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Abstract We introduce a general framework for regulariza-
tion of signals with values in a cyclic structure, such as an-
gles, phases or hue values. These include the total cyclic
variation T VS1 , as well as cyclic versions of quadratic reg-
ularization, Huber-T V and Mumford-Shah regularity. The
key idea is to introduce a convex relaxation of the original
non-convex optimization problem. The method handles the
periodicity of values in a simple way, is invariant to cyclical
shifts and has a number of other useful properties such as
lower-semicontinuity. The framework allows general, pos-
sibly non-convex data terms. Experimental results are su-
perior to those obtained without special care about wrap-
ping interval end points. Moreover, we propose an equiva-
lent formulation of the total cyclic variation which can be
minimized with the same time and memory efficiency as
the standard total variation. We show that discretized ver-
sions of these regularizers amount to NP-hard optimization
problems. Nevertheless, the proposed framework provides
optimal or near-optimal solutions in most practical applica-
tions.
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1 Introduction

1.1 Total Variation and Cyclic Structures

Total variation (T V ) has been widely recognized as an effec-
tive and efficient means to regularize variational problems.
The main advantage of T V is that it is able to preserve sharp
discontinuities in the data while still providing a smoothing
effect. Secondly, T V is convex and thus relatively easy to
handle in minimization problems. Thirdly, due to the coarea
formula the total variation applied to the characteristic func-
tion of a set coincides with a measure of its boundary mak-
ing it well suited for various geometric optimization prob-
lems. T V has been applied to a great variety of image analy-
sis problems, such as denoising [25], segmentation [15, 17],
superresolution [16], inpainting [3], multi-view reconstruc-
tion [14] and optical flow [6, 26]. All these examples assume
that the range of the function u, which is to be regularized,
is a space of linear structure, e.g. R

n for some n ≥ 1.
In many interesting image and signal processing applica-

tions, however, the range of signals is the unit circle S1, or
equivalently the space of planar orientations. Here, the func-
tion values representing e.g. angles, phases or hue values are
periodic in nature. Important application areas where cycli-
cal data arises naturally include interference microscopy,
synthetic aperture radar (SAR) satellite imagery [8], or the
analysis of imagery from time of flight cameras. In SAR
image processing, one aims at reconstructing the object of
interest, e.g. the ground elevation from the difference of
phases between two phase image measurements. Similarly,
time-of-flight cameras capture distance measurements of the
scene, but only for distances up to the wavelength of the
employed light. Distances above this limit are cyclically
wrapped into the first basic interval. In all these applications,
since the measurements are typically rather noisy, denoising
of the cyclical signals is an integral part.
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A straightforward attempt to realize a notion of total vari-
ation for functions with cyclical range is to simply represent
the circle S1 as [0,1) and then to apply the usual T V semi-
norm. However, this approach leads to artifacts due to ne-
glecting the value wrapping at the boundary of [0,1). Jumps
from 0 to 1, or to values near 1, will be penalized with a sub-
stantial contribution to the energy whereas there is actually
no jump at all with respect to the S1 structure. This generally
leads to oversmoothing, important image structures may get
lost when applied to segmentation, and artificial structures
may appear. Moreover, T V is dependent on the specific rep-
resentation of S1 as [0,1), i.e. the penalization is different
depending on which point of S1 is taken to be 0. Specifically,
cyclic shifts of input data will not result in the corresponding
cyclic shift of the output.

1.2 Prior Work

The notion of total variation for functions u : Ω → Y de-
fined on manifold domains Ω and with values in general
manifolds Y has been studied by Giaquinta and Mucci [11,
12] using the theory of cartesian currents. They rigorously
define the space BV (Ω; Y ) and provide a number of theo-
retical insights, proving several properties of functions with
bounded total variation such as lower-semicontinuity and
structure theorems. This extends the previous work [9] by
Giaquinta et al. which handles specifically the case Y = S1

and, among others, shows existence of minimizers of cer-
tain energies in the space of functions with bounded total
cyclic variation. Although these papers provide a notion of
total cyclic variation T VS1 , they differ from our approach in
several fundamental ways.

First, the above approach uses an embedding of the mani-
fold S1 into R

2 to define BV (Ω;S1) and T VS1 . This means
that one works entirely with functions û : Ω → R

2 satis-
fying |u(x)| = 1 for a.e. x ∈ Ω . The theory is formulated
entirely in terms of cartesian currents, which are specific
continuous linear maps on differential forms and represent
generalized graphs of functions of bounded variation. It is
not clear how to transfer the theoretical properties of T VS1

to the corresponding statements in the setting of functions
u : Ω → S1, and even whether these properties still hold. In
contrast, in the present paper we work directly with func-
tions u : Ω → S1, respectively u : Ω → R. We present
proofs of the theoretical properties for this setting and re-
fer to the related results in [9, 11, 12] for cartesian currents
where appropriate. Most of our results do not have equiva-
lent formulations in [9, 11, 12], since they only make sense
when working directly with u : Ω → R, i.e. without the em-
bedding. For instance, this is the case for our main theoret-
ical contribution, the novel convex representation of T VS1

in Theorem 1. We believe that our derivations may be more
accessible to the computer vision community because they

do not rely on advanced mathematical concepts like k-forms
and k-currents.

Second, and most importantly, for the approach of Gi-
aquinta et al. it is not clear how to derive an algorithm to
practically compute the minimizers of energies with cyclic
regularizers. Neither of these works have performed any nu-
merical validations or experiments. In contrast, our method
leads to a convex formulation of the energy minimization
problem and can be easily employed to compute the solu-
tions numerically.

Finally, our approach also extends to more general reg-
ularizers such as Huber-T V , and even to non-convex regu-
larizers such as the piecewise smooth Mumford-Shah model
for regularizing signals with cyclic values.

To the best of our knowledge, the derivation, analysis and
numerical implementation of regularizers for cyclic signals
(with a direct definition on these signals without embedding
the values into R

2) has not been addressed systematically in
the literature. Moreover, it turns out that this is by no means
straightforward.

1.3 Contributions

In this paper we introduce and mathematically characterize
regularizers for functions with values in a cyclical range.
Specifically we make the following contributions:

– We introduce a novel kind of total variation, T VS1 , for
functions u : Ω → S1 with cyclic or periodic values. The
regularizer resembles closely the usual total variation and
provides an elegant solution to handle the wrap-around of
values. We show that T VS1 can be defined for all measur-
able functions u : Ω → R by means of a dual representa-
tion.

– From the theoretical viewpoint we show that T VS1 has a
number interesting and desired mathematical properties
such as invariance to cyclic shifts and isometries as well
as lower-semicontinuity.

– Beyond the total cyclic variation T VS1 , our framework
also allows more general regularizers for S1-valued func-
tions. This includes regularizers such as Huber-T V and
the quadratic penalizer as well as more advanced ones
like truncated linear and the full Mumford-Shah regular-
izer. We show how to incorporate the S1 structure into
these regularizers, so that changes of the representation
of the data will have no effect on the regularization.

– We prove the existence of minimizers for general T VS1

regularized functionals. This result requires an especially
tailored argument since functions u with T VS1(u) < ∞
are not necessarily elements of BV (Ω). We show that
T VS1 optimization is in general NP-hard and also pro-
pose an adaptive binarization method to obtain solutions
closer to the global optimum.
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– Furthermore, we give an equivalent reformulation of the
constraint sets which enables one to minimize T VS1 reg-
ularized energies with the same time and memory effi-
ciency as the standard total variation. Finally, several ex-
periments illustrate the applications of the S1 framework.
Comparing to usual regularizers for functions with lin-
ear values like T V , the proposed framework gives rise to
visually superior and more natural results.

A preliminary version of this work was presented at a
conference [28]. In comparison to [28] the present work has
a number of novelties:

– We eliminate the range constraint u : Ω → [0,1) in
the definition of T VS1 and work entirely with functions
u : Ω → R. This gives rise to more intuitive formulations
and reveals novel properties of T VS1 . For instance, the
cyclic shift property is reduced to a more fundamental
representation invariance property.

– We extend the S1 framework to more general regularizers,
such as Huber-T V and Mumford-Shah.

– The mathematical properties of T VS1 are extended, for
instance we prove the existence of minimizers for T VS1

regularized problems.
– We provide new experiments—phase denoising and cycli-

cal smoothing—further demonstrating the advantages of
cyclic regularizers.

The paper is organized as follows. First, in Sect. 2
we introduce the notion of the total cyclic variation T VS1

for functions exhibiting certain regularity, for instance u ∈
SBV . Motivated by the non-convexity of T VS1 , we prove in
Sect. 3 a convex formulation in terms of the graph function
1u of u based on the functional lifting theory. In Sect. 4 we
show a number of mathematical properties of T VS1 . Subse-
quently, Sect. 5 applies the framework to general optimiza-
tion problems where an energy involving a data term and
T VS1 as the regularizer is to be minimized. Section 6 in-
troduces more general regularizers for S1-valued functions.
Finally, we present experimental results in Sect. 7 and give
a conclusion in Sect. 8.

2 Definition of T VS1

In this section we give a definition of the total cyclic vari-
ation T VS1 . This first definition can be seen as an intuitive
and natural way of introducing T VS1 , and can be formulated
only for functions exhibiting certain regularity. We will ex-
tend this definition in later sections.

2.1 Preliminaries

Let Ω ⊂ R
m be a bounded open set, m ≥ 1. Let

S1 = {

x ∈ R
2
∣

∣|x| = 1
}

(1)

Fig. 1 In contrast to the linear distance (dashed), the cyclic distance
dS1 (solid) accounts for the periodicity of S1

be the unit circle. Since there is a one-to-one correspon-
dence between S1 and the unit interval Γ := [0,1), any
function u : Ω → S1 can be conveniently represented as a
function u : Ω → Γ . This representation proves to be both
convenient and useful for theoretical treatment of T VS1 .
More generally, we give a definition of T VS1 for functions
u : Ω → R, without restricting the range of u to Γ . This
means that at each point x ∈ Ω one is free to choose differ-
ent representatives in R modulo 1 of the value u(x).

As one easily checks, the distance function on S1 trans-
fers to the distance function dS1 on R given by dS1(a, b) =
min(|a − b|,1 − |a − b|) for a, b ∈ Γ . For general a, b ∈ R,
we can easily show the representation in the lemma be-
low. For fixed b this gives a “saw-tooth” shaped curve in
a (Fig. 1).

Lemma 1 Let x, y ∈ R. Then

dS1(x, y) = min
k∈Z

|y − x − k|. (2)

Proof Observe that dS1(x, y) = dS1(0, y − x) and the right
hand side of (2) are 1-periodic in y − x. Since both coincide
with min(y − x,1 − (y − x)) for y − x ∈ Γ the equation
follows. �

For functions u ∈ L1(Ω) the total variation of u is de-
fined by

T V (u) =
∫

Ω

|Du| := sup
|ϕ|≤1

∫

Ω

udivϕ dx (3)

where the supremum is taken over all ϕ ∈ C∞
c (Ω;R

m) with
|ϕ(x)| ≤ 1 for all x. The space of functions of bounded vari-
ation, i.e. where T V (u) < ∞, is denoted by BV (Ω).

If u ∈ BV (Ω), we denote by Su its “essential” jump set.
This is where one cannot unambiguously define u(x), but
rather two values u+(x) > u−(x) and a normal vector νu(x),
indicating the direction of the jump and pointing from the
u− to the u+ side.
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Fig. 2 Graph of a function u ∈ SBV (Ω). The jump set Su consists
here of two points, the second jump being just a wrap-around and not
an actual jump in S1 sense. The function 1u is defined as 1 in the
shaded area under the graph and 0 otherwise

One says that u ∈ SBV (Ω), the special functions of
bounded variation, if the distributional gradient can be de-
composed as Du = ∇udx + (u+ − u−)νudHm−1|Su into a
smooth part and a jump part. The former is the absolutely
continuous part of Du, the corresponding density function
∇u : Ω → R

m is called the approximate gradient of u [2,
Definition 3.70]. The latter is the jump height u+ − u−
multiplied with the Hausdorff (m − 1)-dimensional mea-
sure restricted to the jump set Su (Fig. 2). A general func-
tion u ∈ BV (Ω) may in addition have a “Cantor” part, an
uncountable accumulation of infinitesimal jumps. We re-
fer to [2] for a comprehensive introduction to functions of
bounded variation.

2.2 Definition of T VS1 for SBV Functions

We first define T VS1 for functions u ∈ SBV , as this space
allows to handle the smooth part and the jump part of the
gradient in an explicit way. A more general definition for all
measurable functions u : Ω → R will be given in Sect. 3.3
based on a dual formulation.

Definition 1 (T VS1 for SBV Functions) For u ∈ SBV (Ω)

we define the total cyclic variation as

T VS1(u) =
∫

Ω\Su

|∇u|dx +
∫

Su

dS1

(

u−, u+)

dHm−1. (4)

A straightforward generalization is the weighted T VS1

where the contribution to T VS1 at each point x ∈ Ω is
weighted by a function g : Ω → R>0:

T V
g

S1(u) =
∫

Ω\Su

g |∇u|dx

+
∫

Su

gdS1

(

u−, u+)

dHm−1. (5)

This can be used to enable spatially adaptive regularizations.
Writing |u− − u+| instead of dS1(u−, u+) in (4) would give

just the usual T V seminorm. Thus, in the region where u is
smooth T VS1 behaves just like T V , whereas at jumps it ex-
plicitly handles the S1 structure by taking the cyclic distance
dS1 instead of the linear one.

Note that T VS1 is not convex on the vector space
SBV (Ω) because of the nonconvex distance dS1 :

Proposition 1 T VS1 is not convex on SBV (Ω).

Proof For any A ⊂ Ω with a rectifiable nonzero perime-
ter, PerΩ(A) := T V (χA) > 0, define u1, u2 ∈ SBV (Ω) by
u1 := 0, u2 := χA. Then T VS1(u1) = T VS1(u2) = 0 but
T VS1(

u1+u2
2 ) = 1

2 PerΩ(A) > 0. �

In the next section, we will introduce a convex repre-
sentation for efficiently minimizing functionals involving
T VS1 . As a consequence, this will also allow us to extend the
definition of T VS1 to all measurable functions u : Ω → R.

3 Convex Representation of T VS1

The convexification of T VS1 is based on the general frame-
work of functional lifting.

3.1 Functional Lifting

In a series of papers [1, 20–23] it was shown that for func-
tionals of the form

E(u) =
∫

Ω\Su

h
(

x,u(x),∇u(x)
)

dx

+
∫

Su

d
(

x,u−(x), u+(x)
)

dHm−1(x) (6)

a tight convex relaxation can be found using the method of
cartesian currents [10] and that this relaxation can be em-
ployed to minimize these functionals. The idea is to restate
E(u) in terms of the graph function 1u of u, see Figs. 2
and 3:

1u : Ω × R → R, 1u(x, t) =
{

1 if t < u(x),

0 else.
(7)

Although the functional E(u) is in general highly non-
convex, it turns out that in case where h : Ω × R × R

m → R

is convex in its third argument (i.e. in the gradient ∇u) it can
be recast as a convex function of 1u [1, Lemma 3.7]:

Lemma 2 For v ∈ BV (Ω × R) define

E (v) = sup
ϕ

∫

Ω×R

ϕDv (8)
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Fig. 3 The graph function 1u : Ω × Γ → {0,1} of a function
u ∈ SBV (Ω). The function 1u has the value 1 under the graph of u,
and 0 otherwise

where the supremum is taken over all vector fields ϕ =
(ϕx,ϕt ) : Ω × R 	→ R

m × R satisfying

ϕt (x, t) ≥ h∗(x, t, ϕx(x, t)
)

and
∣

∣

∣

∣

∫ t ′

t

ϕx(x, s) ds

∣

∣

∣

∣

≤ d
(

x, t, t ′
)

(9)

for all x ∈ Ω and t, t ′ ∈ R. Then, for all u ∈ SBV (Ω),

E (1u) ≤ E(u). (10)

Moreover, equality holds in (10) for a given u if and only
if there is a vector field ϕ ∈ K with certain properties, see
[1, Lemma 3.7]. Here, h∗(x, t, q) := supp p · q − h(x, t,p)

is the Legendre-Fenchel conjugate of h(x, t,p) with respect
to p. For a detailed introduction to convex analysis we refer
to [24]. Dv denotes the distributional gradient of v.

The main advantage of formulation (10) is that E in (8) is
convex in v = 1u. This can be used to efficiently find mini-
mizers of E as was done e.g. in [21], see also Sect. 5. In our
case E = T VS1 , we have h(x, t,p) = |p| and d(x, t, t ′) =
dS1(t, t ′), comparing (4) with (6). Application of the above
Lemma 2 leads to the following convex representation of
T VS1 .

Proposition 2 For u ∈ SBV (Ω),

T VS1(u) = sup
ϕx∈K

∫

Ω×R

ϕx · ∇x1u (11)

with the constraint set

K =
{

ϕx : Ω × R 	→ R
m

∣

∣

∣

∣

∣

∣ϕx(x, t)
∣

∣ ≤ 1,

∣

∣

∣

∣

∫ t ′

t

ϕx(x, s) ds

∣

∣

∣

∣

≤ dS1

(

t, t ′
)

∀x ∈ Ω, t, t ′ ∈ R

}

. (12)

We write ∇x1u for the distributional gradient Dx1u with
respect to the spatial variable x, and later also divx ϕx for the
spatial divergence of ϕx and divϕ = divx ϕx + ∂tϕ

t for the
spatio-temporal divergence of ϕ = (ϕx,ϕt ). Since equality
(11) is fundamental for our discussion, for the convenience
of the reader we present here a direct proof without referring
to Lemma 2. This also has the advantage that one sees how
the constraints (12) on ϕ naturally arise. Lemma 2 will be
used later when we deal with more general regularizers for
S1-valued functions.

Proof of Proposition 2 Let u ∈ SBV (Ω). For a general vec-
tor field ϕ : Ω × R → R

m × R, ϕ = (ϕx,ϕt ) with ϕt ≡ 0,
Lemma 2.8 of [1] states that
∫

Ω×R

ϕx∇x1u =
∫

Ω\Su

ϕx(x,u)∇udx

+
∫

Su

(∫ u+

u−
ϕx(x, s) ds

)

· νudHm−1(x)

where u, u±, ∇u and νu are all evaluated at x. Here, νu

is the normal vector indicating the jump direction of u as
described in Sect. 2.1. Comparing the corresponding parts,
this expression is less than or equal to

T VS1(u) =
∫

Ω\Su

|∇u|dx +
∫

Su

dS1

(

u−, u+)

dHm−1(x)

if

ϕx(x,u)∇u ≤ |∇u|,
(∫ u+

u−
ϕx(x, s) ds

)

· νu ≤ dS1

(

u−, u+)

(13)

for a.e. x ∈ Ω \ Su, respectively for Hm−1-a.e. x ∈ Su. De-
manding these constraints for all possible vectors p ∈ R

m

instead of ∇u and all t, t ′ instead of u and u±, we arrive at
the constraints

∣

∣ϕx(x, t)
∣

∣ ≤ 1,

∣

∣

∣

∣

∫ t ′

t

ϕx(x, s) ds

∣

∣

∣

∣

≤ dS1

(

t, t ′
)

(14)

for all x ∈ Ω , t, t ′ ∈ R, which are exactly the ones in
(12). Inequalities (13) are certainly fulfilled given (14). This
proves (11) at least with ≥ instead of equality.

To show equality, we must construct a vector field ϕx sat-
isfying (14) such that equalities hold in (13). We first define
ϕx(x, t) for t ∈ Γ = [0,1) only, and then extend this defini-
tion to all t ∈ R by 1-periodicity. For x ∈ Ω \ Su set

ϕx(x, t) := ∇u

|∇u|
(

1 − 2
(

(t − u) mod 1
))

if ∇u �= 0, and ϕx(x, t) := 0 otherwise. Note that the ap-
proximate gradient ∇u : Ω → R

m is by definition always a
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function and not only a measure (Sect. 2.1). For x ∈ Su, let
h := (u+ − u−) mod 1, so that h ∈ Γ , and set

ϕx(x, t) := νu(x)dS1(0, h)

×
(

χ[0,h](t − u−)

h
− χ[0,1]\[0,h](t − u−)

1 − h

)

if h > 0, and ϕx(x, t) := 0 otherwise. Let us first ver-
ify the equalities in (13). The first one for x ∈ Ω \ Su is
immediate. For the second one for x ∈ Su, observe that
∫ u−+1
u− ϕx(x, s) ds = 0 and thus

∫ u−+k+1
u−+k

ϕx(x, s) ds = 0 for
any k ∈ Z due to 1-periodicity of ϕx . Therefore, the integral
in (13) reduces to

∫ u+

u−
ϕx(x, s) ds =

∫ u−+h

u−
ϕx(x, s) ds

with h as defined above. This can be easily evaluated to
dS1(0, h) = dS1(u−, u+) times νu(x), giving the second
equality in (13).

Next, we must verify the constraints (14). The first one
is obviously fulfilled for x ∈ Ω \ Su, and also for x ∈ Su

due to dS1(0, h) ≤ h and dS1(0, h) ≤ 1−h. The second con-
straint can be verified directly for all t, t ′, but is most easily
seen to hold using the equivalent formulation in Proposi-
tion 3 below: The integral of ϕx over the interval [u,u + 1)

for x ∈ Ω \ Su, respectively over [u−, u− + 1) for x ∈ Su

is zero. Since ϕ is 1-periodic by construction, also the inte-
grals over Γ are zero by Lemma 3 below. Thus, ϕx satisfies
the conditions of Proposition 3, so that also the second con-
straint of (14) is fulfilled. �

3.2 From Quadratic to Linear Complexity

The integral constraint in the definition (12) of K , using this
formulation, must be satisfied for all pairs t < t ′. In practice,
the space of cyclical values Γ needs to be discretized at n

levels 0
n
, . . . , n−1

n
for some n ≥ 1. In the discretization, this

means that the number of constraints in (12) grows quadrat-
ically with the number of levels. Enforcing them quickly be-
comes unfeasible with respect to both runtime and memory
consumption even for a moderate number of levels. Surpris-
ingly, for the special metric d = dS1 there is an equivalent
formulation of this constraint which leads to a much more
efficient implementation.

One of the main contributions of this paper is to show
that one can efficiently minimize functionals involving the
T VS1 regularizer. This is based on the following proposition
which states that one can replace the integral constraint by a
much simpler equivalent formulation:

Proposition 3 (Constraint Equivalence)

∣

∣

∣

∣

∫ t ′

t

ϕx(x, s) ds

∣

∣

∣

∣

≤ dS1

(

t, t ′
)

for all t, t ′ ∈ R (15)

⇐⇒
ϕx(x, ·) 1-periodic, (16)
∣

∣ϕx(x, t)
∣

∣ ≤ 1 for a.e. t ∈ Γ, (17)
∫

Γ

ϕx(x, s) ds = 0. (18)

Proof Direction “⇒”: From (15) we have

∣

∣

∣

∣

∫ t ′

t

ϕx(x, s) ds

∣

∣

∣

∣

≤ dS1

(

t, t ′
) ≤ t ′ − t.

Dividing both sides by t ′ − t for t < t ′ and letting t, t ′ → t0

for some t0 ∈ Γ we obtain (17). Furthermore, setting t = t0

and t ′ = t0 + 1 for a fixed t0 yields

∣

∣

∣

∣

∫ t0+1

t0

ϕx(x, s) ds

∣

∣

∣

∣

≤ dS1(t0, t0 + 1) = 0

and therefore
∫ t0+1
t0

ϕx(x, s) ds = 0. Specifically, t0 = 0

yields (18). Defining f (t) := ∫ t

0 ϕx(x, s) ds, this means
that f (t + 1) = f (t) for all t , i.e. f is 1-periodic. Since
ϕx(x, t) = f ′(t), (16) follows.

Direction “⇐”: Let t, t ′ ∈ R. Since ϕx(x, ·) is 1-periodic,
from (18) we easily get that also

∫ t+k

t

ϕx(s) ds = 0

for all integers k, using Lemma 3 below. Also, by 1-
periodicity (17) holds more general for all t ∈ R. Therefore,

∣

∣

∣

∣

∫ t ′

t

ϕx(s) ds

∣

∣

∣

∣

=
∣

∣

∣

∣

∫ t ′

t

ϕx(s) ds −
∫ t+k

t

ϕx(s) ds

∣

∣

∣

∣

=
∣

∣

∣

∣

∫ t ′

t+k

ϕx(s) ds

∣

∣

∣

∣

≤
∫ t ′

t+k

∣

∣ϕx(s)
∣

∣ds

≤
∫ t ′

t+k

1ds = |t ′ − t − k|

for k with t + k ≤ t ′ and in the same way also for k with
t + k ≥ t ′. Combining these estimates for every k, we arrive
at (15) using the representation of dS1 in Lemma 1. �

Effectively, this reduces the memory and time complex-
ity of enforcing the constraint from quadratic to just linear.
This way, from the implementation side the regularization
of general data terms with T VS1 becomes just as inexpen-
sive as the usual T V regularization [22], where the number
of constraints also grows linearly with the number of levels.
In the proof, we have used the following simple fact about
integrals of periodic functions:
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Lemma 3 Let p : R → R be 1-periodic. Then, for any
a, b ∈ R,

∫ a+1

a

p(s) ds =
∫ b+1

b

p(s) ds. (19)

Proof By the periodicity of p we obtain for all a ∈ R

∫ a+1

a

p(s) ds =
∫ 1

a

p(s) ds +
∫ a+1

1
p(s) ds

=
∫ 1

a

p(s) ds +
∫ a

0
p(s + 1) ds

=
∫ 1

a

p(s) ds +
∫ a

0
p(s) ds =

∫ 1

0
p(s) ds,

from which the statement follows. �

3.3 Dual Representation of T VS1 and Definition for All
Measurable Functions

In the representation (11), the vector fields ϕx over which
the supremum is taken are not required to be smooth or con-
tinuous. However, having only smooth ϕ can be useful for
applications. In fact, one can show that one can restrict the
supremum to vector fields ϕx which are smooth in x and t ,
and have compact support with respect to the x variable
(compact support in the t variable is not required). Since the
proof of this is quite technical, we only give the main lines
here. Basically, if u is smooth outside the jump set Su, i.e.
u ∈ C∞(Ω \Su), then a smooth vector field ϕx with (14) and
equalities in (13) can be constructed, so that the supremum
is attained for this ϕx . For general u ∈ SBV , using partitions
of unity one can construct smooth vector fields ϕx such that
the integrals of ϕx∇x1u are arbitrarily close to T VS1(u).

Starting from representation 2 of T VS1 and considering
only smooth ϕx we can employ integration by parts to obtain
the following useful dual formulation of T VS1 which does
not require to know the jump set Su explicitly:

Theorem 1 (Dual Representation) For every u ∈ SBV (Ω)

it holds

T VS1(u) = sup
ϕx∈K

∫

Ω

∫ u(x)

0
divx ϕx(x, s) ds dx (20)

with

K =
{

ϕx ∈ C∞
c

(

Ω;C∞(

R;R
m
))

∣

∣

∣

∣

ϕx(x, ·) 1-periodic,
∣

∣ϕx(x, t)
∣

∣ ≤ 1,

∫

Γ

ϕx(x, s) ds = 0 ∀x ∈ Ω, t ∈ Γ

}

. (21)

Proof Follows directly from representation 2 by integration
by parts and utilizing the efficient constraint reformulation
in Proposition 3 (and substituting ϕx by −ϕx ). �

The lower bound 0 of the inner integral in (20) can be
replaced by any other constant, leaving the overall integral
value unchanged. For the weighted variant T V

g

S1 the con-
straint |ϕx(x, t)| ≤ 1 must be replaced by |ϕx(x, t)| ≤ g(x).

Note that the expression (20) is well defined for all mea-
surable u : Ω → R. Indeed, since ϕx(x, ·) is 1-periodic with
∫

Γ
ϕx(x, s) ds = 0, for each x ∈ Ω we can replace the upper

integration bound u(x) in (20) by a value from Γ = [0,1).
Hence, the overall integral is finite and well defined for each
ϕ ∈ K .

Definition 2 (T VS1 for Measurable Functions) We define
T VS1(u) for every measurable u : Ω → R by (20).

The representation in Theorem 1 is amazingly similar to
the dual representation (3) of the usual total variation for
scalar valued function. In fact, the integral in (20) reduces di-
rectly to (3) assuming that ϕ(x, t) only depends on x. There-
fore, our definition of T VS1 can be seen as a natural notion
of total variation for S1-valued functions.

We remark that the dual formulation of T VS1 requires the
introduction of an additional dimension to the problem cor-
responding to the range space of u. On one hand this means
additional memory requirements (after discretization). But
on the other hand this allows one to easily couple and min-
imize T VS1 with arbitrary, possibly nonconvex data terms,
as will be done in Sect. 5.

4 Properties of T VS1

We will now investigate some mathematical properties of
T VS1 . First of all, T VS1 has the desired property that, when-
ever u attains two different values a, b ∈ R, the value change
is penalized by the dS1 distance of a and b multiplied with
the length of the interface:

Proposition 4 (Consistency with dS1 ) With fixed a, b ∈ R

and A ⊂ Ω , let u = aχA + bχĀ. Then

T VS1(u) = dS1(a, b)PerΩ(A) (22)

where PerΩ(A) = T V (χA) is the perimeter of A in Ω .

Proof By Theorem 1,

T VS1(u) = sup
ϕ∈K

∫

Ω

χA(x)

∫ a

0
divx ϕ(x, s) ds dx

+
∫

Ω

(

1 − χA(x)
)

∫ b

0
divx ϕ(x, s) ds dx
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= sup
ϕ∈K

∫

Ω

χA(x)divx

(∫ a

b

ϕ(x, s) ds

)

dx

+
∫ b

0

∫

Ω

divx ϕ(x, s) dx ds. (23)

The last integral is zero since ϕ is zero on the bound-
ary. For each ϕ ∈ K , the function p(x) := ∫ a

b
ϕ(x, s) ds

in the first integral belongs to C∞
c (Ω;R

m) and it holds
|p(x)| ≤ dS1(a, b) using Proposition 3. Conversely, any
p ∈ C∞

c (Ω;R
m) bounded like this can be represented by

a ϕ ∈ K , e.g. set ϕ(x, t) := p(x)wa,b(t) for any 1-periodic
function w ∈ C∞(R) satisfying

∫ a

b
w(s) ds = dS1(a, b)

and |wa,b(t)| ≤ 1. This means that in (23) we can in-
stead take the supremum over all p ∈ C∞

c (Ω;R
m) with

|p| ≤ dS1(a, b). This results in the definition of just the usual
total variation and we obtain

T VS1(u) = sup
|p|≤d

S1 (a,b)

∫

Ω

χA(x)divx p(x) dx

= dS1(a, b)T V (χA) = dS1(a, b)PerΩ(A). �

Thus, T VS1 as defined above is indeed the total cyclic
variation of u. As a corollary we obtain that T VS1(u) is zero
for any constant u : Ω → R.

Since the values in S1 are periodic in nature one expects
that T VS1(u) does not change if the values of u are cycli-
cally shifted everywhere by the same amount. This is in-
deed the case as stated in the following proposition. This
means that T VS1 is independent of a concrete representa-
tion of S1 as the unit interval Γ = [0,1), respectively as
the line R, i.e. it does not matter which point of S1 is taken
to be 0. This property is not shared by T V regularization
(Fig. 10). For α ∈ R we define the shift operator Tα : Γ → Γ

by Tα(t) = t + α mod 1.

Proposition 5 (Cyclic Shift Invariance) For every
u : Ω → Γ and α ∈ R it holds

T VS1(Tα ◦ u) = T VS1(u). (24)

Note that the cyclic shift Tα is a usual shift followed by a
change of representation modulo 1. Since T VS1 is clearly
invariant under usual shifts, i.e. T VS1(u + α) = T VS1(u)

which follows immediately from the general definition (20),
the statement follows from the more fundamental Proposi-
tion 6, stated below.

Proposition 6 (Representation Invariance) For a u : Ω →
R and an integer function k : Ω → Z define uk(x) := u(x)+
k(x). Then

T VS1(uk) = T VS1(u). (25)

Proof By Theorem 1,

T VS1(uk) = sup
ϕx∈K

∫

Ω

∫ uk(x)

0
divx ϕx(x, s) ds dx.

Writing a(s) := divx ϕx(x, s) for brevity, the inner integral
is
∫ uk(x)

0
a(s) ds =

∫ u(x)+k(x)

0
a(s) ds

=
∫ u(x)+k(x)

k(x)

a(s) ds +
∫ k(x)

0
a(s) ds

=
∫ u(x)

0
a
(

s + k(x)
)

ds +
∫ k(x)

0
a(s) ds.

Since ϕx(x, ·) is 1-periodic with
∫ 1

0 ϕx(x, s) ds = 0 and the
operator divx is linear, also (divx ϕx)(x, ·) is 1-periodic with
∫ 1

0 divx ϕx(x, s) ds = 0. Therefore, the above equality gives

∫

Ω

∫ uk(x)

0
divx ϕx ds dx =

∫

Ω

∫ u(x)

0
divx ϕx ds dx.

Taking the supremum over ϕx ∈ K on both sides yields the
required identity. �

This means that T VS1 is independent of the R-represent-
ation of the S1-value u(x) at each point x ∈ Ω . We can
safely choose any other representation u(x) + k(x) at every
x ∈ Ω without altering the value of T VS1(u). On the other
hand, the usual T V of course does depend on the represen-
tation.

A useful geometrical property of T VS1 is that it is invari-
ant with respect to rigid transformations of the domain Ω :

Proposition 7 (Rigid Transformation Invariance) Let Ω ′ ⊂
R

m and A : Ω ′ → Ω be an isometry. Then for any
u : Ω → R,

T VS1(u ◦ A) = T VS1(u). (26)

Proof Follows from representation (20) by the integral
transformation formula and the invariance of the set K in
(21) with respect to linear isometries. �

In Sect. 5 we will address the existence of minimizers for
general T VS1 regularized problems. The proof relies on the
following important lower-semicontinuity property of T VS1 .

Proposition 8 (Lower-Semicontinuity) T VS1 is lower-semi-
continuous with respect to pointwise a.e. convergence in the
dS1 metric, i.e. it holds

T VS1(u) ≤ lim inf
n→∞ T VS1(un) (27)
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for all sequences un : Ω → R, n ≥ 1, and functions
u : Ω → R with dS1(un(x), u(x)) → 0 for a.e. x ∈ Ω .

Proof Let un,u : Ω → R with un(x) → u(x) pointwise a.e.
in Ω in the dS1 metric, i.e. dS1(un(x), u(x)) → 0 for a.e.
x ∈ Ω . For every ϕ ∈ K and v : Ω → R define

Fϕ(v) :=
∫

Ω

∫ v(x)

0
divx ϕx(x, s) ds dx. (28)

By representation in Theorem 1 it holds

T VS1(v) = sup
ϕ∈K

Fϕ(v) for all v : Ω → R, (29)

and for instance

Fϕ(v) ≤ T VS1(v) for all v : Ω → R and ϕ ∈ K. (30)

For each fixed ϕ ∈ K and n ≥ 1 we have the estimate

∣

∣Fϕ(un) − Fϕ(u)
∣

∣ =
∣

∣

∣

∣

∫

Ω

∫ un(x)

u(x)

divx ϕx(x, s) ds dx

∣

∣

∣

∣

=
∣

∣

∣

∣

∫

Ω

∫ un(x)−k(x)

u(x)

divx ϕx(x, s) ds dx

∣

∣

∣

∣

≤ Cϕ

∫

Ω

∣

∣un(x) − u(x) − k(x)
∣

∣dx

with Cϕ := ‖divx ϕx‖L∞(Ω×Γ ) for every k : Ω → Z. We
have used

∫

Γ
divx ϕx(x, s) ds = 0 and the 1-periodicity of

divx ϕ(x, ·) together with Lemma 3 for the second equality.
For each x ∈ Ω we can choose a k(x) ∈ Z such that |un(x)−
u(x)−k(x)| = dS1(un(x), u(x)) due to Lemma 1. Choosing
this specific function k : Ω → Z in the above inequality, we
obtain for all ϕ ∈ K and n ≥ 1

∣

∣Fϕ(un) − Fϕ(u)
∣

∣ ≤ Cϕ

∫

Ω

dS1

(

un(x),u(x)
)

dx. (31)

By assumption, the integrand on the right hand side tends to
0 pointwise a.e. in Ω and is obviously bounded by 1, with
1 ∈ L1(Ω). Thus, Lebesgue’s convergence theorem yields
that the right hand side of (31) tends to zero for n → ∞, so
that

Fϕ(u) = lim
n→∞Fϕ(un). (32)

Therefore, by (30) we also have

Fϕ(u) = lim inf
n→∞ Fϕ(un) ≤ lim inf

n→∞ T VS1(un). (33)

Taking the supremum over all ϕ in (33), and using (29), we
finally get

T VS1(u) = sup
ϕ∈K

Fϕ(u) ≤ lim inf
n→∞ T VS1(un),

i.e. the lower-semicontinuity of T VS1 . �

Giaquinta et al. proved several weak lower-semiconti-
nuity results in [11, Sect. 6] for the R

2-embedding formu-
lation of T VS1 using cartesian currents.

5 Regularization with T VS1

The introduction of the regularizer T VS1 is of course moti-
vated by optimization problems, namely the ones where the
S1 structure must be taken into account.

5.1 Optimization Problem and Existence of Minimizers

We consider an arbitrary, possibly nonconvex pointwise data
term

∫

Ω
	(x,u(x)) dx and apply T VS1 regularization to ob-

tain the overall optimization problem

inf
u:Ω→R

E(u), E(u) =
∫

Ω

	
(

x,u(x)
)

dx + λT VS1(u).

(34)

The weight λ > 0 allows to choose the influence of the reg-
ularizer. Since we work with functions u : Ω → S1, repre-
sented by u : Ω → R, it is natural to assume that 	 is rep-
resentation invariant, i.e. that 	(x, ·) is 1-periodic. To make
sure that the problem (34) has a minimizer we also assume
that 	(x, ·) is lower-semicontinuous with respect to dS1 con-
vergence, i.e.

	(x, t) ≤ lim inf
n→∞ 	(x, tn) whenever dS1(tn, t) → 0 (35)

for each fixed x ∈ Ω and t ∈ R. To ensure lower semi-
continuity of the data term energy, we further assume a
lower bound 	(x, t) ≥ g(x) for all x ∈ Ω , t ∈ R with some
g ∈ L1(Ω). For example, this is automatically satisfied if
the data term is nonnegative, as will be the case in all of our
considered applications.

First of all, the next theorem ensures the existence of min-
imizers of (34). The proof of this result requires an argu-
ment especially tailored for the S1 case, since functions u

with T VS1(u) < ∞ need not necessarily lie in BV (Ω). As
a simple example consider any function u : Ω → {0,1} on
Ω = (0,1) which jumps infinitely often between 0 and 1,
so that T VS1(u) = 0 and T V (u) = ∞. Note that the theo-
rem establishes existence of functions u : Ω → R instead of
u : Ω → [0,1), in accordance with the extended Definition 2
of T VS1 .

Theorem 2 (Solvability) Problem (34) admits a minimizer
u : Ω → R (with T VS1(u) < ∞).

Proof Consider a minimizing sequence (un)n, so that
∫

Ω

	
(

x,un(x)
)

dx + λT VS1(un)
n→∞−→ E∗ (36)
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with E∗ being the optimal infimum value in (34). First,
this gives the uniform bound T VS1(un) ≤ C for all n with
some C > 0. Consider the embedding e : R → R

2 of the
circle S1, respectively line R into R

2 as in Lemma 4 be-
low. By this lemma the functions e ◦ un : Ω → R

2 are el-
ements of BV (Ω;R

2) with T V (e ◦ un) ≤ T VS1(un) ≤ C

for all n. Thus, the sequence (e ◦ un)n is uniformly bounded
in BV (Ω;R

2) (the L1 norm is trivially bounded since
|e ◦ un(x)| = 1

2π
for all x and n). By the weak∗ compactness

of BV (Ω;R
2) there exists a subsequence, again denoted by

e ◦ un, weak∗ converging to some v : Ω → R
2. For instance,

e ◦ un → v in L1(Ω;R
2).

Therefore, also e ◦ un → v pointwise a.e. in Ω for a
subsequence. Since |e ◦ un(x)| = 1

2π
for all x and n, this

gives that also |v(x)| = 1
2π

a.e. in Ω . This allows us to de-
fine a function u : Ω → R with e ◦ u(x) = v(x) a.e. in Ω .
The convergence (e ◦ un)(x) → v(x) = (e ◦ u)(x) directly
gives un(x) → u(x) a.e. in the dS1 metric, i.e. dS1(un(x),

u(x)) → 0. By the lower-semicontinuity property 8 of T VS1

it follows that

T VS1(u) ≤ lim inf
n→∞ T VS1(un).

Also, by the lower-semicontinuity and the lower bound of
the data term 	 we can apply Fatou’s lemma to get
∫

Ω

	
(

x,u(x)
)

dx ≤ lim inf
n→∞

∫

Ω

	
(

x,un(x)
)

dx.

Combining these two estimates we get

E(u) =
∫

Ω

	
(

x,u(x)
)

dx + λT VS1(u)

≤ lim inf
n→∞

∫

Ω

	
(

x,un(x)
)

dx + λT VS1(un) = E∗,

i.e. u : Ω → R minimizes E and T VS1(u) < ∞. �

Existence of Dirichlet minimizers for the corresponding
formulation of energy (34) in the setting of cartesian cur-
rents was proven in [9, Sect. 5, Theorem 1].

In the proof we have used the following embedding re-
sult.

Lemma 4 Define an embedding map of the circle S1, re-
spectively the line R, into R

2 by

e : R → R
2, e(t) := 1

2π

(

cos 2πt

sin 2πt

)

. (37)

Then each u : Ω → R with T VS1(u) < ∞ defines a function
e ◦ u : Ω → R

2 with e ◦ u ∈ BV (Ω;R
2) and the following

inequality holds:

T V (e ◦ u) ≤ T VS1(u). (38)

Proof Recall that the total variation for vectorial functions
v ∈ L1(Ω;R

2) is defined similarly as in the scalar case (3)
by

T V (v) := sup
|ϕ|≤1

∫

Ω

v1(x)divx ϕ1(x) + v2(x)divx ϕ2(x) dx

where the supremum is taken over all ϕ ∈ C∞
c (Ω;R

m)2

with
√

ϕ1(x)2 + ϕ2(x)2 ≤ 1 for all x. Consider specifically
v := e ◦ u and an arbitrary fixed ϕ ∈ C∞

c (Ω;R
m)2. Define a

p : Ω × R → R
m by

p(x, t) := −ϕ1(x) sin 2πt + ϕ2(x) cos 2πt

for all x ∈ Ω and t ∈ R. Then one easily checks that p ∈ K

with the set K in (21). Furthermore, by simple integration
∫

Ω

∫ u(x)

0
divx p(x, s) ds dx

=
∫

Ω

∫ u(x)

0

(−ϕ1(x) sin 2πs + ϕ2(x) cos 2πs
)

ds dx

=
∫

Ω

cos 2πu(x) − 1

2π
divx ϕ1(x)

+ sin 2πu(x)

2π
divx ϕ2(x) dx

=
∫

Ω

(

(e ◦ u)1(x) − 1

2π

)

divx ϕ1(x)

+ (e ◦ u)2(x)divx ϕ2(x) dx.

The constant 1
2π

in this expression can be eliminated, since
ϕ1 is zero on the boundary of Ω . We obtain
∫

Ω

(e ◦ u)1(x)divx ϕ1(x) + (e ◦ u)2(x)divx ϕ2(x) dx

=
∫

Ω

∫ u(x)

0
divx p(x, s) ds dx.

By the representation (20) of T VS1 , the right hand side is
bounded by T VS1(u) independently of p and thus of ϕ. Tak-
ing the supremum over all ϕ we get the required inequality
(38). �

5.2 Lifted Optimization Problem and Relaxation

The question is now how to efficiently solve the problem
(34). For the implementation, it is convenient to work with
specific unique representatives of the cyclic values u(x) for
each x. We choose Γ = [0,1) as the basic interval, i.e. con-
sider u : Ω → Γ as the solution candidates.

First, using representation (20) the problem (34) can be
rewritten as the saddle-point problem

inf
u

sup
ϕ∈K

∫

Ω×Γ

−1u divϕ ds dx (39)
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with the set K given by

K =
{

ϕ = (

ϕx,ϕt
) ∈ C∞

c

(

Ω;C∞(

Γ ;R
m × R

))

∣

∣

∣

∣

ϕt (x, t) ≥ −	(x, t),
∣

∣ϕx(x, t)
∣

∣ ≤ λ,

∫

Γ

ϕx(x, s) ds = 0 ∀x ∈ Ω, t ∈ Γ

}

. (40)

The dual variables ϕ = (ϕx,ϕt ) in the set K now also have
a “vertical” component ϕt in addition to ϕx to handle the
data term 	. The constraint set (40) can be derived exactly
as in Sect. 3, using the equivalent constraint reformulation
of Proposition 3. Alternatively, one could derive the con-
straints from the general Lemma 2. As opposed to (21) the
1-periodicity is not required in (40) because we consider ϕ

only on the basic set Γ = [0,1). Note that we have incorpo-
rated the weight λ of T VS1 in (34) into the set K . For the
weighted variant T V

g

S1 , the second constraint in K must be
replaced by |ϕx(x, t)| ≤ λg(x).

The idea to find a solution u of (39) is to optimize di-
rectly in terms of graph functions 1u instead of u. Note that
although the expression (39) is convex in 1u, the set of so-
lutions {1u | u : Ω → Γ } is not convex. The reason is that
the graph functions 1u : Ω × Γ → {0,1} have binary range.
Therefore, to overcome this difficulty we set v = 1u and re-
lax the problem (39) to

inf
v∈C

E (v), E (v) = sup
ϕ∈K

∫

Ω×Γ

−v divϕ ds dx (41)

with the convex set

C = {

v : Ω × R → [0,1]∣∣v(x, ·) non-increasing,

v(x, t) = 1 ∀t ≤ 0,

v(x, t) = 0 ∀t ≥ 1, ∀x ∈ Ω
}

. (42)

This set is the convex hull of the valid binary graph func-
tions. In other words, we extend the set of possible solutions
1u to also allow relaxed “graph functions” with possible in-
termediate values in [0,1].

Note that the condition in C on the monotonicity of
v(x, ·) is actually not necessary. In fact, since ϕt can be cho-
sen arbitrarily large in (40), the supremum in (41) will be
finite only if ∂tv ≤ 0, i.e. if v(x, ·) is non-increasing.

5.3 Efficient Primal-Dual Minimization

We discretize the two-dimensional image domain Ω into a
{0, . . . ,W − 1} × {0, . . . ,H − 1} pixel grid, with W ≥ 1
pixels horizontally and H ≥ 1 pixels vertically. Dimensions
other than m = 2 can be handled in the same way. The
discretized image domain is again denoted by Ω . We also

discretize the range space Γ = [0,1) of u into n ≥ 1 lev-
els 0

n
, . . . , n−1

n
. This is needed since the relaxed problem

(41) is defined on the space Ω × Γ . The discretized vari-
ables v and ϕ, and the data term 	 are represented by their
node values v(x, i

n
) = vi(x) ∈ R, ϕx(x, i

n
) = nϕx

i (x) ∈ R
m,

ϕt (x, i
n
) = ϕt

i (x) ∈ R and 	(x, i
n
) = 	i(x) ∈ R at the pixels

x ∈ Ω for every 0 ≤ i < n. The factor n for ϕx is chosen to
simplify the resulting discretized energy.

The discretized version of (41) becomes

inf
v∈Cd

sup
ϕ∈Kd

∑

x∈Ω

n−1
∑

i=0

ϕx
i (x)∇vi(x) + ϕt

i (x)∂+
t vi(x) (43)

with

Cd = {

(vi)0≤i<n : Ω → [0,1]∣∣v0(x) = 1 ∀x ∈ Ω
}

(44)

and

Kd =
{

(

ϕx
i , ϕt

i

)

0≤i<n
: Ω → R

m × R

∣

∣

∣

∣

∣

ϕt
i (x) ≥ −	i(x),

∣

∣ϕx
i (x)

∣

∣ ≤ λ

n
,

n−1
∑

j=0

ϕx
j (x) = 0 ∀0 ≤ i < n,x ∈ Ω

}

. (45)

The discretization Cd of the set C in (42) does not in-
clude the monotonicity constraint since it is already implied
through the supremum over ϕt as described at end of the
last section. The slightly altered constraint |ϕx | ≤ λ

n
in (45)

instead of |ϕx | ≤ λ in (40) arises as a consequence of dis-
cretizing the integral

∫

Γ
and the derivative ∂t .

We use forward differences with Neumann boundary
conditions for the spatial gradient ∇ . For example,
∂x1fx1,x2 = fx1+1,x2 − fx1,x2 if x1 < W − 1 and 0 if x1 =
W − 1 and define the divergence by div := −∇T , the neg-
ative adjoint operator, in order for a discrete form of par-
tial integration to hold. For the t-derivative ∂+

t we use for-
ward differences with zero boundary condition: ∂+

t ft =
ft+1 − ft if t < n − 1 and −ft if t = n − 1. This is
done to implicitly have vn(x) = 0. The negative adjoint t-
derivative ∂−

t = −(∂+
t )T is then given by backward differ-

ences: ∂−
t ft = ft − ft−1 if t > 0 and ft if t = 0.

The optimization problem (43) is a classical saddle-point
problem. We solve it by the general algorithm of [21] which
is especially devised for this kind of problems. This is a fast
primal-dual algorithm which consists essentially in a gra-
dient descent in v and a gradient ascent in ϕ, with an or-
thogonal reprojection onto the sets Cd and Kd . Since Kd

includes the non-local constraint
∑n−1

j=0 ϕx
j = 0 there is no

simple formula for the projection. Therefore, instead of a
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direct projection we implement this sum constraint by La-
grange multipliers. For this, we add the term

inf
q:Ω→Rm

∑

x∈Ω

−q(x) ·
n−1
∑

j=0

ϕx
j (x) (46)

to the energy (43). The overall optimization problem be-
comes

inf
v∈Cd,q

sup
ϕ∈Kd

0

∑

x∈Ω

n−1
∑

i=0

ϕx
i (x)∇vi(x) + ϕt

i (x)∂+
t vi(x)

−
∑

x∈Ω

q(x)

n−1
∑

j=0

ϕx
j (x) (47)

with no constraints on the Lagrange multiplier q : Ω → R
m,

the set Cd as in (44) and the set Kd
0 , which is Kd in (45)

without the integral constraint:

Kd
0 =

{

ϕ

∣

∣

∣

∣

ϕt
i (x) ≥ −	i(x),

∣

∣ϕx
i (x)

∣

∣ ≤ λ

n
∀i, x

}

. (48)

The equations for minimization of (47) can now be obtained
in a straightforward way from the general algorithm in [21]
and are listed in Fig. 4. In the algorithm, we denote by πM

the euclidean projection onto M . Beside τ = σ = 1 one
is also free to choose any other time steps τ, σ > 0 with
τσ ≤ 1. We use [19] to set the time steps automatically.

Note that due to Proposition 3 we can substantially re-
duce the amount of memory required to implement the T VS1

regularization by an order of magnitude. For illustration, for
a 256 × 256 image and n = 64 levels discretization for the
range set Γ , the original set (12) having quadratically many
constraints requires 1232 MB memory overall, while the set
(21) with linearly many constraints requires only 97 MB. In
fact, for (21) only one constraints needs to be dualized as an
additional energy term (46), introducing new variables q(x),
x ∈ Ω .

5.4 Optimality of Solutions

In practice, the computed relaxed graph function solution v :
Ω × Γ → [0,1] may actually not be binary at some points
x ∈ Ω , so that v(x, ·) is some decreasing function different
from a step function. For the optimization problem with the
usual T V regularizer instead of T VS1 in (34) it is known
[22] that a simple thresholding of the relaxed solution v e.g.
at level 1

2 ,

u(x) := sup
t∈Γ : v(x,t)≥ 1

2

t, (49)

produces an optimal solution u of (34). In our T VS1 case
there is a striking difference: The discretized problem is NP-
hard!

Initialize:

v0
i = 0 for i ≥ 1, v0

0 = 1, v̄0 = v0, q0 = 0, ϕ0 = 0,

τ = σ = 1.

Iterate:

Dual ascent in ϕ: for 0 ≤ i < n, pointwise in x ∈ Ω:

ϕ
x,k+1
i = π|·|≤ λ

n

(

ϕ
x,k
i + σ

3

(∇v̄k
i − q̄k

)

)

,

ϕ
t,k+1
i = max

(

ϕ
t,k
i + σ

2
∂+
t v̄k

i , −	i

)

.

Primal descent in v, q: for 1 ≤ i < n, pointwise in x ∈ Ω:

vk+1
i = π[0,1]

(

vk
i − τ

6

(

divx ϕ
x,k+1
i + ∂−

t ϕ
t,k+1
i

)

)

,

qk+1 = qk + τ

n

n−1
∑

j=0

ϕ
x,k+1
j .

Extrapolation step: for 1 ≤ i < n, pointwise in x ∈ Ω:

v̄k+1
i = 2vk+1

i − vk
i ,

q̄k+1 = 2qk+1 − qk.

Fig. 4 Primal-dual algorithm for the T VS1 regularized optimization
problem (34), with the discrete formulation (47)

Proposition 9 (Discrete T VS1 is NP-Hard) For a discrete
range Γ with n ≥ 3 levels, where n = 3z for some z ∈ Z, the
optimization problem (34) is NP-hard.

Proof The range Γ is discretized into n equally spaced an-
gles αi = i

n
, i = 0, . . . , n−1. Since n = 3z with some z ∈ Z,

the set of angles contains the subset M = {0, 1
3 , 2

3 }. Choos-
ing the data term 	i(x) = ∞ for every i with αi �∈ M en-
sures that any candidate solution with finite energy will be
a function u : Ω → M, i.e. only these three angles will
be present. As the distance dS1 is the same for any pair of
these three angles, by Proposition 4, T VS1 then is nothing
but a Potts regularizer on three labels. The latter problem is
known to be NP hard [5] as the multiway cut problem [13]
can be reduced to it. �

Of course, the discretization step is necessary in order
to practically compute a solution. In light of the above re-
sult, in general we cannot expect exact solutions to (34).
Nevertheless, we still can use the thresholding formula (49)
to obtain an approximate solution. Furthermore, an energy
bound holds which gives an a posteriori energy estimate of
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the quality of the obtained solution:
∣

∣E(u) − E
(

u∗)∣
∣ ≤ ∣

∣E (1u) − E (v)
∣

∣. (50)

Here u∗ is the unknown optimal solution to (34), v the re-
laxed solution of (41) and u an approximate solution to (34)
obtained by some binarization method from v, e.g. by (49).
The bound follows from the simple observation that

E (v) ≤ E (1u∗) = E
(

u∗) ≤ E(u) = E (1u), (51)

where the inequalities hold because v is optimal for E and u∗
is optimal for E. In all our experiments the deviation from
the optimal solution was less than 5 % energy-wise. This is
an overestimation of the true deviation obtained with regard
to formula (50) by comparing E (1u) to E (v).

5.5 Primal Energy Computation

The primal energy E (v) for each candidate solution v ∈ Cd

can be computed by evaluating the supremum in (43) or,
equivalently, the supremum in (47) and the infimum over
the Lagrange multiplier q:

E (v) =
∑

x∈Ω

n−1
∑

i=0

−	i(x)∂+
t vi(x)

+ λ

n

∑

x∈Ω

min
q∈Rm

n−1
∑

i=0

∣

∣∇vi(x) − q
∣

∣. (52)

A value q ∈ R
m minimizing

‖z‖ := min
q∈Rm

n−1
∑

i=0

|zi − q| (53)

for a collection of vectors z = (z0, . . . , zn−1) ∈ (Rm)n is
known as the “geometric median” of z. It can be computed
e.g. using the iterative algorithm in [18].

5.6 Improved Binarization Method

The binary solution u obtained by the simple thresh-
olding method (49) may produce undesirable artifacts in
some cases as seen in the left image of Fig. 5. We pro-
pose an improved binarization method, which chooses the
“best” binarized solution with respect to the actually used
regularizer T VS1 . For a fixed point x ∈ Ω let v(x) =
(v0(x), . . . , vn−1(x)) be the vector v(x, ·) computed by the
algorithm. We compare v(x) with all possible n candidate
binary graph functions f i = (f i

0 , . . . , f i
n−1), 0 ≤ i < n, with

f i
j := χj≤i . For all x ∈ Ω we assign

u(x) := i(x)

n
, where i(x) := arg min

0≤i<n

∥

∥v(x) − f i
∥

∥ (54)

Fig. 5 Improved binarization of the relaxed solution, here for the in-
painting problem from Sect. 7.3. While simple binarization by thresh-
olding the relaxed graph function (left) may lead to artifacts (center),
the proposed adaptive method (right) picks a binary value closest with
respect to a distance derived from the regularizer T VS1 itself

with the seminorm ‖ · ‖ in (53). Since here we only deal
with scalar values zj := vj (x) − f i

j , the “geometric me-
dian” q realizing the minimum in (53) is easily seen to be
the usual median of the numbers z0, . . . , zn−1. It can thus be
computed by simply sorting these numbers. In practice, we
observed that this binarization removes the artifacts of the
simple method (49), see Fig. 5.

6 General Regularizers for S1-Valued Functions

Recall that our formulation of the total cyclic variation T VS1

is, in essence, based on the functional lifting framework of
Sect. 3.1, choosing special penalizations for the smooth and
the jump part of u. We have explicitly accounted for the S1

structure by setting the jump penalization to zero if u jumps
by 1 or some other integer value. Following this idea, we can
also devise convex representations for more general func-
tionals for S1-valued functions.

Consider a general functional of the form (10). In order
for it to be well defined for functions u : Ω → S1 with cycli-
cal range S1, which are represented by functions u : Ω → R,
the functions h and d must naturally satisfy the following
compatibility conditions:

• h(x, ·,p) 1-periodic ∀x ∈ Ω, p ∈ R
m, (55)

• d
(

x, t, t ′
) = 0 if t ′ − t ∈ Z ∀x ∈ Ω, t, t ′ ∈ R. (56)

This is because we want the values u(x) + k to actually rep-
resent one and the same point on S1 independently of k ∈ Z.
In other words, we demand E(u) to be representation invari-
ant in the sense of Proposition 6.

By functional lifting, a convex representation of E in
terms of 1u is given by (8) with the constraints (9) on ϕ.
Just as in the proof of Proposition 3, we can show that
(56) implies that ϕ(x, ·) is necessarily 1-periodic and that
∫

Γ
ϕx(x, s) ds = 0.
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The supremum over ϕ may not be attained for general E.
Then, functional lifting yields a convex relaxation of E in
terms of 1u. We also assume that we have smooth vector
fields, so that we can employ integration by parts. Summa-
rizing, a convex relaxation of E(u) for u ∈ SBV (Ω) is given
by

Econv(u) :=
∑

ϕ∈K

∫

Ω

−1u divϕ ds dx

= sup
ϕ∈K

∫

Ω

∫ u(x)

0
−divϕ(x, s) ds dx (57)

with the constraint set

K =
{

ϕ = (

ϕx,ϕt
) ∈ C∞

c

(

Ω;C∞(

R;R
m × R

))

∣

∣

∣

∣

ϕ(x, ·) 1-periodic,

ϕt (x, t) ≥ h∗(x, t, ϕx(x, t)
)

,

∣

∣

∣

∣

∫ t ′

t

ϕx(x, s) ds

∣

∣

∣

∣

≤ d
(

x, t, t ′
)

,

∫

Γ

ϕx(x, s) ds = 0 ∀x ∈ Ω, t, t ′ ∈ Γ

}

. (58)

Note that the inequality constraints are required only for
t, t ′ ∈ Γ = [0,1). Assuming the compatibility conditions
(55) and (56) we can prove a similar representation invari-
ance property of the convex relaxation Econv as in Propo-
sition 6. This means that the convex relaxation Econv of
E can indeed be viewed as a functional defined for func-
tions u : Ω → S1, independently of their representation as
u : Ω → R.

Proposition 10 (Representation Invariance) Let u : Ω → R

and let k : Ω → Z be some integer function. Define uk(x) :=
u(x) + k(x). Then Econv(uk) = Econv(u).

Proof By (57),

Econv(u) = sup
ϕ∈K

∫

Ω

∫ uk(x)

0

(

divx ϕx + ∂tϕ
t
)

ds dx

= sup
ϕ∈K

∫

Ω

∫ u(x)+k(x)

0

(

divx ϕx + ∂tϕ
t
)

ds dx.

Just as in the proof of Proposition 6, the integral over divx ϕx

can be written as

∫

Ω

∫ u(x)+k(x)

0
divx ϕx ds dx =

∫

Ω

∫ u(x)

0
divx ϕx ds dx.

On the other hand, for the inner integral over ∂tϕ
t we can

write
∫ u(x)+k(x)

0
∂tϕ

t ds = ϕt
(

u(x) + k(x)
) − ϕt (0)

= ϕt
(

u(x)
) − ϕt (0) =

∫ u(x)

0
∂tϕ

t ds

since ϕt (x, ·) is 1-periodic. Together, this combines to

∫

Ω

∫ uk(x)

0

(

divx ϕx + ∂tϕ
t
)

ds dx

=
∫

Ω

∫ u(x)

0

(

divx ϕx + ∂tϕ
t
)

ds dx.

Taking the supremum over ϕ ∈ K on both sides we obtain
the required identity. �

In the next sections we give some notable examples
of regularizers R for S1-valued functions, which have al-
ready been successfully applied in the case of functions
with linear range. In each case, we give the constraints on
the duals ϕ for the convex relaxation of the overall energy
∫

Ω
	(x,u(x)) dx + R(u).

6.1 Huber S1-Regularization

Regularization with the usual T V is known to produce
piecewise constant solutions, an effect known as staircas-
ing. Experiments show that this is also the case for T VS1 .
A simple remedy is to use quadratic penalization for small
values of ∇u and linear penalization otherwise. For this, one
penalizes the gradients ∇u (in the region Ω \ Su where u is
smooth) by the Huber function

hε(p) :=
{ |p|2

2ε
if |p| ≤ ε,

|p| − ε
2 else

(59)

for some small ε > 0, which smooths out the kink at the
origin. The regularizer is then

R(u) = λ

∫

Ω\Su

hε(∇u)dx + λ

∫

Su

dS1

(

u−, u+)

dHm−1.

(60)

The corresponding convex set K for linear structures was
computed in [22]. Adding the vanishing integral constraint,
the constraints (58) become

ϕt (x, t) ≥ −	(x, t) + ε

2λ

∣

∣ϕx(x, t)
∣

∣

2
,

∣

∣ϕx(x, t)
∣

∣ ≤ λ,
∫

Γ

ϕx(x, s) ds = 0.

(61)
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6.2 Quadratic S1-Regularization

In the case of vector space valued functions, application of
the quadratic regularizer produces a smoothing of the image,
which is roughly equivalent to smoothing with a Gaussian
kernel. Our framework enables one to define such a smooth-
ing operation also for S1-valued functions in a natural way.
We consider the regularizer

R(u) = α

∫

Ω

|∇u|2 dx +
∫

Su

δd
S1 (u−,u+)=0dHm−1 (62)

with parameter α > 0 where the indicator function δt is de-
fined as zero if t = 0 and as ∞ otherwise. It can be seen as
the limiting case of the Huber regularization (60), defining
λ depending on ε by λε := α · 2ε and letting ε → ∞. Then
λεhε(∇u) → α|∇u|2 in the smooth part, and in the jump
part the jumps are penalized more and more, so that in the
limit they become prohibited unless dS1(u−, u+) = 0, i.e. if
u− and u+ actually represent one and the same value in S1.

The relaxation is derived from (61) by means of this lim-
iting process giving the constraints

ϕt (x, t) ≥ −	(x, t) + 1

4α

∣

∣ϕx(x, t)
∣

∣

2
,

∫

Γ

ϕx(x, s) ds = 0.

(63)

6.3 Truncated Linear S1-Regularization

If two values u1, u2 are “too” distinct, it is often useful to
penalize just the fact that the values are different, by a con-
stant c independent of u1, u2. For small differences one can
still use e.g. the dS1 distance as in the case of T VS1 . This
leads to the truncated linear penalizer

R(u) = λ

∫

Ω\Su

|∇u|dx

+
∫

Su

min
(

ν,λdS1

(

u−, u+))

dHm−1 (64)

with parameters λ, ν > 0. A relaxation is given by (41) with
the constraints

ϕt (x, t) ≥ −	(x, t),
∣

∣ϕx(x, t)
∣

∣ ≤ λ,

∣

∣

∣

∣

∫ t ′

t

ϕx(x, s) ds

∣

∣

∣

∣

≤ ν,

∫

Γ

ϕx(x, s) ds = 0.

(65)

In order for the truncation in the jump part to have any
effect, the truncation parameter ν must of course be chosen
smaller than 1

2λ, where 1
2 is the maximal value achievable

by dS1 .

6.4 Mumford-Shah S1-Regularization

We can even obtain the full Mumford-Shah regularizer for
cyclic structures:

R(u) = α

∫

Ω\Su

|∇u|2 dx + ν

∫

Su

χd
S1 (u−,u+)�=0dHm−1

(66)

with parameters α, ν > 0. The last integral over the jump
part penalizes the overall length of the interface Su, but it
considers only the interface points where dS1(u−, u+) �= 0,
i.e. if there is really a jump in the S1 sense. Minimization of
the Mumford-Shah functional produces piecewise smooth
approximations of input signals f : Ω → R, choosing for
example 	(x,u(x)) := dS1(u(x), f (x))2.

For the case of functions with linear range, in [21] Pock
et al. introduced an algorithm for the minimization of this
functional based on the method of functional lifting. A re-
laxation for functions u : Ω → S1 is given by (41) with the
constraints

ϕt (x, t) ≥ −	(x, t) + 1

4α

∣

∣ϕx(x, t)
∣

∣

2
,

∣

∣

∣

∣

∫ t ′

t

ϕx(x, s) ds

∣

∣

∣

∣

≤ ν,

∫

Γ

ϕx(x, s) ds = 0.

(67)

6.5 Implementation

The quadratic and Huber-T V penalization can be imple-
mented in exactly the same way as in the case of T VS1 . The
only difference is the projection of dual variables ϕ onto the
corresponding constraint sets K in (58). For the quadratic
penalizer one has to project onto a parabola, and for Huber-
T V onto a sideways truncated parabola, see [22] for more
details.

The situation is different for the truncated linear and the
Mumford-Shah penalizer since there are quadratically many

non-local constraints | ∫ t ′
t

ϕx(x, s)ds| ≤ ν, respectively in
the discrete setting
∣

∣

∣

∣

∑

i<z≤j

ϕx
z (x)

∣

∣

∣

∣

≤ ν ∀0 ≤ i < j < n. (68)

Since each constraint involves many ϕ’s at once, we use
a different scheme than in Sect. 5.3. First, we introduce
auxiliary variables pi : Ω → R

m for 0 ≤ i < n through
∂−
t pi = ϕx

i and add the corresponding Lagrange multiplier
terms

inf
μi :Ω→Rm

∑

x∈Ω

n−1
∑

i=0

μi

(

∂−
t pi − σx

i

)

(69)
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Fig. 6 Denoising of angle values. T VS1 (right) reconstructs the
monotonous and the constant signal part correctly despite the strong
noise (Gaussian 10 %). T V (center) falsely penalizes wrap-arounds

driving the values towards the middle to reduce jump height. The re-
construction lacks monotonicity and is falsely equal to 1 in the constant
part to avoid the jump from 1 to 0.05 in the middle

to the energy (43) to enforce these equalities. Second, by
this the constraints on ϕx translate to the simpler ones
|pj − pi | ≤ ν for 0 ≤ i < j < n, x ∈ Ω . We now use the
observation that

δ|d|≤ν = sup
a∈Rm

a d − ν|a| ∀d ∈ R
m (70)

to enforce them (the indicator function δ|d|≤ν is 0 if the
constraint |d| ≤ ν is fulfilled and ∞ otherwise), adding the
terms

inf
aij :Ω→Rm

∑

x∈Ω

∑

0≤i<j<n

−aij (pj − pi) + ν|aij | (71)

to the energy. Finally, in terms of p the S1-constraint
∑

0≤j<n ϕj (x) = 0 translates into simply pn−1(x) = 0.
We use the extension [7] of the primal-dual algorithm

[21], since the proximal operators are not simply projections
this time. As there are far more primal than dual variables
due to quadratically many aij ’s in (71), we suggest to use
the version of the algorithm in [7] where the “bar”-copies
are introduced for the duals rather than for the primals.

7 Experiments

In this section we present several experiments demonstrat-
ing the use of T VS1 and other cyclic regularizers for various
imaging problems. We evaluate the T VS1 results by compar-
ing them with T V regularization, since no regularizers for
S1-valued functions have yet been investigated and T VS1 is
supposed to behave like T V in regions where u is smooth.

With a parallel CUDA implementation on NVIDIA GTX
480 a typical runtime for 256 × 256 images using 64 lev-
els for Γ is about 10 seconds for T VS1 . T V [22] requires
about 5 seconds. For illustration, the T VS1 runtime without
using our efficient formulation in Proposition 3 is about 12
minutes for 64 levels, and still about 2 minutes for 32 levels.
The latter are also the runtimes for the more advanced reg-
ularizers such as truncated linear and Mumford-Shah from
Sect. 6, since we use the same implementation scheme in

Sect. 6.5 for the non-local integral constraints in (58) and in
(15). We used n = 32 levels for Γ in all our experiments.

7.1 The T VS1 -L2 Model

The analogon of the famous ROF denoising model of Rudin,
Osher and Fatemi [25] for the cyclic case is

inf
u

∫

Ω

dS1

(

u(x), f (x)
)2

dx + λT VS1(u). (72)

We apply this to a one dimensional example in Fig. 6. The
signal f consisting of a monotonous and a constant part has
been degraded by adding 10 % Gaussian noise producing
numerous wrap-arounds. The results show that only T VS1 is
able to reconstruct the signal. Thus cyclic wrap-arounds are
handled correctly by T VS1 . In contrast, for T V there is no
choice of λ leading to a reconstruction without heavy fluctu-
ations or large displacements. This example clearly demon-
strates the advantage of T VS1 over noncyclic regularizers.

7.2 Cyclical Smoothing

A frequently encountered task in image processing is to pro-
duce a slightly smoothed version of a noisy signal. For func-
tions with a linear range this can be easily accomplished by
the standard convolution with a smoothing kernel. However,
this simple approach is not applicable for functions with
cyclic values. The reason is that the smoothing also occurs
across jumps of length 1 which do not constitute real jumps
in the S1 sense but only a change of representation.

In contrast, as can be seen in Fig. 7 the proposed
quadratic S1-penalizer from Sect. 6.2 indeed provides a
smoothing effect of cyclical signals while preserving jumps
of length 1.

7.3 Inpainting

Figure 8 shows an inpainting experiment for the periodic
hue values of the HSV color space. Values 0/9, . . . ,8/9 are
circularly arranged starting from the top left red region with
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Fig. 7 Smoothing of angle values. The proposed quadratic penalizer
(right) for S1 structures in Sect. 6.2 correctly recognizes wrap-arounds
of cyclic values and produces a smoothed signal which naturally re-
sembles the original noisy one (left). In contrast, the usual quadratic

penalizer (center) for functions with linear range does not allow any
value jumps at all. The resulting smoothed signal (with the cyclic data
term as in (72)) tends to stick either at value 0 or 1 in the presence of
wrap-arounds, and forfeits essential signal details

Fig. 8 Inpainting of periodic hue values. While total variation regular-
ization (center) does not handle wrap-arounds correctly (shrinking the
interface with the highest value jump, here from magenta to red) the
proposed T VS1 formulation (right) is designed to provide an optimal
solution for cyclic structures at no additional cost (Color figure online)

value 0 and ending with the top right magenta region with
value 8/9. We use model (72) with λ = 1 and the weighted
variant of the data term 	(x, t) = g(x)dS1(t, f (x))2, setting
g(x) = 0 for points x within the inpainting circle area and
g(x) = ∞ otherwise.

As Fig. 8 shows, T VS1 produces the expected symmetric
result, as opposed to T V . Thus, the image prior for cyclic
values in regions with no available data is more natural with
T VS1 than with T V .

7.4 Phase Denoising

Synthetic aperture radars (SAR) [8] capture terrain eleva-
tions by means of interferometry. A satellite sends out radio
waves of certain wavelength and records the echoed waves
going back from earth surface, producing a complex valued
image. Two such images taken from different view points or
at different times are combined to a phase differences image
of the respective complex numbers at each point. The phase
differences �φ ∈ [0,1) are essentially proportional to the
wrapped unknown ground height H ,

�φ = c(H mod 1) (73)

with some factor c > 0. Phase unwrapping techniques aim
to reconstruct H from �φ. As the phase images �φ are
noisy, a denoising preprocessing step is typically required.
Because the phases are cyclic, our framework of S1 regular-
izers applies naturally here.

Fig. 9 Denoising of cyclic phase images from synthetic aperture radar
(SAR). The phase measurements objects of interest (left), e.g. ter-
rain elevation, are typically rather noisy. Proposed regularizers such
as T VS1 provide a natural method to obtain a denoised result (right).
Top row shows the representatives of the phases from Γ = [0,1) and
the bottom row the same phases using continuous hue coloring

Figure 9 shows phase denoising using T V
g

S1 on the im-

age “longs” from the publicly available data from [8].1 We
added 10 % Gaussian noise to this simulated clean phase
image, wrapping the noisy values outside of [0,1) back to
this interval. We use the model (72) with λ = 0.1 and apply

1ftp://ftp.wiley.com/public/sci_tech_med/phase_unwrapping/data.zip.

ftp://ftp.wiley.com/public/sci_tech_med/phase_unwrapping/data.zip
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Fig. 10 Segmentation of regions with homogeneous atom lattice ori-
entation, coloring different orientations by different hues. This exam-
ple demonstrates the cyclic shift invariance of T VS1 in Proposition 5.
The results in (e) for the original data term 	(x, t) and in (f) for the

cyclically shifted one, 	(x, t − 0.5 mod 1), are nearly indistinguish-
able using T VS1 (coloring in (f) is shifted accordingly for comparison).
In contrast, using T V the solution may be different for different zero
orientations (c–d) (Color figure online)

the weighted variant T V
g

S1 in (5). The weight g is set to the
“correlation” which is available as part of the data. This is
an image with (0,1] values which are inversely proportional
to the local standard deviation of �φ in a small window.

7.5 Atom Lattice Orientations

Many material properties such as deformation behavior can
be deduced knowing the structures at atomic scale. In par-
ticular one is interested in the segmentation of grains, i.e.
regions with homogeneous orientation of the atom lattice.
To this end, when smooth transitions between neighboring
regions are allowed Boerdgen et al. [4] used T V regulariza-
tion with a nonconvex data term.

Since orientations are cyclic, the total cyclic variation
T VS1 is a more natural regularizer for this problem. Fig-
ure 10 shows a comparison of segmentations using T VS1

and T V , applied to an image obtained by the phase field
crystal simulation model [27]. This experiment shows the

solution behavior if one uses different representations of the
orientation space S1 as [0,1). The two solutions with T VS1

are essentially identical due to the cyclic shift invariance in
Proposition 5. On the contrary, with T V they may differ and
important structures may not be recognized in the segmen-
tation. For example, in Fig. 10 the upper right red area of (c)
is missing in (d).

8 Conclusion

We have introduced a novel kind of total variation, T VS1 ,
for cyclic structures as well as cyclic versions of other more
general regularizers such as Huber-T V and Mumford-Shah.
The regularizer T VS1 penalizes the value jumps with the
S1 distance instead of linearly. A convex formulation is ob-
tained through a recent theory for general functionals using
functional lifting. We show that T VS1 has a number of useful
mathematical properties such as invariance to cyclic shifts
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and lower-semicontinuity. The framework allows to couple
the T VS1 regularizer with arbitrary data terms, subject only
to natural conditions. We show existence of minimizers and
provide an equivalent formulation which allows to solve the
optimization problem as efficiently as the usual total vari-
ation. Experiments on a variety of imaging problems show
the clear advantage of cyclic regularizers in the correct han-
dling of value wrap-arounds as opposed to noncyclic ones
such as T V .
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