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Abstract

Bridging the gap between low-level and high-level image analysis has been
a central challenge in computer vision throughout the last decades. In this
article I will point out a number of recent developments in low-level image
analysis which open up new possibilities to bring together concepts of high-
level and low-level vision. The key observation is that numerous multilabel
optimization problems can nowadays be efficiently solved in a near-optimal
manner, using either graph-theoretic algorithms or convex relaxation tech-
niques. Moreover, higher-level semantic knowledge can be learned and im-
posed on the basis of such multilabel formulations.
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1. Combining Low-level vision...

Starting in the 1980s researchers have tackled the image segmentation
problem by means of energy minimization approaches [1, 12]. While early
approaches were generally not convex and respective algorithms would only
compute locally optimal solutions, in recent years researchers have devel-
oped algorithms to compute optimal or near optimal solutions for respective
energies using either graph-theoretic approaches [7, 2] or convex relaxation
techniques [4, 10, 15, 3]. The underlying energies typically take into account
local color information and aim at grouping regions of coherent color infor-
mation, possibly enhanced with interactive user input indicating the rough
location of objects of interest. By now, respective methods allow to sepa-
rate objects of interest in rather challenging images, despite similar colors of
object and background and strong variation of the illumination – see Figure
1.
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Figure 1: Interactive segmentations obtained using space-varying color models (left) and
low-order moment constraints (right).

2. ...with Semantic Knowledge

Somewhat independent from the above developments in low-level image
analysis, researchers have developed algorithms for high-level image analy-
sis which allow to detect and recognize objects in images and even allow to
perform an entire semantic scene analysis. Rather than modeling the color
variations on a pixel-level they compute histograms of sparse features which
are then related to respective features of previously observed objects [5].
Respective methods exhibit excellent performance on challenging high-level
tasks. Yet the choice of features is generally somewhat heuristic and com-
puted solutions typically do not come with a notion of statistical optimality
with respect to the original image data, nor do they provide a per-pixel
semantic decomposition of images.

Input Segmentation [9] Input Segmentation [14]
Figure 2: Semantic segmentations obtained using label co-occurrence statistics (left) and
ordering constraints (right).

In contrast, the framework of multilabel optimization allows to perform
semantic image parsing on a per-pixel level with higher-level knowledge. Fig-
ure 2 shows recent examples where the multilabel optimization process was
enhanced with a statistical prior on label co-occurrence [9] and with label or-
dering constraints [11, 6, 14]. In my view the fusion of low-level and high-level
aspects of visual processing on the basis of efficient multi-label optimization
methods bears great potential for future research in computer vision.
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