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Abstract. In this paper, we suggest to model priors on human motion
by means of nonparametric kernel densities. Kernel densities avoid as-
sumptions on the shape of the underlying distribution and let the data
speak for themselves. In general, kernel density estimators suffer from
the problem known as the curse of dimensionality, i.e., the amount of
data required to cover the whole input space grows exponentially with
the dimension of this space. In many applications, such as human mo-
tion tracking, though, this problem turns out to be less severe, since the
relevant data concentrate in a much smaller subspace than the original
high-dimensional space. As we demonstrate in this paper, the concen-
tration of human motion data on lower-dimensional manifolds, approves
kernel density estimation as a transparent tool that is able to model
priors on arbitrary mixtures of human motions. Further, we propose to
support the ability of kernel estimators to capture distributions on low-
dimensional manifolds by replacing the standard isotropic kernel by an
adaptive, anisotropic one.

1 Introduction

In recent years, human tracking has emerged as a vivid research area. In particu-
lar 3D human tracking, where one seeks to estimate the pose and joint angles of
a 3D human model from 2D images, has attracted a lot of attention [9]. Having
applications in surveillance and biomechanics, human tracking also serves as a
playground for new machine learning techniques. Due to self-occlusions, inaccu-
rate, corrupted, or missing data, it requires the use of prior knowledge on typical
human poses and movements in order to avoid ambiguous solutions. Moreover,
the solution space generally comprises multiple locally optimal solutions. This
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is a great challenge for optimization algorithms if not being supported by pre-
dictions generated from strong priors.

Consequently, the literature provides numerous works on different learning
techniques that can be used to exploit prior knowledge for human tracking. These
works range from rather simple explicit joint angle limits [19, 6], over static pose
priors [17, 2], to priors on motion dynamics [16]. Some recent dynamic mod-
els are based on sophisticated nonlinear regression methods including nonlinear
dimensionality reduction [5, 20].

Most of these works stick to a maximum a-posteriori (MAP) formulation of
the tracking problem. Given the input image I in the current frame and pose con-
figurations in previous frames χt−1, ..., χt−k, one looks for the new configuration
χt that maximizes

p(χt|I, χt−1, ..., χt−k) ∝ p(I|χt)p(χt|χt−1, ..., χt−k). (1)

While the first factor considers how well a solution χt explains the image data,
the second factor represents the conditional prior probability density of some
pose given the poses of previous frames. One can directly model this prior,
which leads to regression methods. Usually, such methods comprise a parametric
component, which means that they cannot accurately model a prior consisting,
for instance, of running and jumping motions, since the parametric model would
mix up both motion patterns to yield an (unprecise) mean prediction. In order to
handle such cases consisting of multiple motions, one has to employ a mixture of
regressors [8, 11, 18], which includes many critical hyperparameters and is quite
demanding with regard to optimization.

In this paper, we pursue an alternative strategy. Since p(a|b) = p(a,b)
p(b) , and

we maximize with respect to a, p(b) can be neglected as a constant factor and
we may consider

p(χt|I, χt−1, ..., χt−k) ∝ p(I|χt)p(χt, ..., χt−k). (2)

Here the second factor is the joint prior density of poses in previous frames and
the current one. Such an unconditional probability density can be estimated from
training samples using a Parzen estimator. Since the density is fully nonpara-
metric, it can easily model arbitrary mixtures of motion patterns. The Parzen
estimator only implies the assumption of a locally smooth density. Consequently,
it can capture all smooth densities provided there are enough training samples.

The input space of human motion is rather high-dimensional. For a reason-
able human body model, at least 20 degrees of freedom are needed. Looking
only 4 frames into the past, already implies a 100-dimensional space. It is well
known that estimating wide-spread densities in such spaces with a typical kernel
estimator, would need huge amounts of training data [15]. However, in practice,
this problem is often less severe. This is because high-dimensional spaces are
often only sparsely populated, i.e., the density to be estimated concentrates on
a small subspace, a low-dimensional manifold in the high-dimensional space. In
this paper, we demonstrate that in case of human motion tracking, already the
standard Parzen estimator can deal with a 121-dimensional space.



Nevertheless, this estimator is not optimal for such high-dimensional spaces.
This is due to the fixed isotropic kernel, which does not adapt to the local struc-
ture of the subspace. Hence, the Parzen estimator looses predictive power in
normal direction to the manifold. This drawback can be circumvented by intro-
ducing anisotropy in the estimation process. Therefore, we propose to replace
the isotropic kernel of the standard Parzen estimator by adaptive anisotropic
kernels. The same concept has been proposed in the context of general density
estimation in [14, 21]. Also the work in [4] based on kernel PCA can be inter-
preted as sort of an anisotropic kernel density estimator. However, the latter has
quadratic complexity in the test phase, which is problematic when the number
of training samples becomes large.

2 Anisotropic Kernel Density Estimation

Consider some prior knowledge given by a set of training samples {xi|i =
1, ..., N}. In order to integrate such knowledge into a Bayesian model, one must
estimate a probability density from the samples. In contrast to typical paramet-
ric densities, such as a Gaussian density, which are very restricted in the priors
they can model, this paper is concerned with nonparametric kernel densities. The
classic Parzen-Rosenblatt density estimator employs an isotropic kernel K(x, x′)
with a fixed width h. Given such a kernel, the estimated density reads [1, 12, 10]:

p(x) =
1
N

N∑
i=1

Kh(x, xi). (3)

A very common kernel is the Gaussian kernel

Kh(x, x′) =
1

(2πh2)
D
2

exp
(
−‖x− x′‖2

2h2

)
, (4)

where D denotes the dimensionality of the data. This density estimator, though
simple, reveals many advantages. Firstly, it can model arbitrary densities and
one can show that in the limit, for N →∞ and h → 0 adequately, the estimator
converges to the true density [15]. Secondly, the estimator is very transparent. In
contrast to many learning techniques that rely on modeling in an abstract feature
space, the Parzen estimator is easily interpretable. Moreover, it contains only a
single hyperparameter, the kernel width h, which can be estimated efficiently
from the training data via cross-validation or, depending on the application,
by even simpler criteria like average nearest neighbor distance. In contrast to
Gaussian mixture models or related techniques, there is no need to determine
the number of mixture components, which is a difficult non-convex optimization
problem.

As mentioned in the introduction, the main weakness of the Parzen estimator
appears when it is employed in high-dimensional spaces where the support of
the density is located on a low-dimensional manifold. Then it looses predictive



power in normal direction to this manifold due to the fixed isotropic kernel. This
is the motivation for using adaptive, anisotropic kernels leading to an anisotropic
version of the Parzen estimator. Again, the density is a sum of kernels centered
at the training samples

p(x) =
1
N

N∑
i=1

Ki(x, xi), (5)

where now Ki(x, xi) is the locally adaptive anisotropic Gaussian kernel

Ki(x, xi) =
1

|2πΣi|
1
2

exp
(
−1

2
(x− xi)>Σ−1

i (x− xi)
)

. (6)

Its window width and preferred direction is defined by the covariance matrix Σi.
This covariance matrix is computed locally by means of

Σi = α1 +
N∑

j=1

Kh(xi, xj)(xi − xj)(xi − xj)>, (7)

where α1 denotes the identity matrix scaled by a regularization parameter α
and Kh(x, x′) is the isotropic Gaussian kernel stated in (4).

This anisotropic kernel density estimator has several nice properties. Firstly,
the absolute width of the kernel is locally adaptive. This allows for smaller win-
dows in areas with many training samples, whereas sparsely populated areas can
still be approximated by larger windows. Secondly, the windows have a preferred
orientation in which the kernel size is increased. Since the kernel integrates to 1,
this effect automatically decreases the kernel size in orthogonal directions. Such
an anisotropy is particularly useful to model data on low-dimensional manifolds,
as most of the kernel’s power is focused on the tangential space of the manifold.
In contrast to Gaussian mixture models, there is still no need to determine the
number of mixture components. The estimator can be regarded as a degener-
ate version of a Gaussian mixture, where the number of components equals the
number of training samples. Obviously, this also provides an increased accuracy
in respect to the density’s local structure compared to a Gaussian mixture with
only a small number of components.

The density estimator still imposes only two hyperparameters h and α. These
hyperparameters can be estimated from the training data via leave-one-out
(LOO) cross validation, i.e., one minimizes the following loss function based
on Kullback-Leibler divergence

E(h, α) = − log

(
N∑

i=1

p̂i,h,α(xi)

)
, (8)

where p̂i,h(x) denotes the estimated probability density with parameters h and
α when sample i has been removed from the training set. In the application case
of human tracking, we found that one can simplify the parameter optimization
by setting h to the average nearest neighbor distance of all training samples and



Fig. 1. From left to right: (a) Intrinsically one-dimensional density in three-
dimensional space. (b) Density estimate with the conventional Parzen method (ISE
= 12.2 · 10−4). (c) Density estimate with the anisotropic Parzen method (ISE =
9.3 · 10−4).

α = h
5 . This is reasonable since training data is obtained via motion capture

systems with a fixed frame rate, i.e., samples always come in larger groups.
Figure 1 demonstrates the qualitative difference between the isotropic kernel

density estimator and the anisotropic one. Having some data points sampled
from the true density (left), the isotropic estimator yields a density estimate
that approximates the true density quite well but lacks the ability to interpolate
in some of the gaps (middle). In contrast, the anisotropic estimator focuses better
on the structure of the density. This is also reflected by the lower integrated mean
square error (ISE) between the true and the estimated density.

3 Kernel Densities in Human Tracking

Density estimators can be a valuable component in an application like human
motion tracking. In this task, we expect a given surface model consisting of sev-
eral limbs that are interconnected by predefined joints. The sought pose configu-
ration χ at each frame consists of a global rigid body motion, represented by the
six parameters of a twist ξ, as well as a number of joint angles Θ = (θ1, ..., θM )>.
Estimation of these parameters at frame t from image data and poses from pre-
vious frames can be regarded in a MAP setting

p(χt|I, χt−1, ..., χt−k) ∝ p(I|χt)p(χt, ..., χt−k), (9)

where the conditional prior density p(χt|χt−1, ..., χt−k) has already been replaced
by the joint density p(χt, ..., χt−k), as explained in the first section of this paper.
The right hand side consists of a data fidelity factor and the prior density of
certain sequences of pose configurations.

3.1 Modeling the data fidelity

There are several ways to model the data fidelity, such as keypoint tracking or
silhouette constraints. Since this issue is not the focus of this paper, we stick to



an existing silhouette based method [13], where (9) is expanded to

p(χt, Φ|I, χt−1, ..., χt−k) ∝ p(I|Φ)p(Φ|χt)p(χt, ..., χt−k) (10)

by introducing the silhouette represented as the zero level of a function Φ : Ω →
R. Maximizing the probability in (10) is equivalent to minimizing its negative
logarithm. With certain model assumptions on the appearance of the object and
background region [13], this yields the energy

E(χt) = −
∫

Ω

H(Φ) log p1 + (1−H(Φ)) log p2 dx

+λ

∫
Ω

(Φ− Φ0(χt))2 dx− log p(χt, ..., χt−k),
(11)

where H(s) is the step function that distinguishes the object and background
region, p1 and p2 are densities of the intensity in these regions, Φ0(χt) is the level
set function representing the silhouette of the projected model given the pose
χt, and λ = 0.05 is a weighting parameter that steers how much the contour Φ
may deviate from the model silhouette Φ0.

In contrast to many tracking works that use a sampling strategy to minimize
similar energies as the one in (11), we use a gradient descent in Φ and χ, which
yields the next local minimum starting from some initialization χ0. In the track-
ing context, finding the next local minimum can be sufficient, especially if the
model is supported by a prior density that allows for reasonable predictions of
poses in successive frames. For this reason, we now concentrate on the last term
in (11), which comprises this prior density.

3.2 Modeling the prior density

For building a prior density, a set of training samples with certain motion pat-
terns is required. A database with a rather large variety of motions is available
at Carnegie Mellon University [3]. We used this database to assemble training
samples for estimating a prior density.

In order to ensure certain invariance properties, and to keep the required
number of samples as well as the dimensionality as small as possible, we arrange
the sample vectors in the following way. Firstly, we restrict the degrees of freedom
of our model to the 29 most important ones. , i.e., 3 dof at each shoulder, 1 dof
at each elbow, 1 dof at each hand, 3 dof at each upper leg, 1 dof at each knee,
2 dof at each foot, and 1 dof at the neck. Together with the global rigid body
motion, this yields a total of 29 dof. Further, since we are interested in invariance
with regard to the location and orientation of the person, we only consider the
joint angles at previous frames, not the global twist. Finally, for keeping the
dimensionality small and nonetheless considering configurations that are several
frames in the past, the time axis is non-uniformly sampled. In detail, we assemble
vectors xi, where the first six components are the twist parameters representing
the rigid body motion between t − 1 and t. The next M = 23 components are
the absolute joint angles in t. There follow successively the M joint angles in



t − 1, in t − 2, t − 5, and t − 10. Similar to the so-called snippets in [7], this
yields training vectors xi of dimension D = 121, from which a density can be
estimated according to Section 2. In case the frame rate of the input sequence
does not match the training sequences, the prior is scaled accordingly.

3.3 Density gradient and pose prediction

For the minimization of (11) we are not interested in the absolute density, but in
the local gradient of its logarithm. This gradient corresponding to the anisotropic
density estimator in (5) reads:

Ki(x, xi) := exp
(
−1

2
(x− xi)>σ−1

i (x− xi)
)

∂ log p(x)
∂x

= −1
2

∑N
i=1 K(x, xi)Σ−1

i (x− xi)∑N
i=1 K(x, xi)

.

(12)

Note that only the first 6 + M components of ∂ log p(x)
∂x are needed, since the

pose at previous frames is fixed. Starting from some point x0 and ignoring the
data fidelity term, gradient ascent will converge to the local mode of the density
in the (6 + M)D subspace, i.e., the most likely pose configuration in a local
neighborhood given the poses at previous frames. In combination with the data
fidelity term, the result is the local maximum a-posteriori solution given the
image data and the prior density.

In some cases, one is indeed interested in the local mode of the density alone,
starting from some motion vector x0. In human tracking, this situation arises
when predicting the pose in a successive frame, irrespective the image data, which
may be unreliable without a good hypothesis of the pose in the new frame. For
prediction, it is beneficial to estimate a density where the absolute joint angles
at t in xi are replaced by relative angles between t − 1 and t. This prevents
predictions far from the tracked motion in case the training data are sparse and
rather dissimilar from the tracked motion.

4 Experiments

Our experiments demonstrate that kernel density estimators in general, but in
particular the one based on anisotropic kernels, are well suited to model dynamic
motion priors in human tracking. Firstly, Figure 2 and a video in the supple-
mentary material show that one can generate an enduring cyclic motion from
the anisotropic density. For this motion generation, we simply provide a short
sequence of poses. Starting the gradient descent (12) from the last such pose, and
ignoring the image-driven part, yields an enduring running motion. This means,
from previous poses alone, the density can predict a reasonable succession of
poses like a regressor would do.

An important challenge in human tracking are monocular sequences. Since
only few limbs are visible in a single view, the problem is generally undercon-
strained and prior assumptions, such as the suggested prior density, are needed
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Fig. 2. Synthesis of a cyclic motion from the density estimated from one (or multiple)
training motions. Only the left and right knee angles are depicted.

Fig. 3. Tracking result for a monocular sequence, where the density has been estimated
with anisotropic kernels. Center right: Input image with extracted contour. Bottom
row: Synthesized view generated from the tracked pose.



Fig. 4. Top row, from left to right: Tracking result for the sequence in Figure 3,
but using the isotropic kernel density estimator. Results are not as good as in the
anisotropic case. Rightmost: Without any motion prior, tracking fails already after a
few frames. Bottom row: Synthesized view generated from the tracked pose.
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Fig. 5. Tracking curves of the left and right knee. Left: Anisotropic kernel density.
Right: Classic kernel density. The isotropic kernel, due to its weaker predictive power,
leads to a hopping motion, as the left and right leg are partially interchanged.

for a unique solution. Figure 3 shows the tracking result for a standard test
sequence1. The synthesized views confirm that the estimated 3D pose is very
accurate thanks to the prior density estimated from two standard and one exag-
gerated walking sequences. In contrast, the isotropic kernel estimator in Figure 4
yields results that explain the 2D image data very well, but since the density is
less distinct, the estimated pose is not as good as with the anisotropic kernel. As
Figure 5 and the video in the supplementary material show, the isotropic kernel
density estimator partially mixes up the left and the right leg. The rightmost
image in Figure 4 shows that replacing the prior density by some static pose
prediction fails completely. Due to the the weak prediction, the gradient descent
runs into a suboptimal local minimum and not even consistency with the 2D
image data can be ensured.

1 The sequence is available at www.nada.kth.se/∼hedvig/data.html



Fig. 6. Tracking of a jogging sequence with 40 occlusions randomly placed in each
image. Only one out of four camera views is shown. For the whole sequence, see the
supplementary online material. Top row: Tracking result. Despite the substantially
disturbed image cues (see contour), reasonable poses are computed. Bottom left:
Contour used for estimating the pose. Bottom right: Prediction of the pose in a new
frame (black) relative to the previous frame (gray) by means of the prior density.

Partial occlusions are another challenge in human tracking. Figure 6 demon-
strates the robustness of the proposed technique in the presence of severely
corrupted image data. 40 occluding boxes have been randomly added to the
sequence. In contrast to pixel noise, image data is not only missing, but even
misleading, since the occluding boxes create false object boundaries like real oc-
clusions. The contour shown in Figure 6 demonstrates this negative effect on the
contour extraction. The prior density estimated from 9 different running and
jogging motions, which were subsampled to yield a total of 606 points, keeps the
solution close to a jogging motion and, hence, allows for successful tracking.

Setting mean error std. dev.

0 boxes 4.01◦ ±3.3◦

20 boxes 5.47◦ ±4.7◦

40 boxes 5.71◦ ±4.5◦

additional samples, 40 boxes 6.13◦ ±4.9◦

walking samples only, 20 boxes 39.58◦ ±35.3◦

isotropic kernel density, 0 boxes 3.64◦ ±2.4◦

Table 1. Mean error and standard deviation of knee and elbow joints between tracking
results of the jogging sequence in Figure 6 and the outcome of a marker-based tracking
system (ground truth).



Fig. 7. Tracking of the jogging sequence with 20 occluding boxes and only samples
from a walking motion being available for density estimation. The image contains few
information on the arms. Hence, the arm pose is hallucinated from the walking prior.
The legs, however, are tracked well, despite the unfitting prior.

We also investigated whether the image/prior tandem is able to generalize
to sequences where the motion seen in the image does not perfectly fit to any of
the prior motions. Figure 7 shows a result where the density has been estimated
only from samples of a single walking sequence. Due to poorly constrained image
data, the arms reflect the walking motion of the prior. The legs, though, fit well
to the jogging motion seen in the image. This shows that the prior can be voted
down by clear image data.

For getting a better insight in what happens in the high-dimensional space,
Figure 8 depicts on the left the training data consisting of 9 running and jogging
motions projected into 2D space via multidimensional scaling. In blue one can
see the trajectory of the tracked jogging sequence in this space. Clearly, the
pure running prior has a very simple structure. In contrast, the bottom figure
shows the situation when additional motions are added to the prior. Learning
such priors is a problem for many techniques, especially for typical regressors,
which can only model functions. Kernel density estimation, however, handle such
situations in a very natural way without any need to adapt the methodology.
Hence, tracking the jogging motion in Figure 6 with such more general training
data is not a problem.

Table 1 compares several experimental settings of the jogging sequence quan-
titatively by showing the mean error of the results. Ground truth has been
provided by parallel tracking with a marker-based system. Tracking with the
more general prior is almost as good as with the special running prior. Interest-
ingly, the isotropic kernel density estimator yields a higher accuracy than the
anisotropic density estimator in this sequence. The arm pose in all training pat-
terns does not fit well to the tracked arm motion. Since the anisotropic kernel
leads to more concise density estimates, it also tends to a stronger prior. This
explains the better result of the isotropic estimator in this case, as we kept the
weighting between image and prior data fixed. The large error of the result with
the walking prior emerges from the large impact of the wrong elbow angles. For
the knee joints alone, one obtains an average error of only 5.29◦.
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Fig. 8. Training samples (black dots) and tracked pose (blue dots) for the jogging se-
quence. Points have been projected to 2D via multidimensional scaling (MDS). Top
Left: Training set consists only of running and jogging motions. Bottom: Other mo-
tions, such as walking, jumps, leaps, cardwheels, flips, and break dance, have been
added to the training set. The sample distribution becomes very irregular in the 2D
projection. Top Right: Zoom into the part of the more general prior that is relevant
for tracking the jogging motion.

Finally, Figure 9 shows a highly dynamic handspring sequence. Without the
ability to predict the rough pose at a successive frame, such a motion is hard to
track. With the anisotropic kernel density estimate, however, we obtain a rather
accurate result.



Fig. 9. Tracking of a handspring with four camera views. See the video in the supple-
mentary material for the whole sequence.

5 Conclusions

We have introduced the use of kernel density estimation as a transparent way
to model motion priors in human tracking. In order to cope with the high-
dimensional nature of the input space, we proposed density estimation with
anisotropic kernels. They are especially appropriate when the density concen-
trates on a low-dimensional subspace. We suggested a Bayesian tracking frame-
work that makes use of such an anisotropic density estimator by combining
the prior density with observation probabilities derived from the image data. A
broad experimental evaluation showed the main properties of such a tracking
technique. In particular, the prior density is able to support the tracking in case
of missing or corrupted image data, even when there are only few, mildly fit-
ting training samples. Moreover, as it is a nonparametric technique, it can easily
model multiple motions. Future work will concentrate on appropriate data struc-
tures that allow for an efficient sublinear computation of densities from many
thousand training samples.
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