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Abstract—In many areas, the ability to create accurate 3D
models is of great interest, for example, in computer vision,
robotics, architecture, and augmented reality. In this paper we
show how a textured indoor environment can be reconstructed
in 3D using an RGB-D camera. Real-time performance can be
achieved using a GPU. We show how the camera pose can be es-
timated directly using the geometry that we represent as a signed
distance function (SDF). Since the SDF contains information
about the distance to the surface, it defines an error-metric which
is minimized to estimate the pose of the camera. By iteratively
estimating the camera pose and integrating the new depth images
into the model, the 3D reconstruction is computed on the fly.
We present several examples of 3D reconstructions made from
a handheld and robot-mounted depth sensor, including detailed
reconstructions from medium-sized rooms with almost drift-free
pose estimation. Furthermore, we demonstrate that our algorithm
is robust enough for 3D reconstruction using data recorded
from a quadrocopter, making it potentially useful for navigation
applications.

I. INTRODUCTION

3D simultaneous localization and mapping (SLAM) is a
highly active research area as it is a pre-requisite for many
robotic tasks such as localization, navigation, exploration, and
path planning. To be truly useful, such systems require the
fast and accurate estimation of the robot pose and the scene
geometry.

This extended abstract is based upon our recent work [2],
of which we plan to give a live demonstration during the RSS
RGB-D workshop. An example of a 3D model acquired with
our approach are shown in Figure 1. Our scanning equipment
consists of a handheld Microsoft Kinect sensor and a laptop
with a GPU from Nvidia. The laptop provides a live view
on the reconstructed model. As can be seen in the figure,
the resulting models are highly detailed and provide absolute
metric information about the scene which is useful for a large
variety of subsequent tasks.

The contribution of this work is to use the signed distance
function (SDF) directly to estimate the camera pose. Using
this approach and in contrast to KinectFusion [10], we do not
need to generate a depth image from the SDF or to run the
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Fig. 1: On small work spaces, our method is nearly drift-free. (a) 3D
reconstruction and the estimated camera trajectory of a small office
scene. (b) Visualization of the (downsampled) voxel grid underlying
the reconstruction volume (m = 256).

iteratively closest point (ICP) algorithm. As a result, we obtain
an increased accuracy and robustness [2].

II. RELATED WORK

Simultaneous localization and mapping refers to both the
estimation of the camera pose and mapping of the environ-
ment.

Laser-based localization and mapping approaches often use
scan matching or the ICP [1] to estimate the motion between
frames. Graph SLAM methods use these motion estimates
as input to construct and optimize a pose graph [8]. The
resulting maps are often represented as occupancy grid maps
or octrees [12] and are therefore well suited for robot local-
ization or path planning. [6] were the first to apply the Graph
SLAM approach to RGB-D data using a combination of visual
features and ICP. A similar system was recently presented by
[5] and extensively evaluated on a public benchmark [11].

Newcombe et. al. [10] recently demonstrated with their
well-known KinectFusion approach that dense reconstruction
is possible in real-time by using a Microsoft Kinect sensor.

Midway through this work we got know about the master
thesis of [3] who developed an approach for camera tracking
similar to ours. However, his focus lies more on object detec-
tion and recognition in an SDF, and no thorough evaluation
of the accuracy was performed.



Fig. 2: Our goal is to find the camera pose ξn+1 such that the SDF
values between the reprojected 3D points is minimized. The SDF is
constructed from the first n depth images and corresponding camera
poses ξ1, . . . , ξn.

III. APPROACH

The geometry is represented using a signed distance func-
tion stored in a voxel grid, based on the work by [4]. We
follow an iterative approach where first the camera pose given
the SDF is estimated, and then the SDF is updated when the
camera pose is found. In Section III-A the tracking problem
on a given SDF is solved. In Section III-C a method to update
the SDF efficiently given a new depth image is presented.

A. Camera Tracking

Here we show how the pose of the camera is estimated and
we assume for now that we have an estimation of the SDF,
ψ : R3 → R, available, which represents the 3D model seen
from the n first images.

For each pixel (i, j), we have its depth z = Id(i, j). Given
this, we can reconstruct the corresponding 3D point xij in
the local coordinate system. By transforming this point to the
global coordinate frame, xGij = Rxij + t, the distance to the
surface can be read in the SDF. Given that the SDF and the
camera pose is correct, the reported value should then be zero.

The optimal rotation R and translation t is the one that re-
projects as many 3D points as close to the surface as possible.
This idea is illustrated in Figure 2.

To find the rotation and translation the SDF is used to define
an error-function

E(R, t) =
∑
i,j

ψ(Rxij + t)2, (1)

where i, j iterate over all pixels in the depth image. Remember
that in an SDF, all points on the surface have a distance of zero.
In the noise free case the error function would give an optimal
error of zero. In practice, due to noise, the error function will
never be exactly zero.

To minimize this error function we use the Lie algebra
representation of rigid-body motion as the twist coordinates
ξ = (rx, ry, rz, tx, ty, tz), as described in [9]. Using this
notation, we can short write ψ(Rxij+t) as ψij(ξ) and rewrite
(1) as

E(ξ) =
∑
i,j

ψij(ξ)
2, (2)

Fig. 3: Visualization of the projective point-to-point distance. Note
that computing the true distance is computationally involved.

To minimize this we start by linearizing ψ around our initial
pose estimate ξ(0) that we set to the estimated previous camera
pose ξn of time step n and plugging this into (2) which
gives us a quadratic form that approximates the original error
function, i.e.,

Eapprox(ξ) =
∑
i,j

(ψij(ξ
(k)) +∇ψ>ij(ξ − ξ(k)))2. (3)

Putting the derivative of (3) to zero results in a system of
linear equations

b +Aξ −Aξ(k) = 0. (4)

From this, we can compute the camera pose that minimizes
the linearized error as

ξ(k+1) = ξ(k) −A−1b. (5)

Based on this new estimate, we re-linearize the original error
function (2) and solve iteratively (5) until convergence.

B. Estimating the Distance Function

With known rotation and translation of the camera, the SDF
can be updated with the new depth image. Here we present
how the point-to-point metric can be used for estimating the
SDF.

For each vertex the global (center) coordinates xG are
known. Given the pose of the current camera R, t, the local
coordinates are found by x = (x, y, z)> = R>(xG − t).

Using the pinhole camera model we can project x to the
pixel (i, j)> in the image. We define then the projective point-
to-point distance as the difference of the depth of the voxel
and the observed depth at (i, j)>, i.e., d(x) := z − Id(i, j).

To decrease the impact of uncertain measurements the
estimated distances are truncated and weighted, as proposed
by [4].

C. Data Fusion and 3D Reconstruction

To integrate the depth images into the voxel grid we follow
the procedure proposed by [4]. To find the SDF which takes
all measurements into account the energy function

L(ψ) =

n∑
i=1

1

2
wi(ψ − ψi)

2 (6)



Fig. 4: 3D reconstruction using an autonomous quadrocopter. Top:
AscTec Pelican platform used. Bottom: Reconstructed 3D model of
a room computed on the ground station. it is only a single model,
not several models!

is minimized. The result is the weighted average of all
measurements, which can be computed as a running weighted
average for each voxel by computing

D ←
WD + wn+1d

trunc
n+1

W + wn+1
(7)

W ←W + wn+1. (8)

Here D is the averaged and weighted distance for the n first
images and W is the accumulated weight for the n first images,
wn+1 and dtruncn+1 is the weight and truncated distance for
image n+ 1.

IV. RESULTS

In this section we present qualitative results of 3D recon-
structions from live-data. For a more comprehensive evaluation
we refer to [2].

Figure 1 show a desk scene using our algorithm at a grid
resolution of m = 256. The resulting reconstruction is highly
detailed and metrically accurate, so that it could for example
be used by architects and interior designers for planning and
visualization tasks.

The method is almost drift-free for small scenes, as can be
seen in Figure 1a, where we started and ended a rectangular
camera motion at the same spot. Fine details such as the cover
appear sharply.

Our approach was also used for 3D reconstruction from
an autonomous quadrocopter (see Figure 4) equipped with an
RGB-D camera. Note that tracking and reconstruction were
carried out in real-time on an external ground station with GPU
support. The estimated pose was directly used for position
control. This demonstrates that our technique is applicable for
robot navigation.

V. CONCLUSION

In this paper we presented a novel approach to directly
estimate the camera movement using a signed distance func-
tion. Our method allows the quick acquisition of textured 3D
models that can be used for real-time robot navigation. By
evaluating our method on a public RGB-D benchmark, we
found that it outperforms ICP-based methods such as KinFu
and obtains a comparable performance with bundle adjustment
methods such as RGB-D SLAM at a significantly reduced
computational effort. In the future, we plan to include color
information in camera tracking and investigate more efficient
representation of the 3D geometry. For larger geometries, the
combination of our method with a SLAM solver like [8, 7]
would be interesting.
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