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Abstract

The introduction of prior knowledge has greatly en-

hanced numerous purely low-level driven image processing

algorithms. In this work, we focus on the problem of non-

rigid image registration. A number of powerful registration

criteria have been developed in the last decade, most promi-

nently the criterion of maximum mutual information. Al-

though this criterion provides for good registration results

in many applications, it remains a purely low-level crite-

rion. As a consequence, registration results will deteriorate

once this low-level information is corrupted, due to noise,

partial occlusions or missing image structure. In this pa-

per, we will develop a Bayesian framework that allows to

impose statistically learned prior knowledge about the joint

intensity distribution into image registration methods. The

prior is given by a kernel density estimate on the space of

joint intensity distributions computed from a representative

set of pre-registered image pairs. This nonparametric prior

accurately models previously learned intensity relations be-

tween various image modalities and slice locations. Exper-

imental results demonstrate that the resulting registration

process is more robust to missing low-level information as

it favors intensity correspondences statistically consistent

with the learned intensity distributions.

1. Introduction

Image registration is one of the fundamental problems

of computer vision, with applications ranging from motion

estimation, superresolution, and shape matching to medical

image analysis. Classical motion estimation approaches [8]

are based on the assumption that corresponding pixels have

similar intensity values. In practice, this assumption is of-

ten violated: In the context of motion estimation, lighting

changes from one frame to the next may cause intensity

changes. In the field of medical image analysis, the reg-

istration of images obtained with different modalities (e.g.

CT and MRI) may require far more sophisticated matching

constraints, since the two modalities may assign different

intensities to the same medical structure.

In recent years, the concept of Maximum Mutual Infor-

mation (MI) has become established as a powerful criterion

for image registration [3, 17, 15, 11]. The key idea is to find

a displacement field û that maximizes the statistical depen-

dency between the intensity distributions of the two images:

û = arg max
u

IMI

(

f1(x), f2(x+u(x))
)

, (1)

where f1 and f2 are the two images and IMI denotes the

mutual information of the two distributions. This can be

written as:

IMI

(

f1(x), f2(x+u(x))
)

= (2)
∫

R2

pu(i1, i2) log
pu(i1, i2)

pf1
(i1)pf2

(i2)
di1di2,

where i1 = f1(x), i2 = f2 (x + u(x)), and pf1
(i1),

pf2
(i2), pu(i1, i2) are the marginal and joint intensity dis-

tributions estimated from f1(x) and f2(x+u(x)).
Maximizing constraint (1) will favor correspondence be-

tween pixels that is no longer dictated by the assumption

that their intensities should be similar, but by the assump-

tion that the resulting distributions of the intensities of

matched pixels should be maximally dependent. The cor-

respondence of intensity pairs therefore arises purely from

the two matched images.

In most practical applications, however, this low-level

information is corrupted or incomplete. The two matched

views may be deteriorated by noise, or certain parts may be

missing or occluded — in the context of medical images for

example due to the presence of a tumor in one of the two im-

ages. In this case, the corrupted low-level information will

be insufficient to accurately determine the correct intensity

correspondence. The matching of the occluded region to

respective image areas in the other image may even dete-

riorate the estimated intensity transformation between the

matched images and hence it will bias the simultaneously

estimated non-rigid transformation. Moreover, the local op-

timization by gradient descent requires an initial estimate of

the intensity transformation between the two images. If the
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Figure 1. Different registration problems are characterized by dif-

ferent joint intensity distributions. (a) Registration of coronal PET

and CT slices, (b) registration of axial PET and CT slices. (c) Joint

histogram for the coronal registration problem, (d) joint intensity

histogram for the axial registration problem.

initialization is too far from the final matching, then the ini-

tial estimate of the intensity transformation may be too far

from the true one to allow the correct registration of the two

structures. At the same time, one may have prior knowl-

edge about which intensities are more or less likely to be in

correspondence. It turns out that non-rigid registration can

be strongly improved by reverting to such prior knowledge.

In the context of image registration such prior knowl-

edge has hitherto been imposed on the displacement field

T . Beyond a number of fairly sophisticated regularity con-

straints such as non-quadratic smoothness priors [16], Roth

and Black [13] recently suggested to actually learn the sta-

tistics of optical flow from training sequences and to subse-

quently impose these as priors for variational motion esti-

mation. Our work differs from theirs in that we propose to

learn and impose statistical priors not on the displacement

field u, but on the simultaneously estimated joint intensity

distribution pu characterizing the intensity transformation

from one image to the other.

In the context of medical image registration, Leventon

and Grimson introduced a joint intensity distribution as a

prior for rigid registration [10]. Zöllei et al. showed that

this method makes some implicit assumptions about the de-

sired solution which do not always hold [18]. Chung et al.

[2] found empirically that the Kullback-Leibler (KL) diver-

gence is superior to the log likelihood used by Leventon and

Grimson. Guetter et al. [6] further developed this idea, in-

troducing the KL divergence with respect to a known distri-

bution into the energy functional for non-rigid image match-

ing process, which leads to a matching algorithm that favors

a specific joint intensity distribution. While the additional

term provides for improved matching results, its introduc-

tion is rather add-hoc. Moreover, it merely allows to impose

a single learned joint intensity distribution. In the context of

medical images, we found that a single joint intensity dis-

tribution is not sufficient to describe the variability of ob-

served intensity correspondences: Given a set of pairs of

matched images from different modalities, one finds great

variations among the estimated joint distributions. Figure

1 shows coronary slices as obtained with a PET and a CT

scanner, registrations of this pair of coronary slices and of

KLD
PET/CT

Whole Body

PET/CT

Lungs

SPECT/CT

Kidneys

PET/CT

Whole Body
0.0 0.7740 3.9609

PET/CT

Lungs
0.4871 0.0 3.8275

SPECT/CT

Kidneys
2.6614 2.5604 0.0

Table 1. KL divergences (KLD) for sample medical data show-

ing the dissimilarity between joint intensity distributions (each

of which was computed from the registration of respective im-

age/volume pairs), as shown in Figure 1. The matching of slices

requires different priors on the intensity correspondence, depend-

ing on which imaging modalities, which slice locations and which

acquisition protocols are used.

a respective pair of axial slices. The inferred joint inten-

sity histograms characterizing the intensity correspondence

look quite different. Table 1 shows the KL distances be-

tween pairs of joint intensity distributions, each of which is

estimated from a registered pair of medical images. These

observed variations are due to different pairings of imaging

modalities (PET, CT, SPECT), different acquisition proto-

cols, or simply due to the selection of slices from different

areas of the same scan, i.e. to a variation in the field of view.

In this paper, we will develop a statistical framework that

allows to impose statistically learned prior knowledge about

the joint intensity distribution into image registration meth-

ods. We assume that we are given an entire set of correctly

registered image pairs. From these we can compute respec-

tive joint intensity distributions and construct a nonlinear

statistical prior given by a kernel density estimate on the

space of joint intensity distributions. It can be introduced

into the registration process in the framework of Bayesian

inference. As a consequence, the subsequent image match-

ing process is not only driven by a maximization of statisti-

cal dependence of the individual intensity distributions, but

it will also favor matching results for which the resulting

joint intensity distribution is statistically consistent with the

set of learned joint intensity distributions.

2. Image Registration as Bayesian Inference

Assume we are given a representative set of pre-

registered image pairs {f j
1 , f

j
2}j=1,...,m, where f

j
k : Ω ⊂

R
n → R. These image pairs may be obtained from various

image modalities and slice locations. Each registered im-

age pair gives rise to a specific joint intensity distributions

pj(i1, i2), stating which intensities i1 and i2 are likely to be

in correspondence for the given image pair. The goal of the

present paper is to derive means to impose this knowledge

into variational image registration algorithms.

In the framework of Bayesian inference, the problem of
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nonrigid image registration can be solved by finding the

most likely displacement field u and joint intensity dis-

tribution pu, given the two images f1 and f2 and given

the set of previously learned joint intensity distributions

{pj}j=1,...,m, under the constraint that the joint intensity

distribution pu is given by the one arising from f1(x) and

f2(x + u). That is we propose to maximize the conditional

distribution

P
(

u, pu

∣

∣ f1, f2, {pj}
)

∝ P
(

f1, f2

∣

∣ u, pu, {pj}
)

P
(

u, pu

∣

∣ {pj}
)

∝ P
(

f1, f2

∣

∣ u, pu

)

P
(

u
)

P
(

pu

∣

∣ {pj}
)

,

(3)

with respect to the displacement field u. Proportionality in

the above expressions means that we have only neglected

factors which do not depend on the displacement field u and

thus do not affect the maximization. In the second step in

(3), we have made the assumption that the prior decouples

into a geometric prior P(u) on the displacement field and a

prior on the joint intensity distribution pu.

Thus the optimization problem in (3) separates into three

factors, which can be interpreted as follows: The first factor

provides the measurement likelihood, stating how likely the

two images are given the correspondence induced by the

displacement field u. The second factor in (3) indicates the

a priori probability of a displacement field u. And the last

factor specifies how consistent the estimated joint intensity

distribution is with respect to the previously learned ones.

We propose to model these expressions as follows.

2.1. Consistency with Learned Distributions

Given a set of joint intensity distributions {pj}j=1,...,m

obtained from a set of optimally registered image pairs, we

can revert to concepts from kernel density estimation [14,

4, 9, 5] in order to derive the following prior on the space of

joint intensity distributions1:

P(pu | {pj}) ∝
1

m

m
∑

j=1

exp

(

−
IKL(pu, pj)

σ

)

, (4)

where

IKL(pu, pj) =

∫

R2

pu(i1, i2) log
pu(i1, i2)

pj(i1, i2)
di1di2 (5)

denotes the KL divergence measuring the dissimilarity be-

tween the intensity distribution pu (induced by matching f1

and f2 under the displacement u) and the previously learned

joint distribution pj . In the optimization of (3), the distribu-

tion (4) therefore imposes statistical similarity between the

infered intensity correspondence pu and the previously ob-

served joint intensity distributions {pj}j=1,...,m. The kernel

1A theoretical basis of probability distributions on infinite-dimensional

function spaces is provided by the theory of Gaussian processes [12].

width σ in the density estimator is fixed to the average near-

est neighbor distance computed for the set of joint intensity

distributions {pj}:

σ =
1

m

m
∑

i=1

min
j 6=i

IKL(pi, pj) (6)

More sophisticated estimates, for example using cross vali-

dation, are conceivable, we refer the reader to [14].

2.2. Mutual Information Maximization

To model the second factor in (3) we revert to the well-

known concept of maximal mutual information, by stating

that two images f1 and f2 are more likely to be aligned if

the two distributions of corresponding intensities f1(x) and

f2(x + u) are more dependent:

P(f1, f2 |u, pu) ∝ exp
(

α1IMI

(

f1(x), f2(x+u)
)

)

, (7)

with the mutual information IMI defined in (2). In the sta-

tistical inference (3) this constraint will favor displacement

fields u that maximize the statistical dependency between

the two intensity distributions.

2.3. Smoothness Prior on the Displacement Field

The last factor in (3) allows to impose a prior on the dis-

placement field u stating which displacement fields are a

priori more or less likely. As proposed in [13], one could

also learn such priors from training sequences of optic flow

fields. Since our contribution is the statistical modeling of

priors on the intensity transformation between the two im-

ages, we shall merely impose a common smoothness prior

on the displacement field:

P(u) ∝ exp

(

−α2

∫

|∇u|2 dx

)

. (8)

This smoothness prior was pioneered in the seminal work

of Horn and Schunck [8]. More sophisticated priors are

conceivable, for example non-quadratic (robust) smooth-

ness priors that allow for discontinuities in the estimated

displacement fields (cf. [1]).

3. Variational Formulation

Now that the three factors in the inference problem (3)

are specified, we can maximize this probability by mini-

mizing its negative logarithm, which is given by an energy

of the form:

E(u) = Eprior(u) + α1 EMI(u) + α2 Esmooth(u). (9)

These three energies impose several constraints: The en-

ergy Eprior guarantees that the joint intensity distribution
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induced by a displacement field u is consistent with previ-

ously observed joint intensity distributions. According to

(4), it is given by:

Eprior(u) = −log





m
∑

j=1

exp

(

−
IKL(pu, pj)

σ

)



. (10)

The second term in (9) yields the well-known mutual infor-

mation criterion:

EMI(u) = −IMI ((f1(x), f2(x + u)) , (11)

and the prior on the displacement field u gives the smooth-

ness constraint:

Esmooth(u) =

∫

|∇u|2 dx. (12)

Minimization of the energy (9) by gradient descent leads to

a partial differential equation for u of the form:

∂u

∂t
= −

∂E(u)

∂u
(13)

= −
∂Eprior(u)

∂u
− α1

∂EMI(u)

∂u
− α2

∂Esmooth(u)

∂u
.

For the gradient of IMI , we refer to Hermosillo et al. [7].

The gradient of the smoothness constraint leads to a well-

known diffusion term △u.

The gradient of Eprior is given by2:

∂Eprior(u)

∂u
=

1

σ

m
∑

j=1

γj

∂IKL(pu, pj)

∂u
, (14)

with normalized weights

γj =
γ̂j

∑

i γ̂i

, (15)

where:

γ̂j = exp

(

−
IKL(pu, pj)

σ

)

. (16)

The remaining challenge is to compute the gradient of

IKL(pu, pj) with respect to the displacement field u. To

this end, we will make use of the Gateaux derivative giving

the gradient in direction ũ:

∂IKL

∂u

∣

∣

∣

ũ
= lim

ǫ→0

1

ǫ

(

IKL(pu+ǫũ, pj)−IKL(pu, pj)
)

(17)

Using the definition of the joint intensity distribution

pu(i1, i2) ≡
1

|Ω|

∫

Ω

Gρ

(

i1 − f1(x), i2 − f2(x+u)
)

dx

2Note that using a Gaussian kernel exp(−I
2

KL
/(2σ2)) rather than an

exponential one in (4) will lead to an additional factor of IKL/σ in (14),

which might provide better convergence properties as the gradient goes to

zero for pu → pj . We plan to investigate this in future work.

where Gρ is a two-dimensional Gaussian distribution of

width ρ, a straight-forward computation shows that:

pu+ǫũ = pu + ǫ

∫

ũ
∂Gρ

∂i2

(

i1 − f1, i2 − f2

)

∇f2 dx, (18)

where f2 and ∇f2 are evaluated at x + u(x). Inserting the

expansion (18) into (17) and further linearization gives the

directional derivative

∂IKL(pu, pj)

∂u

∣

∣

∣

ũ
=

∫ (

∂IKL(pu, pj)

∂u

)

ũ(x) dx, (19)

with the gradient given by:

∂IKL(pu, pj)

∂u
=

1

|Ω|
·

[

Gρ ∗

(

∂i2pu(i1, i2)

pu(i1, i2)
−

∂i2pj(i1, i2)

pj(i1, i2)

)]

(f1, f2) · ∇f2,

where as above f2 and ∇f2 are evaluated at x + u(x).
The interpretation of the additional term (14) in the evo-

lution of the displacement field u is quite intuitive: It in-

duces a change in the estimated displacement field u that

aims at minimizing the KL-distance IKL(pu, pj), thereby

drawing the current intensity distribution pu toward the pre-

viously learned distributions {pj}. More precisely, the en-

ergy gradient exerts a force on the estimated intensity distri-

bution toward each learned intensity distribution pj , which

is modulated by a weight γj that decays exponentially with

the distance between the intensity distributions — see equa-

tion (16). Thus this additional term comes into play only

for those learned distributions that are most consistent with

the currently estimated intensity distribution. And this is

precisely the mechanism by which the algorithm “decides”

which intensity distributions among the learned ones are to

be used for a given registration task.

To further clarify this effect of the multimodal energy

(10) we refer to the visualization in Figure 2: In this

schematic drawing, each joint intensity distribution pj is

represented as a black 2D point. The energy (4) generated

by all learned points is shown as a shaded surface. It es-

sentially extends the KL-divergence to a dissimilarity with

respect to an entire set of joint intensity distributions. Dur-

ing the optimization process it constrains the displacement

field such that the corresponding intensity distribution re-

mains within the valleys of low energy. This ensures that the

joint intensity distribution will favor similarity to previously

learned intensity distributions during the optimization.

What does it mean that the current joint intensity dis-

tribution is forced to be similar to one or the other previ-

ously learned intensity distribution? To this end, let us con-

sider the following very simple example. Assume we have

learned two joint distributions, where the first one states that

white pixels in image 1 are always associated with black
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Figure 2. Schematic plot of energy (10). Each black point repre-

sents a joint intensity distribution. The energy (10) measures the

dissimilarity between a given joint intensity distribution and the

previously learned distributions.

pixels in image 2 and vice versa, while the second one states

that the matching of white-to-white and black-to-black is

most likely. Then enforcing similarity to one or the other by

energy (10) has the following effect: If during optimization

pairs of white pixels are associated through the displace-

ment field, then this induces proximity to the second learned

intensity distribution, and the prior will automatically en-

force that black should also be associated with black – be-

cause a matching of white-to-white on one hand but black-

to-white on the other is not consistent with any of the two

learned intensity distributions. In other words: The match-

ing of certain intensities will provide clues for the matching

of others, as indicated by the learned joint distributions.

The above example illuminates the idea of imposing a

prior on the space of joint intensity distributions. Note that

this is fundamentally different from learning a single joint

intensity distribution, as proposed for example by Leventon

and Grimson [10]. Firstly, our method allows for a large

variety of different intensity distributions. Secondly, the in-

herent selection mechanism allows the algorithm to infer

statistical relations between matching of different intensity

pairs, as in the simple example of two joint distributions

discussed above.

4. Experimental Results

In the following, we will evaluate the proposed statis-

tical framework for image registration. In Section 4.1, a

quantitative study on a SPECT - CT image pair shows that

priors on the joint intensity distribution can improve the

mutual-information-based registration process by increas-

ing the basin of attraction and by shifting the location of the

energy minimum to the correct one. In Section 4.2, a study

on the registration of a PET - CT image pair shows that

the proposed multimodal prior on the joint intensity distri-

0−1.5−15 15
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

x−translation

c
o

s
t

EmaxMI

Eprior

E

arg min EmaxMI arg min E

Figure 3. SPECT-CT registration performance analysis. SPECT

slice was shifted horizontally within a range of −15mm to

15mm. Mutual information is noisy around the optimum and its

minimum actually corresponds to an incorrect alignment. The in-

tegration of a prior on the joint intensity distribution provides for a

larger basin of attraction and enables the estimation of the correct

alignment.

bution outperforms a simpler unimodal prior, because the

multimodal one allows the registration process to “select”

among appropriate joint distributions. Section 4.3 shows

that the proposed prior allows to cope with partial occlu-

sions in a face registration task.

All implementations are done within a multi-resolution

framework, giving computation times around 10 seconds

for image pairs of size 450×450.

4.1. Quantitative Evaluation

Assume we are given a perfectly aligned image data set,

such as the SPECT - CT image pair acquired by a Siemens

Symbia T2 hybrid scanner in Fig. 3(a). Now we use these

data to study the performance of competing objective func-

tions, e.g. EmaxMI = max(IMI) − IMI for MI, Eprior

in (10), and the total energy E in (9). In this experiment,

the SPECT slice was shifted horizontally, while the CT im-

age remained fixed, and the respective values of all three

objective functions are computed, see Fig. 3(a). The energy

plots show quantitatively that incorporating a prior (com-

puted from the correctly aligned image pair) will lead to a

superior registration algorithm. While this is only shown

for the case of translation, one can expect similar improve-

ments for non-rigid deformations.

4.2. PET ­ CT Medical Image Registration

Given several training image pairs, the proposed prior

can incorporate a variety of joint intensity distributions.

The following experiment will show that among this com-

plementary information, the proposed algorithm selectively

choses the intensity information appropriate for a specific

registration task.

The training data is composed of two sets of aligned
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(a) (b) (c)

Figure 4. PET/CT registration. (a) deformed PET/CT, (b) regis-

tration result using average prior, (c) registration result using both

priors. While using the averaged joint intensity distribution as a

prior leads to misregistration, the proposed multi-modal prior on

the joint intensity distribution allows for the correct registration.

PET - CT slices3 acquired by a Siemens hybrid scanner,

Figs 1(a), 1(b). The superimposed edge maps (white) illus-

trate structural information of the CT image and visualize

the quality of alignment. Note the significant difference in

Figs 1(c) and 1(d) between the two shown joint intensity

distributions, which reflect a typical scenario as it occurs in

clinical applications.

An artificial deformation is applied to the PET slices and

compared to the recovered displacement fields of using only

a single prior distribution vs. using two complimentary. The

two priors represent the joint distribution of the axial and

coronal PET - CT slices shown in Fig. 1. In the case of a

single prior, the average of the two is used for fair compari-

son.

Figure 4 illustrates the advantage of using several prior

distributions as opposed to only using one. The weighting

factors of energy (9) are set with a preference towards the

prior energy Eprior , i.e. α1 is chosen to be small. The

width σ is determined using equation (6), and α2 is chosen

to allow for a smooth displacement field.

The results of recovering the significant deformation be-

tween the PET and CT images (see Figure 4(a)) are shown

in Figs. 4(b) and 4(c). Using an average distribution mis-

leads the algorithm and registration fails, see Fig. 4(b).

However, the proposed method can fully utilize the given

priors and correctly “selects” the closest joint intensity dis-

tribution. As a result, the underlying deformation is fully

recovered (Fig. 4(c)).

This experiment shows the strength of introducing a

space of joint intensity distributions, while the algorithm is

able to chose the best available prior information. In case

no best information is available, the prior energy decays to

zero, and performance will be at least as good as using a

context-free similarity measure.

3PET and SPECT are nuclear imaging techniques which visualize cen-

ters of high glucose acticity in the human body.

4.3. Face Registration in the Presence of Occlusion

Non-rigid multi-modal registration can serve as a pre-

processing step for face recognition, where facial and/or

head motion must be recovered in order to establish corre-

spondence. In the following experiment, we illustrate how

prior knowledge on the joint intensity distribution improves

the registration in the presence of lighting variation and oc-

clusion. The experiment is to recover facial expressions and

head movement between two images. The second image

is taken under different lighting conditions with the person

wearing sun glasses. The objective functions of comparison

are (i) purely MI based registration and (ii) the proposed

combined approach using prior knowledge in eq. (9). The

first row of Fig. 5 shows the two pairs of manually regis-

tered training data used to construct the prior, i.e. m = 2.

To compare the performance, the same images have been

registered (i) by the context-free MI criterion and (ii) by ad-

ditionally imposing a prior on the space of joint intensity

distributions. The parameters used here are similar to previ-

ous experiment. The second row of Fig. 5 shows the refer-

ence and alignment images that are subject to registration.

Those images show multi-modality due to a slight illumina-

tion change, but moreover due to the appearance of the sun

glasses. Furthermore, Figure 5 illustrates the differences of

learned data towards the current data.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Face images used for training and registration. (a)-(d)

training images, (e)-(h) reference and alignment images that are

subject to registration. The latter pose a challenging registration

task and slightly differ from the training data.

There are two runs for each objective function that are

being compared. Figure 6 shows the achieved results for

pure MI and for imposing a space of prior information.

Since the underlying transformation is unknown, the edge

map of the alignment image is superimposed on the ref-

erence image for performance comparison. Column 6(a)

shows the initial positions of the faces, column 6(b) shows

the results using pure MI, and column 6(c) plots the results

of the energy in equation (9). Comparing the edge maps it

can be noticed that the proposed energy (9) is superior to
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using pure MI. The MI method matches the outline of the

persons correctly but fails to match the glasses in the alig-

ment image on the eye region of the reference image. The

combined method, however, succeeds for both faces in es-

tablishing correspondence, see column 6(c). Note that our

method selects the prior intensity distribution, which corre-

sponds best to the current input images.

(a) (b) (c)

Figure 6. Face image registration results. Column (a) shows initial

alignment of the two images, column (b) the final registration for

pure MI-based energy, and column (c) illustrates the final regis-

tration using energy (9). The energy (9) shows to be superior to

context-free MI energy by minimizing the distance towards previ-

ously learned intensity distributions.

5. Conclusion

In this paper, we proposed a multimodal prior on the

joint intensity distribution in order to enhance image reg-

istration problems. While MI was shown to provide a pow-

erful registration criterion, it remains a purely low-level

criterion. Our formulation allows to enhance this existing

registration method in order to integrate prior knowledge

about likely intensity correspondences, which is statistically

learned from multiple pairs of pre-registered training im-

ages. Experimental results on both medical and face im-

ages demonstrate that our approach outperforms purely MI

based image registration. Future directions of research in-

clude the extension of our approach to 3D, and a more com-

plete qualitative and quantitative experimental study, in or-

der to confirm robustness and accuracy of this approach for

multi-modal datasets, in particular for larger training sets.
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