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Abstract. In recent years, researchers have proposed to introduce sta-
tistical shape knowledge into the level set method in order to cope with
insufficient low-level information. While these priors were shown to dras-
tically improve the segmentation of images or image sequences, so far
the focus has been on statistical shape priors that are time-invariant.
Yet, in the context of tracking deformable objects, it is clear that certain
silhouettes may become more or less likely over time. In this paper, we
tackle the challenge of learning dynamical statistical models for implicitly
represented shapes. We show how these can be integrated into a segmen-
tation process in a Bayesian framework for image sequence segmentation.
Experiments demonstrate that such shape priors with memory can dras-
tically improve the segmentation of image sequences.

1 Level Set Based Image Segmentation

In 1988, Osher and Sethian [16] introduced the level set method1 as a means to
implicitly propagate boundaries C(t) in the image plane Ω ⊂ R2 by evolving an
appropriate embedding function φ : Ω × [0, T ] → R, where:

C(t) = {x ∈ Ω | φ(x, t) = 0}. (1)

The ordinary differential equation propagating explicit contour points is thus
replaced by a partial differential equation modeling the evolution of a higher-
dimensional embedding function. The key advantages of this approach are well-
known. First, the implicit contour representation does not depend on a specific
parameterization and during the propagation no control point regridding mech-
anisms need to be introduced. Second, evolving the embedding function allows
topological changes such as splitting and merging of the embedded contour to
be elegantly modeled. In the context of shape modeling and statistical learning
of shapes, the latter property allows for the construction of shape dissimilar-
ity measures defined on the embedding functions which can handle shapes of
varying topology. Third, the implicit representation (1) naturally generalizes to
hypersurfaces in three or more dimensions. To impose a unique correspondence
between a contour and its embedding function one can constrain φ to be a signed
distance function, i.e. |∇φ| = 1 almost everywhere.
1 A precursor of the level set method was proposed by Dervieux and Thomasset [8].



Starting in the early 90’s researchers proposed to apply the level set method
to image segmentation (cf. [12, 3, 10, 17]). Level set implementations of the Mum-
ford-Shah functional [14] were independently proposed in [4, 24].

In recent years, researchers have successfully introduced prior shape infor-
mation into level set based segmentation schemes [11, 25, 21, 5, 19, 7, 22, 20]. Sta-
tistically learned shape information was shown to cope for missing or misleading
information in the input images due to noise, clutter and occlusion. These shape
priors were developed to segment objects of familiar shape in a given image. Al-
though they can be applied to tracking objects in image sequences [6, 13, 7], they
are not well-suited for this task, because they neglect the temporal coherence of
silhouettes which characterizes the motion of many deforming shapes.

When tracking a three-dimensional deformable object over time, clearly not
all shapes are equally likely at a given time instance. Regularly sampled im-
ages of a walking person, for example, exhibit a typical pattern of consecutive
silhouettes. Similarly, the projections of a rigid 3D object rotating at constant
speed are generally not independent samples from a statistical shape distribu-
tion. Instead, the resulting set of silhouettes can be expected to contain strong
temporal correlations. In this paper, we will develop statistical shape models for
which the shape probability at a given time will depend on the shapes observed
at previous time steps. The integration of such dynamical shape models into the
segmentation process can be elegantly formulated within a Bayesian framework
for level set segmentation of image sequences as follows.

2 Level Set Based Tracking as Bayesian Inference

In this section, we will introduce a Bayesian formulation for the problem of
level set based image sequence segmentation. We will first treat the general
formulation in the space of embedding functions and subsequently for propose a
computationally more efficient formulation in a low-dimensional subspace.

2.1 General Formulation

In the following, we define as shape a set of closed 2D contours modulo a certain
transformation group the elements of which are denoted by Tθ with a parameter
vector θ. Depending on the application, these may be rigid-body transforma-
tions, similarity or affine transformations or larger transformation groups. The
shape is represented implicitly by an embedding function φ according to equation
(1). Thus objects of interest will be given by φ(Tθ x), where the transformation
Tθ acts on the grid, leading to corresponding transformations of the implicitly
represented contour. We purposely separate shape φ and transformation param-
eters θ since one may want to use different models to represent and learn their
respective temporal evolution.

Assume we are given consecutive images It : Ω → R from an image sequence,
where I1:t denotes the set of images {I1, I1, . . . , It} at different time instances.
Assume we have already segmented the images at previous times in terms of



embedding functions φ̂1:t−1 and transformation parameters θ̂1:t−1. The problem
of segmenting the current frame It can then be addressed in the framework of
Bayesian inference by maximizing the conditional probability

P(φt, θt | I1:t, φ̂1:t−1, θ̂1:t−1) =
P(I1:t |φt, θt, φ̂1:t−1, θ̂1:t−1) P(φt, θt | φ̂1:t−1, θ̂1:t−1)

P(I1:t | φ̂1:t−1, θ̂1:t−1)
,

with respect to the embedding function φt and the transformation parameters
θt.2 The denominator in the above expression does not depend on the estimated
quantities and can therefore be neglected in the maximization.

In order to further reduce the complexity of the estimation problem, we will
make the following assumptions:

– The images I1:t are mutually independent and their probability only depends
on the current shape and transformation. Therefore, the first term in the
numerator reduces to:

P(I1:t |φt, θt, φ1:t−1, θ1:t−1) =
t∏

i=1

P(Ii |φi, θi) = P(It |φt, θt) · const. (2)

– We assume that the intensities of the shape of interest and of the back-
ground are independent samples from two Gaussian distributions Kµ,σ(I) =
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2σ2

)
with unknown means µ1, µ2 and variances σ1, σ2. As a
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)
dx

)
,

(3)

where we have introduced the Heaviside step function Hφ ≡ H(φ) to denote
the areas where φ is positive (Hφ = 1) or negative (Hφ = 0). Related
intensity models for segmentation have been proposed among others in [26,
4]. The intensity model parameters µi and σi are estimated jointly with the
shape φt and the transformation θt. Their optimal values are simply given
by the means and variances of the intensity It inside and outside the current
shape. To keep the notation simple, we do not display them as part of the
dynamic variables.

2 Since the modeling of probability distributions on infinite-dimensional spaces is in
general an open problem including issues of defining appropriate measures and of
integrability, the functions φ in this paper may be thought of as finite-dimensional
approximations obtained by sampling the embedding functions on a regular grid.



– The prior probability of the current shape and transformation are mutually
independent and only depend on their previous estimates. The second term
in the numerator therefore simplifies as follows:

P(φt, θt |φ1:t−1, θ1:t−1) = P(φt |φ1:t−1) P(θt | θ1:t−1)

By this assumption, we therefore neglect couplings between shape and trans-
formation. Since the focus of the present paper is on modeling temporally
correlated shape deformations, we will simply assume a uniform prior on
the transformation parameters, i.e. P(θt | θ1:t−1) = const. Rathi et al. [18] re-
cently proposed a temporal model of these transformation parameters while
not imposing any specific model on the shape. In this sense, our work is com-
plimentary to theirs. In the following, we will develop appropriate models
for the conditional probability P(φt |φ1:t−1).

2.2 A Finite-dimensional Formulation

When estimating the conditional probability P(φt |φ1:t−1) from sample data, one
needs to revert to finite-dimensional approximations of the embedding function.
It is well-known that statistical models can be estimated more reliably if the
dimensionality of the data is low. We will therefore recast the Bayesian infer-
ence in a low-dimensional formulation given within the subspace spanned by the
largest principal eigenmodes of a set of sample shapes.

Let {φ1, . . . , φN} be a temporal sequence of training shapes.3 Let φ0 denote
the mean shape and ψ1, . . . , ψn the n largest eigenmodes with n << N . We will
then approximate each training shape as:

φi(x) = φ0(x) +
n∑

j=1

αij ψj(x), (4)

where
αij = 〈φi − φ0, ψj〉 ≡

∫
(φi − φ0)ψj dx. (5)

Such PCA based representations of level set functions have been successfully
applied for the construction of statistical shape priors in [11, 24, 22]. In the fol-
lowing, we will denote the vector of the first n eigenmodes as ψ = (ψ1, . . . , ψn).

3 We assume that all training shapes φi are signed distance functions, yet an arbitrary
linear combination of eigenmodes will in general not generate a signed distance
function. While the proposed statistical shape models favor shapes which are close
to the training shapes (and therefore close to the set of signed distance functions),
not all shapes sampled in the considered subspace will correspond to signed distance
functions. In addition, it is quite possible that linear combinations result in empty
shapes, i.e. the zero level set of a linear combination may be the empty set.

While level set based shape representations via harmonic embedding [9] do form
a linear space, such representations are limited in practice, because not every shape
can be represented by an appropriate harmonic function.



Fig. 1. Low-dimensional approximation of a set of training silhouettes.
The silhouettes (above) are approximated by the first 6 principal components of
their embedding functions (below) – see equation (4).

Each sample shape φi is therefore approximated by the n-dimensional shape
vector αi = (αi1, . . . , αin). Similarly, an arbitrary shape φ can be approximated
by a shape vector of the form

αφ = 〈φ− φ0,ψ〉. (6)

Figure 1 shows a set of silhouettes from a sequence of a walking person and their
approximation by the first 6 eigenmodes. While this approximation is certainly
a rough approximation lacking some of the details of the shape, we found it
sufficiently accurate for our purpose.

The goal of image sequence segmentation within this subspace can then be
stated as follows: Given consecutive images It : Ω → R from an image sequence,
and given the segmentations α̂1:t−1 and transformations θ̂1:t−1 obtained on the
previous images I1:t−1, we need to maximize the conditional probability

P
(
αt, θt|I1:t, {α̂, θ̂}1:t−1

)
∝ P

(
I1:t|αt, θt, {α̂, θ̂}1:t−1

)
P
(
αt, θt|{α̂, θ̂}1:t−1

)
, (7)

with respect to the shape parameters αt and the transformation parameters θt.
One can introduce the same approximations as in the previous section. In all
expressions the variables φi are simply replaced by their shape vectors αi. Due
to space limitations, we will not carry this out explicitly. The key contribution
of this work, is to model the probability

P(αt | α̂1:t−1), (8)

which constitutes the probability for observing a particular shape conditioned
on the previously observed shapes.

Abundant theory has been developed to model temporally correlated time
series data. Applications of dynamical systems to model deformable shapes were
proposed among others in [2]. In our context, we intend to learn dynamical
models for the implicitly represented shapes.



3 Dynamical Statistical Shape Models

In the following, we propose to learn the temporal dynamics of a deforming
shape by approximating the shape vectors αt ≡ αφt

of a sequence of silhouettes
by a Markov chain (cf. [2, 15]) of order k, i.e.:

αt = µ+A1αt−1 +A2αt−2 + . . .+Akαt−k + η. (9)

The state at time t is therefore given by a linear combination of previous states,
modeled by a mean µ ∈ Rn and transition matrices A1, . . . , Ak ∈ Rn×n, and
zero-mean Gaussian noise η ∈ Rn with covariance Σ ∈ Rn×n superimposed. The
probability of a shape conditioned on the shapes observed in previous time steps
is therefore given by the corresponding autoregressive model of order k:

P(αt |α1:t−1) ∝ exp
(
−1

2
v>Σ−1 v

)
, (10)

where
v = αt − µ−A1αt−1 −A2αt−2 . . .−Akαt−k (11)

Various methods have been proposed in the literature to estimate the model
parameters given by the mean µ ∈ Rn and the matrices A1, . . . , Ak, Σ ∈ Rn×n.
We applied a stepwise least squares algorithm proposed in [15]. Different tests
have been devised to quantify the accuracy of the model fit. Two established
criteria for model accuracy are Akaike’s Final Prediction Error [1] and Schwarz’s
Bayesian Criterion [23]. Using dynamical models up to an order of 8, we found
that according to Schwarz’s Bayesian Criterion, our training sequences were best
approximated by an autoregressive model of second order.

From a sequence of 151 consecutive silhouettes, we estimated the parameters
of a second order autoregressive model. We subsequently validated this model
by plotting the autocorrelation functions of the residuals associated with each
of the modeled eigenmodes – see Figure 2. These show that the residuals are
essentially uncorrelated.

In addition, the estimated model parameters allow us to synthesize a walking
sequence according to (9).4 Figure 3 shows the temporal evolution of the first,
second and sixth eigenmode in the input sequence (left) and in the synthesized
sequence. Clearly, the second order model captures some of the key elements of
the oscillatory behaviour.

While the synthesized sequence does capture the characteristic motion of a
walking person, Figure 4 shows that the individual synthesized silhouettes do
not in all instances mimic valid shapes. We believe that such limitations can
be expected from a model which strongly compresses the represented input se-
quence: Instead of 151 shapes defined on a 256 × 256 grid, the model merely
retains a mean shape φ0, 6 eigenmodes ψ and the autoregressive model param-
eters given by a 6-dimensional mean and three 6× 6 matrices. This amounts to
458851 instead of 9895936 parameters, corresponding to a compression to 4.6%
of the original size.
4 In order to remove the dependency on the initial conditions, the first several hundred

samples were discarded from the synthesized sequence.



1st mode 2nd mode 3rd mode 4th mode

Fig. 2. Autocorrelation functions. To validate the accuracy of the fitted au-
toregressive model, we plotted the autocorrelation functions of the residuals asso-
ciated with the first four shape modes. Except for the first mode, more than 95%
of autocorrelations (for lag > 0) lie within the confidence limits of an IID process.

Original evolution of three shape components Synthesized evolution

Fig. 3. Model comparison. The original shape sequence (top) and the sequence
synthesized by a statistically learned second order Markov chain (bottom) exhibit
similar oscillatory behaviour and amplitude modulation. The plots show the tem-
poral evolution of the first, second and sixth shape eigenmode.

Fig. 4. Synthetically generated walking sequence. Sample silhouettes gen-
erated by a statistically learned second order Markov model on the embedding
functions – see equation (9). While the Markov model captures much of the typi-
cal oscillatory behaviour of a walking person, not all generated samples correspond
to permissible shapes – cf. the last two silhouettes on the bottom right. Yet, as we
shall see in Section 5, the model is sufficiently accurate to constrain the segmen-
tation process in a meaningful way.



4 Dynamical Shape Priors in Variational Segmentation

Maximizing the conditional probability (7) under the assumptions introduced
in Section 2 can be done by minimizing the negative logarithm of (7). Up to a
constant, the latter is given by:

E(αt, θt) = Edata(αt, θt) + ν Edynamics(αt). (12)

According to equation (3), the data term is given by:

Edata =
∫
Ω

(
(It−µ1)2

2σ2
1

+log σ1

)
Hφαt,θt +

(
(It−µ2)2

2σ2
2

+log σ2

)(
1−Hφαt,θt

)
dx,

where, for notational simplicity, we have introduced the expression φαt,θt ≡
φ0(Tθt

x) + α>t ψ(Tθt
x) to denote the embedding function of a shape generated

with deformation parameters αt and transformed with parameters θt.
Using the autoregressive model (10), the dynamical shape energy is given by:

Edynamics(αt) =
1
2
v>Σ−1 v (13)

with v defined in (11).
Tracking an object of interest over a sequence of images I1:t with a statisti-

cally learnt dynamical shape prior can be done by minimizing energy (12). In this
work, we pursue a gradient descent strategy leading to the following differential
equations to estimate the shape vector αt and θt:

dαt(τ)
∂τ

= −∂Edata(αt, θt)
∂αt

− ν
dEdynamics(αt)

dαt
(14)

where τ denotes the artificial evolution time, as opposed to the physical time t.
The first term is given by:

∂Edata

∂αt
=
〈
ψ, δ(φαt

)
(

(It−µ1)2

2σ2
1

− (It−µ2)2

2σ2
2

+log
σ1

σ2

)〉
,

and the second one is given by:
dEdynamics

dαt
= Σ−1 v, (15)

with v given in (11). These two terms affect the shape evolution in the follow-
ing manner: The first term draws the shape to separate the image intensities
according to the two Gaussian intensity models. Since the effect of variations in
the shape vector αt are given by the eigenmodes ψ, the data term is a projec-
tion onto these eigenmodes. The second term induces a relaxation of the shape
vector αt toward the most likely shape, given the shapes obtained on previous
time frames.

Minimization with respect to the transformation parameters θt is obtained
by evolving the respective gradient descent equation given by:

dθt(τ)
∂τ

= −∂Edata

∂θt
= −

〈
∇ψd(Tθtx)

dθt
, δ(φαt

)
(

(It−µ1)2

2σ2
1

− (It−µ2)2

2σ2
2

+log
σ1

σ2

)〉
.



25% noise 50% noise 90% noise

Fig. 5. Images from a sequence with increasing amounts of noise.5

Fig. 6. Sample segmentations with a static shape prior on a walking
sequence with 25% noise. Constraining the level set evolution to a low-
dimensional subspace allows to cope with a certain amount of noise.

Fig. 7. Sample segmentations with a static shape prior on a walking
sequence with 50% noise. Using merely a static shape prior, the segmentation
scheme cannot cope with larger amounts of noise.

5 Segmentation and Tracking Results

In the following, we will apply the dynamical statistical shape prior introduced
above for the purpose of level set based tracking.

To construct the shape prior, we hand-segmented a sequence of a walking
person, centered and binarized each shape. Subsequently, we determined the set
of signed distance functions {φi}i=1..N associated with each shape and computed
the dominant 6 eigenmodes. Projecting each training shape on these eigenmodes,
we obtained a sequence of shape vectors {αi ∈ R6}i=1..N . We fitted a second
order multivariate autoregressive model to this sequence by computing the mean
vector µ, the transition matrices A1, A2 and the noise covariance Σ shown in
equation (10). Subsequently, we compared segmentations of noisy sequences ob-
tained by segmentation in the 6-dimensional subspace without and with the
dynamical statistical prior.

Figure 5 shows a sample input frame from a sequence with 25%, 50%, and
90% noise.5 Figure 6 shows a set of segmentations obtained without dynamical
5 90% noise means that 90% of all pixels were replaced by a random intensity sampled

from a uniform distribution.



Fig. 8. Segmentation using a dynamical statistical shape prior based on a
second order autoregressive model. In contrast to the segmentation in Figure
7, the prior imposes statistically learned information about the temporal dynamics
of the shape evolution to cope with misleading low-level information.

Fig. 9. Tracking with dynamical statistical shape prior to cope with
larger amounts of noise. The input images were corrupted with 90% of noise.
Yet, the statistically learned dynamical shape model allows to disambiguate the
low-level information. These experiments confirm that our tracking schemes can
indeed compete with the capacities of human observers.

shape prior on a sequence with 25% noise. While the segmentation without
dynamical prior is successful with little noise, Figure 7 shows that it eventually
breaks down when the noise level is increased.

Figure 8 shows segmentations of the same sequence as in 7 obtained with
a dynamical statistical shape prior derived from a second order autoregressive
model. Figure 9 shows that the dynamical statistical shape prior provides for
good segmentations, even with 90% noise. Clearly, exploiting the temporal statis-
tics of dynamical shapes allows to make the segmentation process very robust
to missing and misleading information.

6 Conclusion

In this work, we introduced dynamical statistical shape models for implicitly
represented shapes. In contrast to existing statistical shape models for implicit
shapes, these models capture the temporal correlations which characterize de-
forming shapes such as the consecutive silhouettes of a walking person or the 2D
projections of a rotating 3D object. Therefore they account for the fact that the
probability of observing a particular shape at a given time instance may depend
on the shapes observed at previous time instances.



For the construction of statistical shape models, we extended the concepts of
Markov chains and autoregressive models to the domain of implicitly represented
shapes. The resulting dynamical implicit shape models therefore support shapes
of varying topology and are easily extended to higher-dimensional shapes (i.e.
surfaces).

With the estimated dynamical models one can synthesize shape sequences of
arbitrary length. In the context of a sequence of a walking person, we validated
the accuracy of the estimated dynamical models, comparing the dynamical shape
evolution of the input sequence to that of the synthesized sequence for various
shape eigenmodes. In addition, we validated that the residuals are statistically
uncorrelated. Although the synthesized shapes do not in all instances correspond
to valid shapes, one can nevertheless use the dynamical model to constrain a
segmentation process in a meaningful way.

To this end, we developed a Bayesian formulation for level set based image
sequence segmentation, which allows to impose the statistically learnt dynamical
models as shape priors in the segmentation process. In contrast to most existing
approaches to tracking, autoregressive models are integrated as statistical priors
in a variational approach which can be minimized by local gradient descent
(rather than stochastic optimization methods).

Experimental results confirm that the resulting shape priors make it possi-
ble to reliably track familiar deformable objects despite large amounts of noise.
Future work is focused on further quantitative performance analysis, on the de-
velopment of statistical models which capture the joint dynamics of deformation
and transformation modes, and on the optimization with stochastic methods.

Acknowledgments

We thank Alessandro Bissacco and Payam Saisan for providing the image se-
quence data. We thank Gianfranco Doretto and Paolo Favaro for helpful discus-
sions on autoregressive models.

References

1. H. Akaike. Autoregressive model fitting for control. Ann. Inst. Statist. Math.,
23:163–180, 1971.

2. A. Blake and M. Isard. Active Contours. Springer, London, 1998.
3. V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active contours. In Proc. IEEE

Intl. Conf. on Comp. Vis., pages 694–699, Boston, USA, 1995.
4. T.F. Chan and L.A. Vese. Active contours without edges. IEEE Trans. Image

Processing, 10(2):266–277, 2001.
5. Y. Chen, H. Tagare, S. Thiruvenkadam, F. Huang, D. Wilson, K. S. Gopinath,

R. W. Briggs, and E. Geiser. Using shape priors in geometric active contours in a
variational framework. Int. J. of Computer Vision, 50(3):315–328, 2002.

6. D. Cremers, T. Kohlberger, and C. Schnörr. Nonlinear shape statistics in
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