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Combined Region- and Motion-based 3D Tracking
of Rigid and Articulated Objects

Thomas Brox, Bodo Rosenhahn, Juergen Gall, and Daniel Cremers

Abstract—In this paper, we propose the combined use of
complementary concepts for 3D tracking: region fitting on one &
side, and dense optical flow as well as tracked SIFT features |
on the other. Both concepts are chosen such that they can
compensate for the shortcomings of each other. While tracking by
the object region can prevent the accumulation of errors, optical
flow and SIFT can handle larger transformations. Whereas seg-
mentation works best in case of homogeneous objects, optical flow
computation and SIFT tracking rely on sufficiently structured
objects. We show that a sensible combination yields a general
tracking system that can be applied in a large variety of scenarios
without the need to manually adjust weighting parameters.

Index Terms— Tracking, segmentation, motion.

I. INTRODUCTION

OCATING objects in 3D space given 2D images has

a long tradition in computer vision research [32] [18]Fig. 1. Sample images from some challenging sequences. In some cases large
' fransformations must be handled (a), in others articulated, textured objects

[19]' [17] With many applications, SL.JCh as I’Ob.Ot naVigatioQazre to be tracked in front of a cluttered background (b). Other objects are
camera calibration, and human motion analysis. Usually, th@nogenous and substantially degraded by noise (c), or they can be partially

intrinsic camera parameters and a 3D object model are Q%a_:lud(_ed by another moving obj_ect (d)_. The chall'enge is to re_Iiany tragk the
. . object in all these scenarios with a single tracking system, ideally without

sumed to be given. The latter can consist of, e.g., a setagfpting the parameters.
points, lines, or patches. The goal is to find the six parameters
of a rigid body motion, i.e., the extrinsic camera parameters
relative to the object. For the special case of tracking, the pasgjuires to solve the much more difficult problem of object
of the object is assumed to be known in the first frame of docalization involving a detailed pose.
image sequence. One is then interested in capturing the posk this paper, we cover classical tracking of rigid as well
in successive frames of the sequence while the camera or d8earticulated objects focusing on the image-driven part, i.e.,
object are moving. we will not cover recognition or learning techniques here.

The task can be extended by assuming no longer rigil particular, we deal with the challenge to establish corre-
objects, but object models that allow for some restrictesbondences between image points and model points. Such
change in their structure. One application, which has becompeint correspondences are the fundamental requirement for
very popular in recent time, is human motion estimation [163D tracking, and the quality of the correspondences mainly
[3], [38], [25]. Here, the model consists of a number ofiecides on the quality of the estimated pose parameters. Fig-
rigid limbs connected by predefined joints. Additionally to there 1 shows some images from tracking scenarios highlighting
global rigid body motion, one is interested in the joint angleglifferent challenges. While there are numerous specialized
There are many recent works on human tracking, most of thenethods that can successfully track the object in one or two
making use of learning techniques to constrain the spaceoffthe scenes, such methods have their inherent weaknesses
solutions and to avoid ambiguities [39], [41], [44], [7]. Othershat likely make them fail in a complementary scenario. In the
interpret tracking as a recognition task [40], [26], [31], whiclpresent paper, we propose to integrate multiple complementary
has many advantages compared to classical tracking, but aleacepts to establish point correspondences. The ultimate goal

o . of this cue integration is to be able to havesiagle tracking
T. Brox is with the Computer Science Department at U.C.

Berkeley, USA. E-mail: brox@eecs.berkeley.edu . B. Rosenhahn System that can handkl scenarios exempllfled in Figure 1.

is with the Leibniz-University of Hannover, Germany. E-mail:The following concepts to establish point correspondences
rosenhahn@tnt.uni-hannover.de . J. Gall is with the Max- RKayve emerged in the literature:

Planck Center for Computer Science, Saacken, Germany. E-mail: . .

jgall@mpi-inf.mpg.de . D. Cremers is with the University of Bonn, E_dge_'bas_ed technlques.The classic approach FO pose
Germany. E-Mail:dcremers@cs.uni-bonn.de . estimation is by means of an edge detector applied to the

This project was partially funded by the German Research Foundati%ages_ Given a model of the object surface, its silhouette
(DFG) and the Max-Planck Center for Visual Computing and Communica- b hed he d d ed i .
tion. The authors thank the anonymous reviewers for comments leading®@" P€ matched to the detected edges, seeking to maximize

improvements of the manuscript. the consistency of both [19]. Though plausible and fast,



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

the main drawback of this approach are the numerous lotaige displacements of the object and thus helps the edge-based
minima. They are caused by many spurious edges due to noisethod to hit better local optima. Finally, the authors of [45]
background clutter, or texture on the object itself. propose the combination of a patch-based tracker and an edge-
Region-based techniquedollow a similar concept as the based method. The latter aims at preventing the accumulation
edge-based approach. Here the overlap error of the projeatéctrrors of the patch-based tracker. However, they show that
surface with the object region in the image is sought to like edge-based method tends to degrade results, despite the
minimized. Unfortunately, extracting the object region fronelose initialization by patch-based tracking, since there are still
the image is not as easy as edge detection. In principle doeal optima in the vicinity of this initialization. Therefore,
is confronted with a segmentation problem. Sometimes badke approach in [45] considers multiple hypotheses for edge
ground subtraction can be a straightforward solution. Motecations.
general methods rely on different intensity distributions in the These works all propose the use of an edge-based technique
foreground and background region and take the object modieladdition to either optical flow or a patch-based tracker for
as a shape constraint into account [34]. The computatioqmbventing the accumulation of errors. In this paper, we aim
costs are higher than with edge-based approaches. On the o#ft@xploiting complementary cues more rigorously in order to
hand segmentation can better deal with low contrast edges amnstigate the potentials of purely image-driven trackirig
noise. Moreover, texture can be taken into account. Althouglrticular, we combine region cues, optical flow, and SIFT
there are usually fewer local optima than in the edge-baskdtures. Whereas region cues are clearly complementary to
approach, local optima are still a significant problem, as theyotion cues, optical flow and SIFT tracking often provide
prohibit tracking in case of large transformations from frame tgery similar information. However, they are not completely
frame. Another problem are ambiguous solutions. For instangedundant, as we will see in the experimental evaluation.
the pose of a sphere cannot be uniquely determined from itBesides the selection of the cues to be combined, the
silhouette. main contribution of this paper is their adaptive weighting.
Patch-based techniques3D tracking methods very often Reasonable information fusion is a common challenge in many
employ a patch-based tracker that establishes 2D correspedmputer vision tasks. Ideally, the impact of a cue should be
dences between successive frames. Knowing the exact posgiige in situations when its extraction is reliable, and small,
the first frame, the 2D points in this frame can be related to 3Pthe information is likely to be erroneous. While it is rather
points. This effectively yields a set of 2D-3D correspondencesasy to show advantages of combined cues, if all weights are
Among the most popular 2D trackers are the KLT trackethosen manually, appropriate fusion mechanisms avoid such a
[36] and a tracker based on the recently developed Slinfanual parameter tuning. Uncertainty in the cue computation,
features [20]. Especially the SIFT tracker can deal with smalé. optical flow and SIFT, is transferred to the pose estimation
frame rates and fast motion, as it is invariant with respect &age. This approach has similarities to Kalman filtering and
scaling, image rotation, and moderate lighting changes. Tparticularly to the work on 2D shape tracking in [47]. In case
main drawbacks of patch-based trackers in general are thsfithe region cues, we propose to couple cue computation and
need for sufficiently textured objects and the accumulation pése estimation by minimizing a joint energy functional. This
errors during tracking. The latter is caused by the assumptignergy can be interpreted as maximum a-posteriori estimation
of knowing the correct pose in the previous frame. in a Bayesian setting. It is thus closely related to Bayesian
Flow-based techniques2D correspondences can also bgeighting schemes in the context of 2D tracking [43], [37].
computed by means of an optical flow method and employedpye to its adaptivity, the tracking system is quite generally
in the same way as correspondences from a patch-bagg@licable without the need to tune the parameters for each
tracker. The success of this approach depends considerablypacific scenario. We demonstrate this by experiments with
the chosen optical flow method. Most methods are restrictgtured and homogeneous rigid objects, as well as exper-
to small pixel displacements and rely on parametric flojihents on human motion estimation. The method can deal
models that might be too restrictive, for instance, in case @fth considerable amounts of noise, background clutter, and
human motion estimation. Moreover, optical flow estimation igrge motion. A further challenge is the presence of partial
usually very sensitive even to small brightness changes. Theg@lusions. In order to limit the influence of these, we suggest
problems are largely avoided by the method in [5], which turg detect occlusions by means of the object model. They are
it into an interesting alternative to patch-based trackers. {fken into account when computing the optical flow and when
contrast to those, optical flow provides dense correspondeRrggecting the SIFT keypoints.
fields. The basic idea to combine a region-based tracking technique
Since all these approaches come along with inherent drayjth point correspondences from dense optical flow has been
backs, it makes sense to combine complementary concepi@sented in a preliminary conference paper [6]. The present
This has been suggested earlier in [12], where optical flow ggper extends this work in several ways. Firstly, the optical
incorporated as a hard constraint in an edge-based methogdg computation is adapted to the needs of pose tracking in-
face tracking. In this method, the optical flow dominates thyding an occlusion detection. Secondly, additional cues from

tracking. In contrast, the work in [21] uses the optical flow ifhe SIFT tracker are integrated. Thirdly, the paper comprises an
order to predict the pose parameters in a new frame, which

servg as imtializatif)n for an edgefbased method. The idea ifrps kind of tracking is also the basis for all methods that further constrain
[21] is that a multi-resolution optical flow method captureshe solution space by means of prior knowledge.
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Initial pose Region based correspondences (Section 1V)
Iterate:
- Project model with current pose - shape prior
Flow based - Estimate object region using shape prior (IV A)
correspondences - Match region with projected model (IV B)
B - - For each silhouette point:
ey generate point correspondence
» - Estimate pose from region, flow, and SIFT based Estimated pose at
»| correspondences (Section Il > i
SIET based > p ( ) > frame i
correspondences -
between frame i-1 Flow based correspondences (Section Il A-C)
and frame i >
Estimate optical flow between frame i and frame i+1 " Flow based
exploiting the contour from frame i correspondences
between frame i A 4
For each visible mesh point: and frame i+1 Estimate
generate point correspondence motion
SIFT based (Section I1)
Weight correspondence with confidence measure (111 B) correspondences
between frame i
SIFT based correspondences (Section Il D) »  andframe i+l
Match SIFT keypoints in frame i and frame i+1
A
For each SIFT point within the object region in frame i: Predicted pose at
generate point correspondence frame i+1

Fig. 2. System overview. Three sources for point correspondences are considered. Motion-based cues allow predicting good initializations, which are iteratively
refined by the contour-based estimation.

elaborated way to adaptively weight the different cues. Finallsgpresentation of rigid body motions is the twist representation
the method is applied not only to track rigid objects, but also

to estimate human motion. ) 0 —w3 wo
Figure 2 depicts an overview of the presented tracking ¢ = <0w IS‘) with &= | ws 0 —-w |, (D
system. Correspondences between 2D image points and 3D 3x1 —wy Wy 0

model points are established in three different ways: (a) by

matching the projected model to the object region in the imaggnhere the six parameters correspond to the six degrees of
(b) by matching image points in successive frames via optiGéedom. We can write these parameters as a vegter

flow, and (c) by matching SIFT keypoints of successive framegy,, m,, m, wy, ws, ws). Each twist can be translated to the
Section Il clarifies our representation of rigid and articulateghrresponding group action by the exponential functidn=
objects and explains how pose parameters are estimated fromg¢); see [28] for details.

given set of point correspondences. Section Il and Section IVThe one-parametric subgrouge (§) = exp(eé) with fixed
then show how these point correspondences can be deri eﬂansforms points along the trajectory of a screw. A de-
from the image data. First we show in Section IIl how a staté- neratet (with no pitch component) can be used to model
of-the-art optical flow estimation technique can be adapt§

for thi K th briefl : h t the SIF nts of a kinematic chain [4]. Such a kinematic chain allows
or this task, then We Drietly review the concept of the . modeling articulated objects, e.g., a human body consisting of
tracker and explain the region-based part of the tracklrg

: . . . id limbs interconnected by predefined joints like shoulders,
system in Section IV. Section V summarizes the syste y P J

; >~ “Elbows, etc. The model can be represented by a tree structure
before we experimentally show the effects of the combinati

. S ¥hth the main torso as the root of this tree and the limbs as
and demonstrate the system’s general applicability. The PaRLL \ches

is concluded with a summary and a discussion on future . . . .
y The motion of a point(X,1) behind thejth joint is

challenges. then described by the consecutive evaluation of exponential
functions of all involved twists, including the twist describing
[1. 3D POSEESTIMATION FROM POINT the motion of the root:
CORRESPONDENCES
) X’ 2 - (X
A. Pose representation ( 1 ) = exp(§) exp(61&1) - . . exp(0,&;5) (1> . (2

In case of tracking rigid bodies, we aim at estimating the
six degrees of freedom of a 3D rigid body motion. Th€onsequently, the state of a kinematic chain is defined by
corresponding group action can be writterfdX) = RX+t, a parameter vector := (£,0) that consists of the six
wheret € R? is a translation vector an® € SO(3) is a parameters for the global twigt and the joint angle® :=
rotation matrix. For the purpose of pose estimation, a bettgh,...,0y).



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

B. Pose estimation Gaussian distribution. The sums in (4) and (5) are replaced

For estimating the parametexs a sufficient set of 2D-3D Y weighted sums_; w;|| - ||3, wherew; corresponds to the
point correspondences is needed. How such corresponderi@éerse variance of the Gaussian distribution. This leads to
are obtained is subject of later sections. For the moment ¢ Well-known weighted least-squares setting. The detailed
assume that a set of correspondeneesX;), with x; € R? choice of the weights is discussed in Section V.
andX; € R3 is given.

As the intrinsic camera parameters are known, the projection I1l. M OTION-BASED TRACKING
rays can be reconstructed from the 2D poixts3D lines can  In this section, we consider two methods that compute 2D
be represented implicitly by so-call@licker lines[35], [42]. correspondences between successive fraraadt+1: optical
A Plicker lineL = (n, m) is described by a unit vectar and flow and SIFT tracking. We assume the pose parameters of the
a momentm. This line representation allows to convenientlynodel in framet to be known. Therefore, it is known, how 3D
determine the distance of a 3D poiKt to the line model points project into this frame. Finding the new positions

of the projected points in frame+ 1 by either optical flow or
d(X,L) = X xn —mll, ) the SIFT tracker yields 2D-3D point correspondences+at.
where x denotes the cross product. From these the new pose of the object can be estimated using

Provided the 2D-3D point correspondences are corretiie technique described in the preceding section.
the transformed 3D points must be on the projection raysSuch a procedure obviously accumulates errors over time.
reconstructed from their corresponding 2D points. In practiddis is due to the assumption that the pose in the previous
the correspondences are not exact for various reasons, yeffi@ge is known and isxact As a consequence, even the
can seek to minimize the above distance. In particular, we sg@Rallest estimation errors are propagated from frame to frame.
a transformationy = (¢, ©) applied to all pointsX; such that Therefore it is crucial to combine motion-based correspon-
the total distance over all correspondences is minimized in tl@nces with region-based ones.
least squares sense:

2 A. Optical flow
. : s (X i i ispl t field
argmin [ exp(& exp(0;¢; < ) xn; — ||, (4) Optical flow is the common name for the displacemen
gX ZZ: (j)e;(‘[xi) (b35) 1 w(x) = (u(x),v(x),1) between two images of an image

sequence (x), wherex := (z,y,t). Numerous optical flow
wherer denotes the projection of the homogeneous 4D vectgétimation methods can be found in the literature. Variational
to a 3D vector by neglecting the homogeneous compongAkthods currently mark the state-of-the-art and yield dense
(which is 1), and7(X;) denotes the set of joints that affect|qyy fields. Since we are interested in capturing large displace-
the pointX,. It is worth noting that minimizing the distancements, we further focus on multi-resolution methods. Building

to the 3D ray and minimizing the 2D re-projection error COU'Gpon the method in [5], [9], we seek the optical flow as the
be made equivalent by appropriate rescaling of each eng[nimizer of

vector [34]. In multi-camera set-ups minimizing the 3D error
is preferable since it treats all points equally, whereas the E(u,v) :/ r(x) - Uy ([I(x+w) — I(x)]?) dx
reprojection error prefers points closer to a camera. !

Equation (4) states a nonlinear least squares problem. To +7/ r(x) - qfl(\v[(erw) — v[(x)|2) dx (6)
solve for the parameters we use the Gauf3-Newton method, N
i.e., the transformation matrix is linearized and the param- ta [ Uy (|Vul? +|Vo[?) dx.
eter estimation is iterated. With the identity matixand oh

exp(6€) ~ I+ 0¢ we can approximate (4) as the linear leastne energy consists of two parts. The first part states the gray
squares problem value and the gradient constancy assumption, both weighted
2 relatively to each other by the parameter= 5. This part
. . N\ X; is usually called data term. It is weighted locally byx),
argfnnz i (I+£Jf 2 9j§j>< 1> < —mil ) nich will be explained later. The second term introduces
’ eI (K1) 2 the assumption of a smooth flow field. It is weighted by the
which can be solved, e.g., with the Householder method. parametera > 0. ¥;(s?) and W,(s?) are so-called robust
Correspondences from different views as well as differepenalizer functions [2], [23]. In [5],0;(s%) = Wy(s?) =
cues can be easily combined in the above least-squares frame? + ¢2 with e = 0.001. Such a penalizer allows for outliers
work by considering all of them in the sum of Equation (4)in the data (e.g. due to noise, specularities, occlusions) and in
Nonlinear optimization with the GauR3-Newton method yieldhe smoothness assumptions (due to motion discontinuities).
the optimum pose considering all constraints in the leadte adopt the same functions for tracking articulated objects
squares sense, which is related to the assumption of a Gausaiah choosex = 50.
error distribution. In case of rigid objects, the model can be simplified by
If there is a way to estimate the expected deviation of theetting ¥5(s?) = s? and @« = 800, which leads to a
matched points, for instance through a confidence measuimear term in the Euler-Lagrange equations of the smoothness
this can be incorporated by means of the variance of tkerm. This simplification results in a faster implementation. It
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becomes possible because in contrast to [5] the energy is o
integrated inside the object regidly. The object region is a
byproduct of model-based tracking and beneficial as it alread
determines most of the relevant motion discontinuities. In cas
of rigid objects that are far enough from the camera, it eve
capturesall relevant motion discontinuities. This is different
for articulated objects. One could imagine, e.g., the case d
two legs next to each other, one leg partially occluding thé
other. The legs can move in opposite direction, hence creati
a motion discontinuitywithin the object region.

Another difference to the model in [5] is the explicit,
local weighting r(x) of the data term. This weighting is _
for integrating the result of the occlusion detection, which g

&

g. 3. Left: Matches between previous frame (squares) and current frame
rosses)Center: The outliers are removed after filterinRight: When a

described in Section IlI-C. The weights are set to matched SIFT keypoint does not coincide with a projected mesh vertex, the
2D translation vectop’ — p is added to the closest vertex (hene For the
0 if x occluded new 2D-2D correspondenge- ¢/, the 2D-3D counterpart is available.
r(x) = 1 else (7)

At occluded pixels the d_ata term |s.|gnored and o_nly _t £ is smaller, its relative influence is decreased. Empirical
smoothness term determines the estimated flow. This yields., -«on resulted i = 12 for Uy(s?) = 2 and § = 3
a smooth interpolation of the flow field in areas, where ﬂ\%r Uy(s?) = V52 + 2.
data does not reflect the motion of the object.
The minimizer of (6) can be computed with a continu-
ous optimization method in a multi-resolution setting. Aftef- Occlusion detection
discretization of the Euler-Lagrange equations, we obtain aOcclusions are one of the most severe problems in tracking.
nonlinear system of equations that can be solved via tw®motion-based tracking methods, the motion of the occluding
nested fixed point iteration loops and a solver for sparse lingstsject is erroneously regarded as the motion of the tracked
systems. For details we refer to [5]. With a fast multi-griédbject. For this reason, most 2D trackers imply a monitoring
solver, the optical flow can be computed in real-time [9ktage, where the appearance of the tracked patch is compared
Further speedups are possible with a GPU implementation [46]the patch at some earlier time. Once a patch has changed
too much, it is ignored.
For 3D tracking we can make use of the object model in
] ) ) ) o _order to refine this concept. Knowing the pose parameters in
Since we are interested in an adaptive weighting of Opt'cé‘l(non-occluded) frame, the object region can be mapped onto
flow correspondences versus correspondences fr_om other cy&S:model surface. This appearance mofi&) can then be
we need some measure that tells us something about tgnnared with the image in a successive frame by projecting
local confidence of the computed optical flow. A standaryack 1o the image. For computing the similarity, we compare
confidence measure is the gradient magnitude of the imagg gray value histograms, andp, of the appearance model
Cgrad (X) = |VI(x)| or some similar expression [1]. Howeverg 4 ihe image patch, respectively:
this measure does not perform well in case of contemporary,

variational optical flow methods, as pointed out in [10]. d:= l/ 1pa(C) — pu(C)|dC. (9)
Instead, it was proposed in [10] to employ the local energy of 2 Jr

variational methods as a confidence measure. We adopt thigg|ds ¢ 0,1], and if d > i we define the centex of

B. Confidence measure for optical flow

idea and use the patch to be occluded in the new frame andr¢&} = 0.
CEnergy (X) = B (1 + e(x))*l Otherwise the point is not occluded, we sék) = 1, and we
) update the appearance model:
e(x) == Uy (|[I(x+w) —I(x)]°) @)
f1(X)=(1—-a)fi-1(X) + al (%), (20)

+y 0 ([VI(x +w) — VI(x)[?)
+aly (|Vul? + |Vo|?) wherex = 7(X) is the projection of the surface poiX to
) . . i the image plane. We set= é Due to the updating step, the
according to the energy stated in (6). This confidence measytg,earance model can adapt to changes in lighting. Note that

is small in areas, where the assumptions stated in the enejgy appearance model i®t updated, if the point is marked
functional cannot be fulfilled. Consequently, it indicates are@g.|yded.

where optical flow computation is difficult and not reliable.

Point correspondences derived from the optical flow are

weighted by this confidence value. The facfdmormalizes SIFT

the confidence, such thaj,..,y = 1, if the optical flow The scale invariant feature transform and its corresponding
computation works reasonably well. If the confidence is largeegion descriptor [20] currently belong to the most reliable
the correspondence obtains more influence than averagetethniques for sparse matching [24]. Matching is restricted
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to keypoints which correspond to local extrema in scalenergy minimization problem [34]:

space. Each keypoint is described by orientation histogramﬁj(

computed in its neighborhood [20]. Correspondences between

successive images are then established by nearest neighbor di_s/ (H(q)) logp + (1 — H(®))logps + V|VH(‘I’)D dx

tance ratio matching [24] where conflicting correspondences Jo

are deleted. We used the distance ratio threshold of 0.6. Only segmentation

keypomts_ that belong to the object region and are not occludeglr A [ (@ — @ () 2dx — min,

are considered. o (11)
As shown in Figure 3, the matching produces reliable

point correspondences but also some outliers that need to be

eliminated. The rudest mismatches for each pair of imag&§ereH (s) denotes a regularized version of the step function,
are removed by discarding correspondences with an Euclidéindenotes the shape of the projected object model, g
distance that exceeds the average by a multiple as propoded'® tuning parameters, which we fix at= 0.001/€*
in [15]. When the average is above a threshold, we also delgffl A = 0.05. Obviously, the first part is very similar to
corresponding features with the same location since the magggmentation models stated in [27], [11], [30]. The second
in frame ¢ + 1 then usually belongs to a static object in th@art couples the segmentation model and the pose parameters
background. Such pre-selection increases the inlier to outlfs it enforces the projected object model to match the object
ratio, though it does not restrict the applicability to stati€€gion. This has two effects: firstly, the pose parameters are
backgrounds, as demonstrated in Figure 7. After deriving tRé@pPted such that the projection fits the region extracted by the
2D-3D correspondences, a preliminary pose is estimated Ss@mentation part. Se_condly, the seglmentatlon is constramed
the new 3D correspondences are projected back in order®¥%the shape of the object model and is not allowed to deviate
detect the remaining outliers. too much from this §hape. Th.e tolerated amount of dgwauon
In contrast to dense optical flow, with a point corresporfj—epends on the clarity of the image data and the choice of

dence available for each projected mesh vertex, SIFT ke 1€ po_se_para_meter_s (y|e_ld|r$g)) and t_he level set funcﬂ@
points do not necessarily coincide with the projected me e optimized in an iterative, alternating scheme. See Figure 2
points. However, if the mesh is fine enough, we can assu L the syst;ahm qverwe\(/jv._ tation i t well
the closest projected mesh point to undergo approximately thén case the 1mage-driven segmentation 1S not weil con-

same 2D translation between two successive images as ﬂgmed, €.9. dlue to@he_?xy C|L:tt9r or |rI:egu(Ijar t_exturg:,bthe
SIFT keypoint. This is illustrated on the right hand side o ontour stays close t®,. The solution is then dominated by

Figure 3. the optical flow and the SIFT features. In the opposite case,

Thanks to the outlier detection and the high overall robust:J there is a homogeneous object, the segmentation part is

ness of SIFT matching, a separate confidence measure like iy domlnar_n and yields cprrespondences that can correct
rors of motion-based tracking.

case of the optical flow is not needed. The influence of SIFT
correspondences automatically increases with the number of S ati
successful matches. In case of poorly structured objects, t‘h‘e egmentation

number of these matches, and thus the influence of SIFT, willThe energy in (11) leaves room for various ways to model
be low. the probability densitiep; andp,. The most simple choice is

the approximation of each region by its mean [11]. However,
this would restrict the tracking scenarios to homogeneous
IV. REGION-BASED TRACKING objects with homogeneous background. Thus in [34] we pro-
posed to model the regions by local Gaussian distributions on
In contrast to motion-based methods, region-based trackifgeature space consisting of the gray value and color, as well
does not require the exact pose in previous frames. Givery@some texture descriptors. These can be responses of Gabor
simplified model of the scene described by a set of parametefigers [14] or, more efficiently, the texture features suggested in
we seek the parameters that best explain the image d#gj.n order to keep the region model manageable, the feature
In our case, the scene is described by the object mo@@lannels are assumed to be independemggnj Dpij, i =
and the background. They are parameterized by the soughi. However, due to the variability of the variance in the
pose parameterg, the contourC' between the object and Gaussian distribution, the relative importance of a charnel
background region in the image, and intensity distribution§ determined automatically by its discriminative properties.
p1 andp in each region. Local distribution models allow to drop the assumption of
For convenience, we represent the contéumplicitly by identically distributed pixels in each region. In contrast, at each
the zero level line of a level set functioh : Q@ — R. It spatial positionx we have a separate probability density. For
splits the image domai} into the object regior?; and a Gaussian distribution this reads [34]:

(I)aplap27x) =

shape distance

the background regiof;, where®(x) > 0 if x € Q; and 1 (5 — p1a;(x))?
®(x) < 0 else. We generally constrai to be the signed pij(8,%x) = exp( 5 ‘” 5 > (12)
distance image of the contour. This means the absolute value V2moy;(x) 7ij(X)

of ®(x) is the minimum distance of to the contour. Seeking Estimation of the parameterg;;(x) and o;;(x) can be
the optimum parameters is then described by the followiraghieved using a Gaussian window with standard deviation
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p = 12 and restricting the estimation only to points withirpenalizes shape deformations:
this window.

Minimization of (11) with respect té andp; is achieved by /Q U ((@(x,y) — Po(z +u,y +v,x))*) dx
gradient descent. Having an initialization®fy the projected (15)
object surface, we can estimaig From these we can update +0z/(|Vu|2 + |Vo[?)dx,
® by @

. where U (s?) = /s2 + €2 with ¢ = 0.001 like in the case of
PEHL = Bk 4 7 (DF) (log %i + vdiv (%)) optical flow computation. Indeed this kind of shape registration
A 2 (13) can be computed by the same numerical scheme as used for

+A(®o — &%) optical flow estimation [33]. This can be done very fast. Since
with iteration indexk. When moving on to a new frame, it® and @, are distance images and very smooth, only few
makes sense to run a few iterations with the densities from tifgrations are needed. Figure 4 shows a comparison of standard
previous frame before adapting. This allows the contour to closest point matching anq the regulanzed matc_hmg. CIear_Iy,
capture the new position of the object boundary. We assuiie correspondences obtained V\_nth the re_gula.nzed matching
the distribution to be sufficiently smooth for being valid als@"® more regular and tend to ignore noise in one of the
for the displaced regions in the new frame. This is ensured BgNtoUrs.
the large Gaussian window with= 12.

We would like to emphasize that it is due to the adaptivit
of the variances;; that the relative importance of motion- and
region-based cues is adapted automatically. If the variances ‘L‘:\\m wfg/ %SE% &
both regions are large, the first term in (13) will get smal e Ty
.a”d WI”. be dommated_ by the Second. term that Ca”'?s ﬂll% 4. Left: Projected object surface in blue and the extracted object contour
information of the motion-based tracking. Vice-versa, if th@ yeliow. One seeks corresponding points between the silhouette of the blue
regions are homogeneous, the variances will get small, so e and the yellow contouCenter: Closest point correspondencéight:
first term in (13) dominates and forces the pose parameteré?ﬁgularized closest point computed with optical flow numerics ard 10.
be adapted fo, matchingd.

% OF &

V. FUSION OFPOINT CORRESPONDENCES AND
B. Shape matching ADAPTIVITY OF THE SYSTEM

The previous sections introduced the details on how point
correspondences can be established using different matching
the pose parameters for a givén we need 2D-3D point strgtegles and how such correspondences can pe employeq to

estimate the pose parameters. The present section summarizes

correspondences. Sincg is the projection of the object the whole system, particularly the fusion of point correspon-
model, corresponding 3D points on the model are known. Thzs 4 : P y P P

The shape distance betweénand &, in (11) relates the
pose parameteng to the region represented i@ To estimate

2D-3D correspondences can be derived by matching the Bnces, the way “.°V.V this f“S'OF‘ can e>.<p|0|t uncertainties, and
Ow such uncertainties are estimated in our system.

shapesb and®,. Towards this end, we seek the displacement ; ) :
i L Information fusion. There are two places in our system
vector field (u(x), v(x)) that minimizes : T : :
where information is combined to improve the robustness
) of tracking. The first is the fusion of point correspondences
/Q(‘I)(l’vy) — ®o(x +u,y + v, x))"dx. (14)  estimated with different matching methodologies. These cor-
respondences are combined in the energy in (4), which states a
In practice, we are only interested in correspondences fgast-squares problem. This formulation assumes that errors in
points along the contours. the correspondences are Gaussian distributed. Since a match-
Numerous methods on 2D shape matching can be foundinig strategy may fail completely at some points, which renders
the literature. We are interested in a method that can deal wilie global Gaussian noise assumption inappropriate, we seek to
shape deformations in order to handle projective distorti@fetect such situations and reflect the uncertainty (or expected
and articulated objects. Moreover, we can assume that #eor) by means of a confidence measure. Correspondences
transformation between the shapes is limited. A suitable angth a large uncertainty are assigned smaller weights in a
simple method is closest point search. It can be computa@ighted least squares setting.
efficiently, if the two contours® and ®, are represented The second place where information is combined is the
by distance images, i.e., the value ®fx) is the minimum prediction step; see also Fig. 2. Here the uncertainty of the
distance ofx to the contour. A very efficient method forcontour based matches is reduced by means of motion based
computing the minimum Euclidean distance in linear time isoint correspondences, which can handle larger transforma-
provided in [13]. tions and yield a better initial contour. This step alleviates one
The estimated regio® may contain estimation errors, forparticular shortcoming of the contour based matching, this is
instance due to partial occlusion or background clutter. Fids sensitivity to the initial pose.
the shape matching to be more robust in such cases, a robu&stimation of uncertainty. In order to prefer the more
function ¥ can be applied together with a regularity term thatliable correspondences in the weighted least squares setting
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in (4), we need an estimate of the reliability of each point

correspondence. In case of optical flow, such a confidence
measure is defined in (8). In case of SIFT, outliers are

detected explicitly and are then removed, so we have a binary
confidence estimate here.

measure, even though it is not explicit. Areas where the seg-
mentation is evident, i.e. the difference of the log-likelihoods
of foreground and background is large, the image driven part
of the segmentation energy in (11) dominates the shape prior == -
and the contour can deviate much from the projected model. ?
Vice-versa, if the foreground and background distributions fit
almost equally well, the segmentation will stay close to the
shape prior, i.e., the correspondences reflect the initial pddg 5. Combining motion- and region-based tracking allows to capture the
estimated with flow and SIFT based correspondences. In .1 L 0o 50 e estmated optioal flow petween frame
case, the correspondence vectors have zero length, i.e. theikd frame 2. Gray: pose from frame 1. Black: pose prediction for frame
confidence is zero. If the log-likelihood ratio is large, on the (c) Estimated pose at frame 2 using combined motion- and region-based

. . king. Bottom row, from left to right: (d) Bad pose just using motion-
other hand, the vectors have larger length and thus their Welggied tracking(e) Bad pose just using region-based tracki(fy.Not enough

in (4) is larger. distinctive SIFT features are located to allow for a proper prediction. Motion-,
Apart from their confidence also the number of corresporggion-, or SIFT-based tracking alone cannot handle this situation.
dences determines the influence of a matching strategy on
the overall system. Therefore, we suggest to normalize the
weights such that if all cues can be extracted in an equatigtation. See Figure 1 for the input images. As the trans-
reliable manner, they are more or less equally weighted. lfermation is quite large, the computed optical flow vectors
nc and nop denote the number of contour- and flow-basecontain errors. This can be seen from the pose prediction in
correspondences, respectively. We take the contour-based Eigure 5b,d. However, thanks to the additional region-based
respondences as reference and assign all of thegm= 1. correspondences, the final pose result is good (Figure 5c).
SIFT correspondences are all assigned the weightt = Conversely, the pose estimation also fails if only the region-
0.002 - nc. Optical flow correspondences are weighted ibased correspondences are used. This is shown in Figure 5e.
dividually by means of the confidence measure describedRigure 5f reveals that in this scene there are not enough SIFT
Section IlI-B. For a correspondenéewith confidencec;, we keypoints on the object (only one, to be precise) for tracking
assign the weightv; = ¢; ;<. For the pose prediction, wherethe tea box. This experiment demonstrates two things. Firstly,
no contour-based cues are available, the faatois replaced there are scenes where none of the cues alone is able to
by nor, respectively. correctly track the object. Taking region- and motion-based
Theoretical gain of the combination.The different match- cues together, on the other hand, leads to a successful tracking.
ing strategies have different shortcomings and fail in differe®econdly, there is clearly a difference between the usage of
situations. Thanks to the fusion, if one matching strategy fait®rrespondences from optical flow and SIFT. While the esti-
and this failure is detected by its confidence measure, otlmeated flow might not be exact in difficult situations, it provides
matching strategies can take over and may ensure a g@bdeast enough correspondences for a unique approximate
pose estimate. This allows to run the method on different degalution. SIFT correspondences are usually more reliable, but
preferring different cues. In the coming experimental sectiotheir number is sometimes not sufficient to estimate the pose.
we will see how far this theoretical gain can be observed inIn order to evaluate the sensitivity of the region based pose
practical experiments. estimation on the initialization, we added increasing pertur-
bations to the correct pose. This kind of experiment is also
VI. EXPERIMENTS commonly used in the scope of active appearance models [22].
In order to demonstrate the ability of the tracking system tphe perturbing twists wer@.016(10, 10, 10, 0.5,0.5,0.5) T for
deal with a number of challenges, we applied it to numeroyscreasingd. The remaining average deviation of all mesh
tracking scenes. These scenes contain homogeneous as wWelb#ts is depicted in Fig. 6 together with the initial poses for
textured objects, large transformations, noisy images, partigtee . Clearly, the method can deal very well with small
occlusions, and articulated human motion. With the expefierturbations, and the pose estimates are still quite good with
ments we aim at showing that, due to the combination @éfedium perturbations. The reason for some smaller perturba-
complementary cues and their adaptive weighting, the trackifign leading to inferior results than a larger perturbation is due
system can handle all these scenes without the need of mangalifferent ways from the initialization to the next optimum.

adaptations. Already very small structures can be the reason for a local
o _ minimum. Initializations that are too far away lead to local
A. Rigid objects minima that correspond to very bad poses. For this reason,

Figure 5 depicts an experiment where a tea box has beantion based cues are needed to handle fast motion at low
moved by about 30 pixels between two frames including feame rates.
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Fig. 8. Top row: Frames 97, 116, and 188 of a stereo sequence used

123456 7 8 91011121314151617 18192021 2223 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 . . .

theta for the experiments in Table Bottom row: Tracking results. See also the

supplementary material for a video.
Fig. 6. Sensitivity of the region based method on the initial pose. The

diagram shows the average error of the mesh points depending on the amount noise level 0 20 20 160 1 80
of disturbance from the correct pose. Three key initial poses are depicted in region 194 1151 95 [ 851 5§
the images. region+flow tracked | 115 | 115 | 75 | 5
region+SIFT tracked | 110 | 100 | 25 | 5
region+flow+SIFT || tracked | 115 | 115 | 85 | 5

TABLE |

SENSITIVITY TO NOISE IN THE INPUT IMAGES. THE TABLE INDICATES THE
FRAME NUMBER WHERE TRACKING FAILED. THE SEQUENCE CONTAINS
196 IMAGES, SOME OF THEM ARE SHOWN INFIG. 8.

the SIFT tracker, the larger transformation is not a problem.
The accumulation of inaccuracies is prevented by the region-
based matching. Once the projected object model covers larger
parts of the object region, the segmentation can robustly
determine the exact location of the object contour, thanks
to the homogeneity of the object region. As a consequence,
it can correct errors of the motion-based prediction. This
experiment shows that the system can deal with homogeneous
objects, even if there are large displacements and substantial
degradation by noise.

Figure 8 shows a slightly more difficult sequence, which we
used to quantitatively determine the sensitivity to noise in the

Fig. 7. Four successive frames from a sequence with the camera moving an
Gaussian noise with standard deviation 60 added (140 frames, &ipsi).
row: Extracted contourSecond row: Estimated poseThird row: Object
motion due to optical flow correspondences. Gray: pose from previous frame
Black: pose prediction at current framleast row: A very similar result is
obtained with the SIFT tracker.

In Figure 7 displacements between successive frames a
almost of the size of the object. Without a motion based
prediction, region based pose estimation will fail to track this
object. Surprisingly, although the object is homogeneous i
large parts and there is a very high amount of noise adde
to the input images, multi-resolution optical flow is still able
to capture its motion by means of its coarse-scale structu
The SIFT descriptor works fine as well, though there are only
few SIFT regions on the puncher. When further decreasing the
frame rate by skipping every second image, optical flow faing. 9. Tracking result for another rigid object. One out of three camera
as the motion is larger than the tracked structure itself. Pgews is shown. See also the supplementary material for a video.
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sin(angle)
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-0.8

Fig. 10. Top row: Tracking results of a tea pot on a turntab@enter

row: Tracking results with 50% of the pixels in the input image replaced by
a uniformly distributed random valu&ottom: Comparison of the estimated
pose (blue) versus the true motion (black). The red curve shows the result on
the noisy input images.

Fig. 12. Relevance of occlusion detectiofop: Result without occlusion
detection.From left to right: (a) Initial pose in a stereo frame. In both
views the object is partially occluded. (b) The estimated optical flow in the
occluded area reflects the motion of the occluding object. (c) The object
pose is disturbed by the bad motion-based correspondences. The region-
based tracking cannot compensate the error, because it also suffers from the
occlusion.Bottom: For comparison the methodith detection of areas that

are occludedFrom left to right: (d) Areas that deviate from the model
appearance are marked as occluded. (e) Ignoring these areas in optical flow
estimation, the motion of the tracked object, in this case zero motion, is
estimated correctly. (f) Finally estimated pose based on motion- and region-
based correspondences.

We performed two further experiments with quantitative

v results, as depicted in Figure 10 and Figure 11. Ground truth
‘ / as been provided by placing the tracked objects on a turntable
N has b ded by pl h ked ob bl
0a and reading the true pose from the turntable con e
A\ d reading the t from the turntabl trdlieh
502 // tracking curves reveal a very accurate tracking of the objects.
§ o GG 7 In case of the tea pot, the average error is only 2.3 degree.
oz \ 7 The error increased to 4.6 degree replacing 50% of the pixel
o4 N J in the input images by uniform noise. In case of the car, the
: \ average error is 2 degree.
' Figure 12 demonstrates the occlusion detection. Tracking

without occlusion detection leads to large errors since the

Fig. 11. Top: Input ig?;ge with Cestimatfed cor;tor?r and tracléing feSEgtIS géstimated motion reflects in large part the motion of the

a toy car on a turntal ottom: omparison o the estimate pose ue . . .

versus the true motion (black). occluding stick instead of the tea box to _be tracked. Clearly,
the proposed appearance based method is able to detect these
parts. Estimating the optical flow based on data from the non-

. . . . . ccluded areas only, avoids bad pose estimations caused by
input images. We added increasing amounts of noise to

. d ob d the f b hen tracking faild motion-based component of the system.
Images and observe .e rame num _er when _rgc Ing a}| e Another demonstration of the occlusion detection is shown
The results are shown in Table |. Without additional noise

th mbined svstem can track th N moletel Figure 13 where a tea pot is swayed. Two occluding boxes
the combined system can track the sequence completely. e been added to the images. They continuously move across
increasing noise tracking fails earlier in the sequence. With the

combined system successful tracking is possible for a largetrne  sequences and ground truth  data  are  provided  at
number of frames. www.tnt.uni-hannover.de/project/ TPAMIO9Benchmark/
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Fig. 13. Three frames from a stereo sequence with a moving object args
two moving, occluding boxesLeft: Extracted contourCenter: Detected
occlusions marked in yellowRight: Estimated pose. Thanks to robust
shape matching and consideration of occlusions in optical flow estimatiol
occlusions that are not too large can be handled.

the i | th id in th | ¢ I.Fi . 14. Combining motion- and region-based tracking allows to capture fast
e image (see also the video in the supplementary on 'Ek%:er body motionTop row: Initialization with the pose from the previous

material). The occluded areas are quite well detected, whigdme (left), and the estimated pose in the new frame when combining all

ensures the successful tracking of the tea pot. available cues (right)Middle row: Matched SIFT keypoints (left). Yellow
rectangles indicate keypoints in the previous frame, green crosses keypoints

in the new frame. In this frame, successfully matched keypoints are available
at the main body but missing at the hands. Right: motion prediction by optical
B. Human motion tracking flow and SIFT.Bottom row: The same situation with region-based cues only.
Lacking a sufficiently close initialization, contour extraction fails (left) and
In another set of experiments, we applied the system to tleds to an inaccurate pose estimation (right).

tracking of articulated objects, in particular to human motion
tracking. Besides the global rigid motion, the joint angles o
the body model represent further degrees of freedom that ha
to be estimated.

Due to the relatively small size and fast motion of limbs,
it is very likely that region-based tracking gets stuck in loca
optima and tracking fails. Hence, the predicted pose due f
optical flow and SIFT matches is particularly important for
human motion tracking. This is demonstrated by the exper
ment in Figure 14 where the upper body of a person wavi
their arms is tracked. Without a good pose prediction, the arr_
movement is clearly underestimated, as the contour extraction
gets stuck in a local optimum. Optical flow and SIFT togeth(‘rflig- 15. Full body tracking in a sequence with ground truth daitm row:

.. . . . . Input frames from one out of four camera vievgottom row: Synthesized
allow for good predictions. SIFT alone is not sufficient, SINCfages from the tracked 3D pose. A different viewpoint than in the input
the number of keypoints is often too small for a uniquenages is depicted. Further results are shown in Figures 16, 18, 17, and
estimate. Provided a good prediction, the region-based cuUage !l
ensure a precise final pose estimate without accumulating the
errors from motion-based tracking.

The experiment in Figure 15 shows the outcome of a fuIE
body outdoor running sequence. The body model has 5
degrees of freedom and the image data was captured wi
four Basler gray-scale cameras and 120 frames per second.
Ground-truth data was obtained for this sequence throughrne sequence and ground tuth data are provided at
parallel tracking of the person with a marker-based systemww.tnt.uni-hannover.de/project/ TPAMIO9Benchmark/

ad marker correspondences have been corrected mahually
Thanks to combined cues, even fast motion can be tracked,
illustrated in Figure 16. The image in the top left corner
icts the start pose. The second image shows the predicted
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Fig. 18. lllustration of the drift when only flow-based correspondences
are used for trackingFrom left to right: Result at frames 1, 10, 30, and
150. The optical flow yields good results for the first frames, which indicates
its suitability for predicting the pose in successive frames. However, errors
accumulate over time and are the reason for tracking failures of the limbs.
Successful tracking of the main torso even after 150 frames indicates the
generally high precision of the flow-based correspondences.

the outcome of the combined optical flow and SIFT tracker.
It is superior to the results of the separate motion predictors.
The estimate is further refined if also region-based tracking is
Fig. 16. Combining motion- and region-based tracking allows to capture tHavolved. Compare, e.g., the right hand of the person.

fast motion of a jogging persofiop row, from left to right: (a) Objectpose  Table Il shows quantitative results for the most interesting

at frame 1.(b) Pose at frame 2 estimated from optical flow correspondenc P P _
only. (c) Tracked SIFT features: not enough features are located to ensur%fée combinations. Clearly’ the combination of correspon

proper predictionBottom row, from left to right: (d) Estimated prediction dences improves the robustness of tracking when the frame

at ;‘rame f tglngkcomz[ned OPtIC?l ﬂowzar)ldPSI(';_T _InfOfrmathg)- Graslli _goa'ate is reduced. When tracking is successful, the results are

In Trame 1. ack: pre iction for frame 4e rediction from overlal : . :

with the image. The outcome is much better than the result in({p)inal Very_ precise with a\_/erage er.rors of about 5 degrees. Figure 17

outcome for motion- and region-based tracking. depicts corresponding tracking curves for the elbow and knee
angles. The system with the combined cues is close to the

o ground truth even when the frame rate is small, whereas

° g — ~___—~— tracking with the purely region-based system fails (red curves).
—— T~ ——— ~~ Tracking with purely motion-based cues always fails due to
3o ~— @v// /7?%\\\// X\T accumulation of errors. Figure 18 illustrates the corresponding
e N drift. Although the estimated optical flow is extremely precise,
AN / as indicated by the successful tracking of the torso over 150
e —————  ffames, even smallest errors accumulate over time especially

0 Frame 188

at limbs with few correspondences. Such drift can only be

o avoided by region-based correspondences, which are based on
% Z % § matching the image directly to the model and do not suffer

* from small errors in previous frames.

The computation time for tracking the full body model
with four camera views was around 4 minutes per frame.
Tracking the upper body model with two camera views took
o Frame .. approximately 80 seconds per frame. While this is clearly

not realtime performance, the focus of this paper is on a

Fig. 17. Tracking diagram for the sequence in Figure 15. The curves shggneral and robust system, not on a fast one. The rather large

the angles of the two elbow and the two knee joirfisp: Comparison of : ; ; ; ; : i
the proposed system (blue) to the ground truth (blaBk}tom: Comparison computation time Is mamly due to the iterative region based

of the combined system (blue) to the purely region-based system (red) for@cking and the involved local region statistics including a
reduced frame rate of 24fps. The black curve shows again the ground tr¢xture feature space. Using less sophisticated components

The tracking failure of the single-cue system is clearly visible. See Table | ; : ;
for average errors. Nere would substantially reduce the computation time.

VII. DISCUSSION

motion in the next frame using optical flow. The third image We have proposed the combination of surface-region match-
shows the tracked SIFT-features. Due to the black bodyg, optical flow, and SIFT tracking for 3D motion capture
suit, not enough features are detected to allow for a propsr rigid and articulated objects. The system is designed in
prediction using SIFT tracking alone. Tracking fails even wita way that all involved cues can incorporate their strong
regularized equations since limb movements are not propeagpects, while weaknesses are sought to be suppressed. This
predicted. The left and center image in the bottom row depist achieved as the system adaptively weights cues according
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flow only | region only | region+SIFT| region+flow | region+SIFT+flow
120 fps - (30) 429+342 | 435+3.31 | 442+ 3.38 4.46 + 3.38
40 fps - (30) - (165) 4.354+3.34 | 4.31 +3.43 4.29 4 3.38
30 fps - (33) - (118) 4.86 £4.29 | 4.47+3.94 4.73+3.99
24 fps - (21) - (33) - (33) - (25) 5.83+4.91
TABLE I

COMPARISON OF CUE COMBINATIONS AT VARIOUS FRAME RATES CORRESPONDING TO THE EXPERIMENT RGURE 15. THE TABLE SHOWS THE
AVERAGE ERROR OF THE KNEE AND ELBOW JOINT ANGLES OVER ALI180FRAMES IN DEGREES THE SECOND VALUE INDICATES THE STANDARD
DEVIATION. TRACKING FAILURES ARE MARKED BY ’-" AND A NUMBER THAT INDICATES THE FRAME WHERE TRACKING FAILED(ONE BAD LIMB).

of future research.
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