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Abstract. We address the problem of image segmentation with statis-
tical shape priors in the context of the level set framework. Our paper
makes two contributions: Firstly, we propose a novel multi-modal statis-
tical shape prior which allows to encode multiple fairly distinct training
shapes. This prior is based on an extension of classical kernel density
estimators to the level set domain. Secondly, we propose an intrinsic reg-
istration of the evolving level set function which induces an invariance of
the proposed shape energy with respect to translation. We demonstrate
the advantages of this multi-modal shape prior applied to the segmenta-
tion and tracking of a partially occluded walking person.

1 Introduction

When interpreting a visual scene, human observers generally revert to higher-
level knowledge about expected objects in order to disambiguate the low-level
intensity or color information of the given input image. Much research effort has
been devoted to imitating such an integration of prior knowledge into machine-
vision problems, in particular in the context of image segmentation.

Among variational approaches, the level set method [16, 10] has become a
popular framework for image segmentation. The level set framework has been
applied to segment images based on numerous low-level criteria such as edge
consistency [13, 2, 11], intensity homogeneity [3, 22], texture information [17, 1]
and motion information [6].

More recently, it was proposed to integrate prior knowledge about the shape
of expected objects into the level set framework [12, 21, 5, 20, 8, 9, 4]. Building
up on these developments, we propose in this paper two contributions. Firstly,
we introduce a statistical shape prior which is based on the classical kernel
density estimator [19, 18] extended to the level set domain. In contrast to ex-
isting approaches of shape priors in level set segmentation, this prior allows
to well approximate arbitrary distributions of shapes. Secondly, we propose a
translation-invariant shape energy by an intrinsic registration of the evolving
level set function. Such a closed-form solution removes the need to locally up-
date explicit pose parameters. Moreover, we will argue that this approach is more
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accurate because the resulting shape gradient contains an additional term which
accounts for the effect of boundary variation on the location of the evolving
shape. Numerical results demonstrate our method applied to the segmentation
of a partially occluded walking person.

2 Level Set Segmentation

Originally introduced in the community of computational physics as a means of
propagating interfaces [16]3, the level set method has become a popular frame-
work for image segmentation [13, 2, 11]. The central idea is to implicitly represent
a contour C in the image plane Ω ⊂ R2 as the zero-level of an embedding func-
tion φ : Ω → R:

C = {x ∈ Ω | φ(x) = 0} (1)
Rather than directly evolving the contour C, one evolves the level set function φ.
The two main advantages are that firstly one does not need to deal with control
or marker points (and respective regridding schemes to prevent overlapping).
And secondly, the embedded contour is free to undergo topological changes such
as splitting and merging which makes it well-suited for the segmentation of
multiple or multiply-connected objects.

In the present paper, we use a level set formulation of the piecewise constant
Mumford-Shah functional, c.f. [15, 22, 3]. In particular, a two-phase segmentation
of an image I : Ω → R can be generated by minimizing the functional [3]:

Ecv(φ) =
∫
Ω

(I−u+)2Hφ(x)dx +
∫
Ω

(I−u−)2
(
1−Hφ(x)

)
dx + ν

∫
Ω

|∇Hφ|dx, (2)

with respect to the embedding function φ. Here Hφ ≡ H(φ) denotes the Heavi-
side step function and u+ and u− represent the mean intensity in the two regions
where φ is positive or negative, respectively. While the first two terms in (2) aim
at minimizing the gray value variance in the separated phases, the last term
enforces a minimal length of the separating boundary. Gradient descent with
respect to φ amounts to the evolution equation:

∂φ

∂t
= −∂Ecv

∂φ
= δε(φ)

[
ν div

(
∇φ

|∇φ|

)
− (I − u+)2 + (I − u−)2

]
. (3)

Chan and Vese [3] propose a smooth approximation δε of the delta function
which allows the detection of interior boundaries.

In the corresponding Bayesian interpretation, the length constraint given by
the last term in (2) corresponds to a prior probability which induces the segmen-
tation scheme to favor contours of minimal length. But what if we have more
informative prior knowledge about the shape of expected objects? Building up on
recent advances [12, 21, 5, 20, 8, 9, 4] and on classical methods of non-parametric
density estimation [19, 18], we will in the following construct a shape prior which
statistically approximates an arbitrary distribution of training shapes (without
making the restrictive assumption of a Gaussian distribution).
3 See [10] for a precursor containing some of the key ideas of level sets.
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Fig. 1. Sample training shapes (binarized and centered).

3 Kernel Density Estimation in the Level Set Domain

Given two shapes encoded by level set functions φ1 and φ2, one can define their
distance by the set symmetric difference (cf. [4]):

d2(Hφ1,Hφ2) =
∫
Ω

(
Hφ1(x)−Hφ2(x)

)2
dx. (4)

In contrast to the shape dissimilarity measures discussed in [20, 8], the above
measure corresponds to an L2-distance, in particular it is non-negative, sym-
metric and fulfills the triangle inequality. Moreover it does not depend on the
size of the image domain (as long as both shapes are entirely inside the image).

Given a set of training shapes {φi}i=1...N – see for example Figure 1 – one can
estimate a statistical distribution by reverting to the classical Parzen-Rosenblatt
density estimator [19, 18]:

P(φ) ∝ 1
N

N∑
i=1

exp
(
− 1

2σ2
d2(Hφ, Hφi)

)
. (5)

This is probably the theoretically most studied density estimation method. It
was shown to converge to the true distribution in the limit of infinite training
samples (under fairly mild assumptions). There exist extensive studies as to how
to optimally choose the kernel width σ. For this work, we simply fix σ to be the
mean nearest-neighbor distance:

σ2 =
1
N

N∑
i=1

min
j 6=i

d2(Hφi,Hφj). (6)

The intuition behind this choice is that the width of the Gaussians is chosen such
that on the average the next training shape is within one standard deviation.

In contrast to existing shape priors which are commonly based on the as-
sumption of a Gaussian distribution (cf. [12]), the distribution in (5) is a multi-
modal one (thereby allowing more complex training shapes). We refer to [7] for
an alternative multi-modal prior for spline-based shape representations.
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4 Translation Invariance by Intrinsic Alignment

By construction the shape prior (5) is not invariant with respect to certain
transformations of the shape φ such as translation, rotation and scaling. In
the following, we will demonstrate how such an invariance can be integrated
analytically by an intrinsic registration process. We will detail this for the case
of translation. But extensions to rotation and scaling are straight-forward.

Assume that all training shapes {φi} are aligned with respect to their center
of gravity. Then we define the distance between a shape φ and a given training
shape as:

d2(Hφ, Hφi) =
∫
Ω

(
Hφ(x− xφ)−Hφi(x)

)2
dx, (7)

where the function φ is evaluated in coordinates relative to its center of gravity
xφ given by:

xφ =
∫

xHφdx∫
Hφ dx

. (8)

This intrinsic alignment guarantees that in contrast to (4), the distance (7) is
invariant to the location of the shape φ. The corresponding shape prior (5)
is by construction invariant to translation of the shape φ. Analogous intrinsic
alignments with respect to scale and rotation are conceivable but will not be
considered here.

Invariance to certain group transformations by intrinsic alignment of the
evolving shape as proposed in this work is different from numerically optimizing
a set of explicit pose parameters [5, 20, 8]. The shape energy is by construction
invariant to translation. This removes the necessity to intermittently iterate
gradient descent equations for the pose. Moreover, as we will see in Section 6,
this approach is conceptually more accurate in that it induces an additional
term in the shape gradient which accounts for the effect of shape variation on
the center of gravity xφ. Current effort is focused on extending this approach to
a larger class of invariance. For explicit contour representations, an analogous
intrinsic alignment with respect to similarity transformation was proposed in [7].

5 Knowledge-driven Segmentation

In the Bayesian framework, the level set segmentation can be seen as maximizing
the conditional probability

P(φ | I) =
P(I |φ) P(φ)

P(I)
, (9)

with respect to the level set function φ, where P(I) is a constant. This is equiv-
alent to minimizing the negative log-likelihood which is given by a sum of two
energies:

E(φ) =
1
α

Ecv(φ) + Eshape(φ), (10)
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with a positive weighting factor α and the shape energy

Eshape(φ) = − logP(φ), (11)

where P(φ) is given in (5).
Minimizing the energy (10) generates a segmentation process which simulta-

neously aims at maximizing intensity homogeneity in the separated phases and
a similarity of the evolving shape with respect to the training shapes encoded
through the statistical estimator.

Gradient descent with respect to the embedding function amounts to the
evolution:

∂φ

∂t
= − 1

α

∂Ecv

∂φ
− ∂Eshape

∂φ
, (12)

with the image-driven component of the flow given in (3) and the knowledge-
driven component is given by:

∂Eshape

∂φ
=

∑
αi

∂
∂φd2(Hφ, Hφi)

2σ2
∑

αi
, (13)

which simply induces a force in direction of each training shape φ weighted by
the factor:

αi = exp
(
− 1

2σ2
d2(Hφ, Hφi)

)
, (14)

which decays exponentially with the distance from shape φi.

6 Euler-Lagrange Equations for Nested Functions

The remaining shape gradient in equation (13) is particularly interesting since
the translation-invariant distance in (7) exhibits a two-fold (nested) dependence
on φ. The computation of the corresponding Euler-Lagrange equations is fairly
involved. For space limitations, we will only state the final result:

∂

∂φ
d2(Hφ, Hφi) = 2 δ (φ(x))

[(
Hφ(x)−Hφi(x + xφ)

)
− (x− xφ)t∫

Hφdx

∫ (
Hφ(x)−Hφi(x + xφ)

)
∇Hφ(x) dx

]
. (15)

Note that as for the image-driven component of the flow in (3), the entire expres-
sion is weighted by the δ-function which stems from the fact that the function
d only depends on Hφ. While the first term in (15) draws Hφ to the template
Hφi in the local coordinate frame, the second term compensates for shape de-
formations which merely lead to a translation of the center of gravity xφ. Not
surprisingly, this second term contains an integral over the entire image domain
because the change of the center of gravity through local deformation of φ de-
pends on the entire function φ. In numerical experiments we found that this
additional term increases the speed of convergence by a factor of 3 (in terms of
the number of iterations necessary).
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Fig. 2. Various frames showing the segmentation of a partially occluded walking
person generated with the Chan-Vese model (2). Based on a pure intensity crite-
rion, the walking person cannot be separated from the occlusion and darker areas
of the background such as the person’s shadow.

7 Tracking a Walking Person

In the following we apply the proposed shape prior to the segmentation of a par-
tially occluded walking person. To this end, a sequence of a dark figure walking
in a (fairly bright) squash court was recorded.4 We subsequently introduced a
partial occlusion into the sequence and ran an intensity segmentation by iter-
ating the evolution (3) 100 times for each frame (using the previous result as
initialization). For a similar application of the Chan-Vese functional (without
statistical shape priors), we refer to [14]. The set of sample frames in Figure 2
clearly demonstrates that this purely image-driven segmentation scheme is not
capable of separating the object of interest from the occluding bar and similarly
shaded background regions such as the object’s shadow on the floor.

In a second experiment, we manually binarized the images corresponding to
the first half of the original sequence (frames 1 through 42) and aligned them to
their respective center of gravity to obtain a set of training shape – see Figure 1.
Then we ran the segmentation process (12) with the shape prior (5). Apart from
adding the shape prior we kept the other parameters constant for comparability.

Figure 3 shows several frames from this knowledge-driven segmentation. A
comparison to the corresponding frames in Figure 2 demonstrates several prop-
erties of our contribution:

– The shape prior permits to accurately reconstruct an entire set of fairly
different shapes. Since the shape prior is defined on the level set function
φ – rather than on the boundary C (cf. [5]) – it can easily reproduce the
topological changes present in the training set.

– The shape prior is invariant to translation such that the object silhouette
can be reconstructed in arbitrary locations of the image. All training shapes
are centered at the origin, and the shape energy depends merely on an in-
trinsically aligned version of the evolving level set function.

– The statistical nature of the prior allows to also reconstruct silhouettes which
were not part of the training set (beyond frame 42).

4 We thank Alessandro Bissacco and Payam Saisan for providing the image data.
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Fig. 3. Segmentation generated by minimizing energy (10) combining intensity
information with the statistical shape prior (5). Comparison with the respective
frames in Figure 2 shows that the multi-modal shape prior permits to separate the
walking person from the occlusion and darker areas of the background such as the
shadow. The shapes in the bottom row were not part of the training set.

8 Conclusion

We combined concepts of non-parametric density estimation with level set based
shape representations in order to create a statistical shape prior for level set
segmentation which can accurately represent arbitrary shape distributions. In
contrast to existing approaches, we do not rely on the restrictive assumptions of
a Gaussian distribution and can therefore encode fairly distinct shapes.

Moreover, we proposed an analytic solution to generate invariance of the
shape prior to translation of the object of interest. By computing the shape
prior in coordinates relative to the object’s center of gravity, we remove the need
to numerically update a pose estimate. Moreover, we argue that this intrinsic
registration induces a more accurate shape gradient which comprises the effect
of shape or boundary deformation on the pose of the evolving shape.

Finally, we demonstrate the effect of the proposed shape prior on the seg-
mentation and tracking of a partially occluded human figure. In particular, these
results demonstrate that the proposed shape prior permits to accurately recon-
struct occluded silhouettes according to the prior in arbitrary locations (even
silhouettes which were not in the training set).
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