CG, such artefacts
are eliminated. Remaining bias is due to shadows. These results are
experimentally compared with existing methods in Table 16.

Table 16 Results on the PS dataset. Our method (initialisation
by FM, then refinement by PCG from this initial guess) provides the
most accurate results. We show the CPU time, as well as the mean
MSE and SSIM for the 20 reprojected images

Method MSE (px) SSIM CPU (s)
FFT [17] 365.43 0.86 0.09
DCT [18] 330.55 0.87 0.15
FM [15] 582.65 0.78 0.45

Sylvester [28] 377.68 0.74 5.81
FM-PCG 286.69 0.88 6.25

corresponding values.
Once again FM-PCG is the most accurate

integrator and is as fast as the Sylvester method.
Nevertheless, the fast computational time of DCT
was unbeatable.

4.5 Handling outliers

Let us now consider the case of standard
photometric stereo applied to surfaces whose
reflectance incorporates an additive non-Lambertian

126 M. Bähr, M. Breuß, Y. Quéau, et al.

component (specularities). As can be seen from
Fig. 14 and Table 17, all the integration methods
we consider here are by their nature highly sensitive
to outliers.

In order to handle such outliers, we replace
the classic PI model in Eq. (7) by the modified
model in Eq. (11). As already pointed out, all the
methods relying on the Poisson equation can be
adapted to this model. Therefore, we can employ

(a) (b) (c)

(d) (e)

(f) (g)

Fig. 14 (a)–(c) Three (out of 12) real-world images, of size 320 ×
320, of a photometric stereo dataset. The eyes of the owl are highly
specular. This induces a bias in the reconstructions, as shown in the
reconstructions using (d) FM or (e) the proposed FM-PCG integrator.
(f)–(g) The corresponding MSE of the reprojected images shows that
the bias is very localized (blue is 0, and red is > 1000).

Table 17 Results on the specular PS dataset (see Fig. 14). All
methods present a similar systematic bias due to outliers located on
the specular points

Method MSE (px) SSIM CPU (s)
FFT [17] 66.68 0.92 < 0.01
DCT [18] 46.16 0.95 0.01
FM [15] 94.25 0.90 0.09

Sylvester [28] 928.69 0.55 0.30
FM-PCG 40.48 0.96 0.24

here the FFT [17], DCT [18], and our new FM-
PCG methods. We found that using these modified
inputs for the other SNI methods, such as FM [15]
and Sylvester [28], also yields improved results.
Hence, our improved model can be considered as
a generic improvement for use with existing SNI
methods, enforcing robustness w.r.t. outliers. This
is illustrated in Fig. 15 and Table 18.

5 Conclusions and perspectives

We demonstrated the properties of the proposed
FM-PCG surface normal integrator. It combines
all the efficiency benefits of FM, Krylov-based
and preconditioning components while retaining
the robustness and accuracy of the underlying
variational approach.

All of the desirable properties in Section 4,
including especially the flexibility to handle non-
trivial domains are met by the proposed method.

(a) (b)

(c) (d)
Fig. 15 Results of (a) improved FM and (b) improved FM-PCG
methods introducing a smoothness constraint on the outliers. The
corresponding MSE maps (c) and (d) show that errors due to the
outliers are much reduced.

Table 18 Results of the improved methods on the same dataset as
in Table 17. All MSE are significantly reduced

Method MSE (px) SSIM CPU (s)
FFT [17] 17.26 0.95 < 0.01
DCT [18] 14.79 0.96 0.01
FM [15] 34.47 0.91 0.09

Sylvester [28] 21.93 0.88 0.31
FM-PCG 10.41 0.96 0.27

Fast and accurate surface normal integration on non-rectangular domains 127

It is clear that the proposed new integration
scheme generates the most accurate reconstructions
independently of the underlying conditions. The
computational costs are very low and in most cases
the method is faster than the recent Sylvester
method of Harker and O’Leary. Only DCT is much
faster, but DCT results are of low quality when the
computational domain is not rectangular.

Therefore, the FM-PCG integrator is a good choice
for applications which require accurate and robust
3D reconstruction at relatively low computational
cost.

Nonetheless, our integration method remains
limited to smooth surfaces. Studying the impact
of appropriate preconditioning and initialisation on
iterative methods which allow depth discontinuities,
as for instance Refs. [9, 27], is an interesting
problem. We are considering extending our study
to multi-view normal field integration [54] to be an
exciting avenue, which would allow the recovery of
a full 3D shape, instead of a depth map.

References

[1] Pérez, P.; Gangnet, M.; Blake, A. Poisson image
editing. ACM Transactions on Graphics Vol. 22, No.
3, 313–318, 2003.

[2] Horn, B. K. P.; Brooks, M. J. The variational approach
to shape from shading. Computer Vision, Graphics
and Image Processing Vol. 33, No. 2, 174–208, 1986.

[3] Woodham, R. J. Photometric method for determining
surface orientation from multiple images. Optical
Engineering Vol. 19, No. 1, 191139, 1980.

[4] Zafeiriou, S.; Atkinson, G. A.; Hansen, M. F.; Smith,
W. A. P.; Argyriou, V.; Petrou, M.; Smith, M.
L.; Smith, L. N. Face recognition and verification
using photometric stereo: The photoface database and
a comprehensive evaluation. IEEE Transactions on
Information Forensics and Security Vol. 8, No. 1, 121–
135, 2013.

[5] Smith, M. L.; Stamp, R. J. Automated inspection of
textured ceramic tiles. Computers in Industry Vol. 43,
No. 1, 73–82, 2000.

[6] Esteban, C. H.; Vogiatzis, G.; Cipolla, R. Multiview
photometric stereo. IEEE Transactions on Pattern
Analysis and Machine Intelligence Vol. 30, No. 3, 548–
554, 2008.

[7] Haque, S. M.; Chatterjee, A.; Govindu, V. M.
High quality photometric reconstruction using a depth
camera. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2275–2282,
2014.

[8] Harker, M.; O’Leary, P. Least squares surface
reconstruction from measured gradient fields. In:

Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 1–7, 2008.

[9] Durou, J.-D.; Aujol, J.-F.; Courteille, F. Integrating
the normal field of a surface in the presence of
discontinuities. In: Energy Minimization Methods in
Computer Vision and Pattern Recognition. Cremers,
D.; Boykov, Y.; Blake, A.; Schmidt, F. R. Eds.
Springer Berlin Heidelberg, 261–273, 2009.

[10] Klette, R.; Schlüns, K. Height data from gradient
fields. In: Proceedings of SPIE 2908, Machine Vision
Applications, Architectures, and Systems Integration
V, 204–215, 1996.

[11] Coleman Jr., E. N.; Jain, R. Obtaining 3-dimensional
shape of textured and specular surfaces using
foursource photometry. Computer Graphics and Image
Processing Vol. 18, No. 4, 309–328, 1982.

[12] Wu, Z.; Li, L. A line-integration based method
for depth recovery from surface normals. Computer
Vision, Graphics and Image Processing Vol. 43, No.
1, 53–66, 1988.

[13] Robles-Kelly, A.; Hancock, E. R. A graph-
spectral method for surface height recovery. Pattern
Recognition Vol. 38, No. 8, 1167–1186, 2005.

[14] Ho, J.; Lim, J.; Yang, M. H.; Kriegmann, D.
Integrating surface normal vectors using fast marching
method. In: Computer Vision–ECCV 2006. Leonardis,
A.; Bischof, H.; Pinz, A. Eds. Springer Berlin
Heidelberg, 239–250, 2006.

[15] Galliani, S.; Breuß, M.; Ju, Y. C. Fast and robust
surface normal integration by a discrete eikonal
equation. In: Proceedings of the 23rd British Machine
Vision Conference, 2012.

[16] Bähr, M.; Breuß, M. An improved eikonal method for
surface normal integration. In: Pattern Recognition.
Gall, J.; Gehler, P.; Leibe, B. Eds. Springer
International Publishing, 274–284, 2015.

[17] Frankot, R. T.; Chellappa, R. A method for enforcing
integrability in shape from shading algorithms.
IEEE Transactions on Pattern Analysis and Machine
Intelligence Vol. 10, No. 4, 439–451, 1988.

[18] Simchony, T.; Chellappa, R.; Shao, M. Direct
analytical methods for solving Poisson equations in
computer vision problems. IEEE Transactions on
Pattern Analysis and Machine Intelligence Vol. 12, No.
5, 435–446, 1990.

[19] Wei, T.; Klette, R. A wavelet-based algorithm for
height from gradients. In: Robot Vision. Klette, R.;
Peleg, S.; Sommer, G. Eds. Springer Berlin Heidelberg,
84–90, 2001.

[20] Kovesi, P. Shapelets correlated with surface normals
produce surfaces. In: Proceedings of the 10th IEEE
International Conference on Computer Vision, Vol. 2,
994–1001, 2005.

[21] Wei, T.; Klette, R. Depth recovery from noisy gradient
vector fields using regularization. In: Computer
Analysis of Images and Patterns. Petkov, N.;
Westenberg, M. A. Eds. Springer Berlin Heidelberg,
116–123, 2003.

128 M. Bähr, M. Breuß, Y. Quéau, et al.

[22] Karaçali, B.; Snyder, W. Noise reduction in
surface reconstruction from a given gradient field.
International Journal on Computer Vision Vol. 60, No.
1, 25–44, 2004.

[23] Agrawal, A.; Raskar, R.; Chellappa, R. What is the
range of surface reconstructions from a gradient field?
In: Computer Vision–ECCV 2006. Leonardis, A.;
Bischof, H.; Pinz, A. Eds. Springer Berlin Heidelberg,
578–591, 2006.

[24] Badri, H.; Yahia, H. M.; Aboutajdine, D.
Robust surface reconstruction via triple sparsity. In:
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2283–2290, 2014.

[25] Du, Z.; Robles-Kelly, A.; Lu, F. Robust surface
reconstruction from gradient field using the L1 norm.
In: Proceedings of the 9th Biennial Conference of
the Australian Pattern Recognition Society on Digital
Image Computing Techniques and Applications, 203–
209, 2007.

[26] Reddy, D.; Agrawal, A. K.; Chellappa, R. Enforcing
integrability by error correction using l1-minimization.
In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2350–2357, 2009.

[27] Quéau, Y.; Durou, J.-D. Edge-preserving integration
of a normal field: Weighted least squares, TV and L1

approaches. In: Scale Space and Variational Methods
in Computer Vision. Aujol, J.-F.; Nikolova, M.;
Papadakis, N. Eds. Springer International Publishing
576–588, 2015.

[28] Harker, M.; O’Leary, P. Regularized reconstruction of
a surface from its measured gradient field. Journal of
Mathematical Imaging and Vision Vol. 51, No. 1, 46–
70, 2015.

[29] Breuß, M.; Quéau, Y.; Bähr, M.; Durou, J.-D. Highly
efficient surface normal integration. In: Proceedings of
the 20th Conference on Scientific Computing, 204–213,
2016.

[30] Meister, A. Comparison of different Krylov subspace
methods embedded in an implicit finite volume scheme
for the computation of viscous and inviscid flow
fields on unstructured grids. Journal of Computational
Physics Vol. 140, No. 2, 311–345, 1998.

[31] Saad, Y. Iterative Methods for Sparse Linear Systems.
Society for Industrial and Applied Mathematics, 2003.

[32] Durou, J.-D.; Courteille, F. Integration of a normal
field without boundary condition. In: Proceedings
of the 1st International Workshop on Photometric
Analysis for Computer Vision, 2007.

[33] Kimmel, R.; Sethian, J. A. Optimal algorithm for
shape from shading and path planning. Journal of
Mathematical Imaging and Vision Vol. 14, No. 3, 237–
244, 2001.

[34] Tsitsiklis, J. N. Efficient algorithms for globally
optimal trajectories. IEEE Transactions on Automatic
Control Vol. 40, No. 9, 1528–1538, 1995.

[35] Sethian, J. A. A fast marching level set method for
monotonically advancing fronts. Proceedings of the
National Academy of Sciences of the United States of
America Vol. 93, No. 4, 1591–1595, 1996.

[36] Helmsen, J. J.; Puckett, E. G.; Colella, P.; Dorr,

M. Two new methods for simulating photolithography
development in 3D. In: Proceedings of SPIE 2726,
Optical Microlithography IX, 253–261, 1996.

[37] Sethian, J. A. Level Set Methods and Fast Marching
Methods: Evolving Interfaces in Computational
Geometry, Fluid Mechanics, Computer Vision, and
Materials Science. Cambridge University Press, 1999.

[38] Yatziv, L.; Bartesaghi, A.; Sapiro, G. O(N)
implementation of the fast marching algorithm.
Journal of Computational Physics Vol. 212, No. 2,
393–399, 2006.

[39] Cacace, S.; Cristiani, E.; Falcone, M. Can local
single-pass methods solve any stationary Hamilton–
Jacobi–Bellman equation? SIAM Journal on Scientific
Computing Vol. 36, No. 2, A570–A587, 2014.

[40] Zimmer, H.; Bruhn, A.; Valgaerts, L.; Breuß, M.;
Weickert, J.; Rosenhahn, B.; Seidel, H.-P. PDE-
based anisotropic disparity-driven stereo vision. In:
Proceddings of the 13th International Fall Workshop
Vision, Modeling, and Visualization, 263–272, 2008.

[41] Meister, A. Numerik Linearer Gleichungssysteme.
Eine Einführung in Moderne Verfahren. Springer
Spektrum, 2014.

[42] Hestenes, M. R.; Stiefel, E. Methods of conjugate
gradients for solving linear systems. Journal of
Research of the National Bureau of Standards Vol. 6,
No. 49, 46–70, 1952.

[43] Meurant, G. Computer Solution of Large Linear
Systems. Elsevier Science, 1999.

[44] Meurant, G. The Lanczos and Conjugate Gradient
Algorithms: From Theory to Finite Precision
Computations. Society for Industrial and Applied
Mathematics, 2006.

[45] Golub, G. H.; van Loan, C. F. Matrix Computation,
3rd edn. Johns Hopkins, 1996.

[46] Meijerink, J. A.; van der Vorst, H. A. An
iterative solution method for linear systems of which
the coefficient matrix is a symmetric M -matrix.
Mathematics of Computation Vol. 31, No. 137, 148–
162, 1977.

[47] Kershaw, D. S. The incomplete Cholesky-conjugate
gradient method for the iterative solution of systems
of linear equations. Journal of Computational Physics
Vol. 26, No. 1, 43–65, 1978.

[48] Benzi, M. Preconditioning techniques for large linear
systems: A survey. Journal of Computational Physics
Vol. 182, No. 2, 418–477, 2002.

[49] Kaasschieter, E. F. Preconditioned conjugate
gradients for solving singular systems. Journal of
Computational and Applied Mathematics Vol. 24, Nos.
1–2, 265–275, 1988.

[50] Tang, J. M.; Vuik, C. Acceleration of preconditioned
Krylov solvers for bubbly flow problems. In: Parallel
Processing and Applied Mathematics. Wyrzykowski,
R.; Dongarra, J.; Karczewski, K.; Wasniewski, J. Eds.
Springer Berlin Heidelberg, 1323–1332, 2008.

[51] Manteuffel, T. A. An incomplete factorization
technique for positive definite linear systems.
Mathematics of Computation Vol. 34, No. 150,
473–497, 1980.

Fast and accurate surface normal integration on non-rectangular domains 129

[52] Wang, Z.; Bovik, A. C.; Sheikh, H. R.; Simoncelli,
E. P. Image quality assessment: From error visibility
to structural similarity. IEEE Transactions on Image
Processing Vol. 13, No. 4, 600–612, 2004.

[53] Noakes, L.; Kozera, R. Nonlinearities and noise
reduction in 3-source photometric stereo. Journal of
Mathematical Imaging and Vision Vol. 18, No. 2, 119–
127, 2003.

[54] Chang, J. Y.; Lee, K. M.; Lee, S. U. Multiview
normal field integration using level set methods. In:
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 1–8, 2007.

Martin Bähr is a Ph.D. student
in mathematics at the Brandenburg
Technical University in Germany. He
received his master degree in applied
mathematics at the same university
in 2013. Since 2013, he works in
the applied mathematics group with a
scientific focus on mathematical image

processing. His research interests include partial differential
equations and numerical methods for image processing and
computer vision.

Michael Breuß received his doctorate
degree in mathematics from the
University of Hamburg in 2001, and
the habilitation in mathematics from
the Technical University in Brunswick
in 2006. For several years, he had
been a member of the mathematical
image analysis group in Saarbrücken,

Germany. Since 2016, he is professor for applied
mathematics at the Brandenburg Technical University in
Cottbus, Germany. His research interests are mainly in
mathematical image processing and 3D vision, and include
in particular numerical methods.

Yvain Quéau is a postdoctoral
researcher at Technical University
Munich. He received his Ph.D.
degree in computer science from INP-
ENSEEIHT, Université de Toulouse,
in 2015. His research interests include
3D-reconstruction by photometric
techniques (shape-from-shading and

photometric stereo), as well as variational methods for
solving computer vision and image processing problems.

Ali Sharifi Boroujerdi is a Ph.D.
student at the Brandenburg Technical
University in Germany. After being a
bachelor of software engineering, he
received his master degree in software
engineering in 2013. His research
interests include dynamic programming
techniques as well as the field of

artificial intelligence in general, especially deep learning,
reinforcement learning, and big data analysis.

Jean-Denis Durou received his
Ph.D. degree in computer science from
the Université Paris Sud-Orsay in
1993, and the “Habilitation à Diriger
les Recherches” from the Université
Toulouse III-Paul Sabatier in 2007.
He is an assistant professor at the
Université Toulouse III since 1994, and

a member of the VORTEX team at the IRIT Laboratory.
His main research interest is 3D-vision. He is more
specifically interested in photometric 3D-reconstruction,
i.e., shape-from-shading and photometric stereo.

Open Access The articles published in this journal
are distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the
original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were
made.

Other papers from this open access journal are available free
of charge from http://www.springer.com/journal/41095.
To submit a manuscript, please go to https://www.
editorialmanager.com/cvmj.

