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Abstract

During the last decade diffusion methods became more and more popular in the fields of
image processing and computer vision. They are used for smoothing and regularization in
cases where discontinuity preserving properties are wanted. Since the first discontinuity pre-
serving smoothing operator has been presented, a lot of generalizations were made in order to
fit new applications. One of those generalizations was the extension from scalar-valued to
vector-valued data. This diploma thesis regards a further generalization towards matrix-valued
data as well as its application in the field of optic flow estimation. More specifically, it deals
with the following items:

•  The diffusion of matrix-valued data is derived from conventional diffusion methods.

• It is then applied to a special matrix: the frequently used structure tensor [FG87]. Some
experiments are shown and it turns out that some modifications to the original technique
make the whole process for this specific application case more robust and easier to handle.
After all, an extension of the conventional linear structure tensor to a nonlinear structure
tensor is obtained. 

• This nonlinear structure tensor again opens a set of new applications. Actually it can be
applied in all cases where a linear structure tensor is used. We concentrate here on optic
flow estimation. The classic method of Lucas-Kanade [LK81, Luc84] as well as its spatio-
temporal counterpart of Bigün et al. [BG88, BGW91] is improved by using the new nonlin-
ear structure tensor. 

• Since Lucas-Kanade and Bigün are only special cases of another, more general optic flow
estimation technique, the CLG technique [WBS01], the nonlinear structure tensor can also
be applied to improve this method. This leads to a framework unifying a whole set of differ-
ential optic flow estimation techniques. In this framework all those techniques only differ in
the kind of smoothing at certain processing steps. 

• Experiments demonstrate the improvements that can be achieved with the new technique in
the field of optic flow estimation and show also the performance in comparison to other
contemporary algorithms. 
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1  INTRODUCTION
1   Introduction

Smoothing of image data plays a fundamental role in the field of image processing and com-
puter vision. In fact it is so fundamental that hardly any method in computer vision can do
without smoothing. This is because smoothing allows an exchange of information between
neighboring parts of an image, thus extending the effect of local data to a wider area. Besides
that information exchange, smoothing has also a regularizing effect. So smoothing can turn an
ill-posed problem with a non-unique solution into a well-posed problem. 

When talking of images one might first think of two-dimensional structures of scalar-valued
data. Such structures are very common in form of grey-value images. But structures need not
to be necessarily two-dimensional. For example a video sequence is a three-dimensional struc-
ture and especially in medical applications there are often images consisting of volume data.
The same way image data need not be necessarily scalar-valued. Taking a color image for
example, each pixel consists of a color vector and is therefore vector-valued. In medical imag-
ing there also exist matrix-valued images. They are called DT-MRI images and are the product
of a recent image acquisition technique that measures the diffusion characteristics of water
molecules in tissues. 
However, there are further applications to smooth matrix-valued data besides input images
themselves. Many methods in computer vision work with matrices created from the original
image data. The frequently used structure tensor [FG87] for instance is a matrix derived from
the image gradient. 

The most common way to smooth arbitrary data is its convolution with a Gaussian kernel
[Iij59]. This method is both fast and simple, and in the first place it causes no problems when
being extended to data of arbitrary dimension or value. Yet, in recent years nonlinear diffusion
methods have become more and more popular and seem to replace Gaussian smoothing in
many fields of application. The reason is their ability to preserve discontinuities in the data,
thus avoiding the blurring effect known from Gaussian smoothing. 
All diffusion methods have their source in the work of Perona-Malik [PM87] which proposed
isotropic diffusion for grey-value images, where smoothing stopped in the area of discontinui-
ties. Later Weickert [Wei94] proposed an anisotropic version1 which had the ability to smooth
along discontinuities but not across them. Gerig et al. [GKKJ92] demonstrated how to use dif-
1



fusion for vector-valued data, and Tschumperlé and Deriche [TD01] presented the first time a
technique to diffuse matrix-valued data without simply diffusing each matrix channel sepa-
rately. In parts this diploma thesis is based on a technical report [WB02] presenting an aniso-
tropic version of the isotropic technique from [TD01]. 
While Tschumperlé and Deriche applied their technique to the smoothing of DT-MRI images,
where primarily denoising capabilities are wanted, this work concentrates on the structure ten-
sor. For this matrix field there are further demands besides denoising capabilities. To meet the
demands of various algorithms that make use of the structure tensor it must primarily be
ensured to close structures of a certain scale. The conventional linear structure tensor
obtained by Gaussian smoothing meets these demands, yet it is interesting whether a nonlin-
ear structure tensor obtained by nonlinear diffusion can perform better, especially in respect
to discontinuity preservation. 

The true value of a new nonlinear structure tensor can only be validated by applying it to an
already known algorithm using the linear structure tensor. Optic flow estimation techniques
seem to be a good choice. Optic flow is the displacement field describing the movement of
each pixel in two successive frames of an image sequence. There exist numerous methods that
estimate optic flow. The most widely used techniques are differential methods which compute
optic flow from spatial and temporal derivatives. One representative of this class is the classic
method of Lucas and Kanade [LK81, Luc84] or its spatio-temporal counterpart proposed by
Bigün [BG88, BGW91]. They use a linear structure tensor to cope with a problem that all
optic flow techniques have in common: Optic flow can only be estimated in the direction of
the image gradient but not perpendicular to it. This so-called aperture problem is mostly
solved by smoothness assumptions. Lucas and Kanade assume the optic flow to be constant
within a neighborhood of a certain size. Smoothing the data within this neighborhood solves
the aperture problem and optic flow can be computed. Though with Gaussian smoothing the
data has no influence on shape and size of the neighborhood. In comparison a nonlinear
smoothing method could adapt the neighborhood to the data. This is done by replacing the lin-
ear structure tensor in the Lucas-Kanade method by a nonlinear structure tensor. While based
on the method of Horn and Schunck [HS81] a lot of discontinuity preserving optic flow esti-
mation techniques have been presented [AELS99, ADK99, BA91, Coh93, HB93, KTB96,
Nag83, Nes93, PGPO94, Sch94, SH89, WS01a], the lack of an appropriate technique to
smooth matrix-valued data nonlinearly prevented corresponding extensions to the Lucas-
Kanade and Bigün  method. Only Nagel and Gehrke [NG98] made an approach by using
adaptive Gaussian filters. Yet, a method using diffusion techniques is an alternative with less
parameters and a better theoretical foundation.

1. Unfortunately, in the literature the term “anisotropic” is often used for nonlinear isotropic diffusion. 
For example Perona-Malik named their technique anisotropic though it is not anisotropic in respect 
of the direction of smoothing but only in its magnitude. In Chapter 2 the difference between isotropic 
and anisotropic diffusion will be regarded in detail. 
2



1  INTRODUCTION
In [WBS01] it was shown by Weickert et al. that the local methods of Lucas-Kanade and
Bigün can be combined with the global method of Horn-Schunck. Their CLG method there-
fore combined the benefits of both philosophies. Since the CLG method again uses the struc-
ture tensor inherited from the Lucas-Kanade and Bigün method, a nonlinear structure tensor
can also be applied to this technique. Furthermore, as the nonlinear structure tensor has dis-
continuity preserving properties, it makes sense to extend the CLG technique by using also a
discontinuity preserving technique for the Horn-Schunck part. Thus, based on the ideas of the
CLG method and the new nonlinear structure tensor, a framework can be formulated covering
the differential methods of Lucas-Kanade and Bigün as well as Horn-Schunck and all its dis-
continuity preserving extensions. It is shown that all these methods only use different smooth-
ing techniques at three succeeding processing levels. 

This work consists of five further chapters. Chapter 2 deals with the topic of diffusion. Here
matrix-valued diffusion is presented in the context of former diffusion techniques. In Chapter
3 the findings about matrix-valued diffusion are used to construct a nonlinear structure tensor.
In this connection also the conventional linear structure tensor is analyzed to get a better
understanding what a nonlinear structure tensor should do. Chapter 4 deals with optic flow
estimation. The existing methods of Lucas-Kanade and Bigün as well as Horn-Schunck and
CLG are reviewed and extended by the new nonlinear structure tensor from the previous chap-
ter. This results in a general differential optic flow estimation technique. Chapter 5 shows
some tests in order to verify the performance of the nonlinear structure tensor in the context of
optic flow estimation in comparison to its linear counterpart. Furthermore, it presents the
results that can be achieved with the general technique and compares them to those of other
optic flow estimation methods from the literature. The sixth chapter is a summary concluding
this work and giving an outlook on possible future research in this field.  
3
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2 DIFFUSION
2  Diffusion

This chapter is mainly based on a lecture about partial differential equations [Wei01]. It is a
review of existing diffusion techniques and the foundation for the next chapter where diffu-
sion methods are used to develop a nonlinear structure tensor. 

Diffusion is a phenomenon we can observe in our everyday’s life. When turning on the heat-
ing on a cold winter day, the warmth of the heating spreads in the room, or when we fill two
liquids in a vessel they mix1. Assumed we do not disturb the system, concentration differences
of the two liquids will slowly be equilibrated and the underlying process can be described by a
diffusion equation based on two principles: equilibration of concentration differences and con-
servation of mass.

The equilibration of concentration differences is described by Fick’s law:

The concentration gradient creates a flux j with a symmetric, positive definite diffusion
matrix D.

Conservation of mass can be described in terms of the continuity equation

Both equations together lead to the diffusion equation

In image processing this model of diffusion can be used to smooth an image. Instead of con-
centrations grey-values spread over the image and the equilibrium is reached when all pixels
have got the same grey-value. Corresponding to the conservation of mass the average grey-
value will be conserved. The way grey-values spread over the image depends on the diffusion
matrix D. There are three cases that can be distinguished:

• Homogeneous diffusion, where D is the identity matrix
• Isotropic diffusion, where D is the identity matrix with a scalar pre-factor depending on 

the local image structure
• Anisotropic diffusion, where D can be an arbitrary symmetric, positive definite matrix 

depending on the local image structure.

1. except there is a chemical reason why two special liquids do not mix

j D u.∇⋅–=
u∇

∂tu div j.–=

∂tu div D u∇⋅( ).=
5



HOMOGENEOUS DIFFUSION
Another classification of diffusion methods in image processing can be made concerning the
value of the data. Until now the following cases appear in the literature:

• Scalar-valued data
• Vector-valued data 
• Matrix-valued data 

A third possibility to classify diffusion methods is the dimension of the data set. In fact it is
easy to generalize diffusion to any arbitrary dimension. The only difference exists in the num-
ber of neighbors that must be considered for each data element. 2D and 3D data sets are very
common in image processing and computer vision, but there are also applications with 4D
data sets. 

2.1  Homogeneous Diffusion
For homogeneous diffusion the diffusion matrix D is the identity matrix. So the diffusion pro-
cess for an image f can be described by the following diffusion equation:

Homogeneous diffusion

This equation can be solved analytically yielding the unique solution

where is the Gaussian kernel with standard deviation . 

Thus homogeneous diffusion is an linear operation and equivalent to Gaussian smoothing.
There is a direct relation between the diffusion time t and the standard deviation of the Gauss-
ian kernel :

Since images have a finite size, boundary conditions have to be added. It is defined that there
is no flux across boundaries. 

∂tu div ( u )∇  u∆= =

u x 0,( ) f x( )=

u t( ) K 2t*u 0( )=

Kσ σ

σ

t 1
2
---σ2.=
6



2 DIFFUSION
2.2  Isotropic Diffusion
Isotropic diffusion has its roots in the work of Perona and Malik [PM87]. The main idea is to
reduce smoothing at discontinuities in the data. The corresponding diffusion equation reads:

Isotropic diffusion

While for homogeneous diffusion the diffusion matrix was the identity matrix for all data ele-
ments, in the isotropic case it is multiplied by a scalar value, depending on the gradient magni-
tude of the data. This diffusivity determines how strongly the data is smoothed in the
respective area and is computed via a decreasing diffusivity function where s equals

. Since the diffusivity depends on the evolving data, isotropic diffusion is a nonlinear pro-
cess. 

2.2.1  Diffusivity functions

Perona Malik proposed two diffusivity functions

Perona-Malik I

Perona-Malik II

In areas where  is 0, g equals 1 yielding conventional Gaussian smoothing. As 
increases, smoothing is reduced resulting in the preservation of edges. In fact strong edges
become even sharper as for high the flux function decreases again. This phe-
nomenon is called backward diffusion. The contrast parameter  determines the threshold
above which backward diffusion takes place. 

Further diffusivity functions mentioned in the literature are:

Weickert [Wei98]

Charbonnier [CBFAB94]

The Charbonnier diffusivity function differs from the other functions as it does not allow
backward diffusion. Such diffusivities are interesting for cases where edges should not be
enhanced but only be preserved. The Weickert diffusivity on the other hand decreases faster
than the functions proposed by Perona and Malik leading to more segmentation-like results.

∂tu div g u∇ 2( ) u∇( ).=

g s2( )
u∇

g s2( ) 1
1 s2 λ2⁄+
------------------------=

g s2( ) s2

2λ2
---------– 

 exp=

u∇ u∇

u∇ g s2( ) s⋅
λ

g s2( )
1                                   s2 0=( )

1 3.31488
s8 λ⁄ 8

-------------------– 
        s2 0>( )exp–







=

g s2( ) 1
1 s2 λ2⁄+

----------------------------=
7



ISOTROPIC DIFFUSION
2.2.2  Regularized diffusion

Due to its edge enhancing capability nonlinear diffusion has in its original design two major
drawbacks. In the continous setting there is no general well-posedness theory for diffusivity
functions allowing backward diffusion. Though Weickert and Benhamouda showed in
[WB97] that spatial discretization creates well-posedness, there is still another problem. Noise
is misinterpreted as edges and tried to be preserved. Therefore images which are heavily dis-
torted by noise are not smoothed at all. This problem can be removed by smoothing or
presmoothing u before its derivatives are computed [CLMC92]. This also creates well-posed-
ness for the continous setting. The modified diffusion equation is:

Regularized isotropic diffusion

with .

It should be mentioned that this presmoothing is not necessary for diffusivity functions with-
out backward diffusion, because in the case of forward diffusion there is always some mini-
mum smoothing removing the noise.

2.2.3  Discretization and implementation aspects

For implementing nonlinear diffusion the derivatives of the continuous diffusion equations
have to be discretized. This is done by finite difference approximations. In general, first order
approximations are used:

Discretization in space

where and are the pixel sizes in x-direction and y-direction and approximates

in a pixel (i,j) with approximated by and u

has been smoothed by a Gaussian kernel with standard deviation .

This scheme for two dimensions can also be written for general dimensions. Therefore the
multi-dimensional data set u is rewritten as a one-dimensional vector so that each data element
is represented by a single index k: 

Discretization in space, arbitrary dimensional data

where M is the dimension of the data set and  represents the set of neighbors of a data
element k in n-direction.

u∇

∂tu div g uσ∇ 2( ) u∇( )= uσ∇ Kσ* u( )∇=

∂xxu 1
h1
-----

gi 1 j,+ gij+
2

---------------------------  
ui 1 j,+ uij–

h1
--------------------------- 

  gij gi 1 j,–+
2

---------------------------  
uij ui 1 j,––

h1
-------------------------- 

 – O h1
2( )+=

∂yyu 1
h2
-----

gi j, 1+ gij+
2

---------------------------  
ui j 1+, uij–

h2
--------------------------- 

  gij gi j 1–,+
2

---------------------------  
uij ui j 1–,–

h2
-------------------------- 

 – O h2
2( )+=

h1 h2 gij

g uσ∇ 2( ) uσ∇
ui 1 j,+ ui 1 j,––

2h1
-----------------------------------

ui j 1+, ui j 1–,–
2h2

-----------------------------------, 
 

σ

∂tu   
gl gk+

2hn
2

----------------  ul uk–( )
l Nn k( )∈
∑

n 1=

M

∑=

Nn k( )
8



2 DIFFUSION
A shorter matrix-vector notation is:

Discretization in space, vector-matrix notation

Note that A is a sparse symmetric matrix where the number of rows and columns is the num-
ber of data elements. 

For discretization in time there are two possibilities:

Discretization in time, explicit scheme 

Discretization in time, semi-implicit scheme

Here k is the time index and the time step size. 

The explicit scheme leads to a convolution operation or matrix-vector multiplication: 

It can be proved [Wei98] to be stable for time step sizes . Thus for large diffu-
sion times many iterations have to be carried out. 

The semi-implicit scheme leads to a linear system: 

It is stable for arbitrary large time steps [Wei98]. Therefore only one iteration step has to be
carried out to obtain the result for an arbitrary diffusion time. There exist numerous numerical
methods to solve such sparse linear systems like the Jacobi method, Gauss-Seidel or the SOR
method [You71]. Though being iterative methods again, they are often faster than the explicit
scheme for large diffusion times. Moreover, there are alternative semi-implicit schemes like
AOS which are roughly ten times faster than an explicit scheme [WRV98]. 

∂tu A u( )u=

with  akl

gl gk+

2hn
2

----------------                             l Nn k( )∈( )

   
gl gk+

2hn
2

----------------
l Nnk∈
∑

n 1=

M

∑–        l k=( )

0                                      (else)











=

uk 1+ uk–
τ

----------------------- A uk( ) uk=

uk 1+ uk–
τ

----------------------- A uk( ) uk 1+=

τ

uk 1+ I τA uk( )+( )uk=

τ 1
2
hn

2
-----

n 1=

M

∑⁄≤

I τA uk( )–( )uk 1+ uk=
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ANISOTROPIC DIFFUSION
2.3  Anisotropic Diffusion
The main problem of isotropic diffusion is that in the presence of discontinuities it reduces
diffusivity in all directions. Therefore data with lots of discontinuities is not properly
smoothed anymore. Anisotropic diffusion, however, reduces diffusivity merely in parallel to
the gradient but still smooths perpendicular to it. The diffusion equation is: 

Anisotropic diffusion [Wei94] 

The matrix is the diffusion matrix for where the last-men-
tioned expression denotes a principal axis transformation of A with the eigenvalues as the
elements of a diagonal matrix and the normalized eigenvectors as the columns of the orthogo-
nal matrix T. The diffusivity function can be chosen the same way as for isotropic dif-
fusion. 

2.3.1  Discretization and implementation aspects

The way to find discretizations for anisotropic diffusion is basically the same as for isotropic
diffusion. However, there are some further difficulties.
Let . Then 

In addition to the terms and already known from isotropic diffusion there
are mixed terms. Standard approximations by central differences yield: 

Unfortunately these expressions can create negative stencil weights violating a condition
needed to guarantee stability. Another more complex discretization can guarantee stability but
only for condition numbers of D below 5.8284. This severely limits anisotropy. For more
details see [Wei98]. 

In practice the above-mentioned problem is not that important. Though stability can not be
guaranteed, the algorithm used to yield stable results especially for larger diffusion times.
However, there is a further problem with anisotropic diffusion. The semi-implicit scheme,
known from the isotropic case to be faster, may create problems. This is because for anisotro-
pic diffusion the numerical methods to solve the linear system cannot be proved to converge.
Also pure AOS schemes cannot be applied if negative stencil weights appear. Thus the best
way to implement anisotropic diffusion so far is the explicit scheme that needs many iterations
for large diffusion times. 

∂tu div D u uT
σ∇σ∇( ) u∇( )=

D A( ) T g λi( )( )TT= A T λi( )TT=
λi

g s2( )

D = a b
b c 

 

∂tu div D u∇( ) div 
a∂xu b∂yu+
b∂xu c∂yu+ 
  ∂x a∂xu( ) ∂x b∂yu( ) ∂y b∂xu( ) ∂y c∂yu( ).+ + += = =

∂x a∂xu( ) ∂y c∂yu( )

∂x b∂yu( ) 1
2h1
-------- bi 1 j,+

ui 1 j 1+,+ ui 1 j 1–,+–
2h2

------------------------------------------------- bi 1 j,–
ui 1 j 1+,– ui 1 j 1–,––

2h2
-------------------------------------------------– 

 ≈

∂y b∂xu( ) 1
2h2
-------- bi j 1+,

ui 1 j 1+,+ ui 1 j 1+,––
2h1

------------------------------------------------- bi j 1–,
ui 1 j 1–,+ ui 1 j 1–,––

2h1
-------------------------------------------------– 

 ≈
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2 DIFFUSION
Moreover, recomputing the diffusion matrix D takes more computation time in the anisotropic
case. For two-dimensional, scalar-valued data this additional effort is still comparatively
small, since the principal axis transformation need not be computed explicitly (the eigenvec-
tors are already determined by the direction of the gradient). Yet for higher dimensions, vec-
tor-valued or matrix-valued data, the explicit computation of the principal axis transformation
cannot be avoided anymore. 

2.3.2  A faster approximation for the explicit scheme

Addressing the last-mentioned item an approximation of the explicit scheme has been used for
this work. Instead of recomputing the diffusion matrix after each iteration step, the number of
recomputations is reduced in the course of time. This idea is based on the observation that
most of the diffusion time is needed to smooth the data within nearly homogeneous areas,
while the step by step removing of discontinuities due to the recomputation of the diffusion
matrix can in a certain scope also be accelerated by choosing a higher value for the contrast
parameter . 

To get an idea of how the recomputation frequency can be reduced we regard diffusion of a
signal consisting of two pixels only. For such a case analytic solutions are possible. Let and

be the grey-values of those two pixels with . Within nearly homogeneous areas dif-
fusivity is approximately 1. Thus the diffusion equation for such areas is 

with pixel size h and the boundary conditions ( and are only
dummy pixels).
With this leads to the differential equation 

with the solution

This shows that the difference in grey-value between the two pixels decreases exponentially
and can be seen as a motivation for exponentially reducing the number of recomputations in
the course of time. Such a procedure causes the same result with lower computational costs, if
the contrast parameter is raised. This is because each update of the diffusion matrix causes
increases in diffusivity mainly in areas where the magnitude of the gradient is around the con-
trast parameter. Thus, less updates yield discontinuities with such a magnitude of the gradient
to be preserved longer. On the other hand, raising the contrast parameter yields those disconti-
nuities to be removed earlier what leads to nearly the same result as the original method but
with less computational costs.

λ

u1
u2 u1 u2>

∂tu ∂xxu=

∂tu1
1
h
---

u2 u1–
h

----------------
u1 u0–

h
----------------– 

  u2 u1–
h2

----------------= =

∂tu2
1
h
---

u3 u2–
h

----------------
u2 u1–

h
----------------– 

  u2 u1–
h2

----------------–= =

u3 u2– u1 u0– 0= = u0 u3

w: u1 u2–( )=

∂tw
2
h2
-----– w=

w t( ) w 0( ) e
2
h2
-----t–

.⋅=
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VECTOR-VALUED DIFFUSION
2.3.3  Summary

As now all diffusion techniques for scalar-valued data have been presented, the differences
between homogeneous, isotropic and anisotropic diffusion are briefly summarized. Figure 1
depicts those differences. While homogeneous diffusion removes all the noise but also blurrs
important image structures, isotropic diffusion leaves some noise at discontinuities. Since
anisotropic diffusion can smooth along discontinuities, it can also remove the noise there, thus
yielding the best results. 
Regarding the computational effort homogeneous diffusion is the best choice as it can be
implemented by a convolution with a Gaussian kernel. Isotropic diffusion is more expensive,
though there are concepts to speed up computation using semi-implicit schemes and algo-
rithms from numerical mathematics. The superior results of anisotropic diffusion have to be
payed with higher computational costs, since fast algorithms that significantly speed up com-
putation are not yet available.

2.4  Vector-valued Diffusion
The immediate concept to adapt diffusion methods for vector-valued data is to smooth each
vector channel separately. In fact for homogeneous diffusion (or Gaussian smoothing) this is
an appropriate procedure. For isotropic and anisotropic diffusion, however, there arises a
problem: By diffusing each channel separately, structures can develop at different locations in
the channels. For the case of a color image for example this means that an edge for the blue
value is being located at a different location than the edge in the channels for the red and green
value. 

A solution to this problem is the coupling of the channels by using a common diffusion matrix
for all of them. This common diffusion matrix again is determined by using the data of all
channels. This is done by summing the values of all channels before passing this sum to the
diffusivity function. 

Figure 1: Different Types of Diffusion. 
FROM LEFT TO RIGHT: 

(a) Image heavily distorted by noise. (b) Homogeneous diffusion. 
(c) Isotropic diffusion. (d) Anisotropic diffusion.
12



2 DIFFUSION
Thus, the resulting diffusion equations for the isotropic and anisotropic case are:

Vector-valued isotropic diffusion [GKKJ92]

Vector-valued anisotropic diffusion [Wei94]

Note: The values in the different channels are required to have comparable intensity ranges,
otherwise the sum has to be weighted respecting the differences in the intensity range. 

2.5  Matrix-valued Diffusion
Matrix-valued diffusion can be derived directly from vector-valued diffusion. Again a cou-
pling of the channels has to be made for structures to develop at the same locations in all chan-
nels. Actually the only difference to vector-valued diffusion is the two-dimensional
arrangement of the channels. This leads to the following diffusion equations:

Matrix-valued isotropic diffusion [TD01] 

Matrix-valued anisotropic diffusion [WB02]

Tschumperlé and Deriche [TD01] added a reprojecting step to their technique to maintain the
property of positive semidefiniteness while diffusing such matrix fields. However, in [WB02]
this step is proved to be unnecessary, since the coupling of the channels with a common diffu-
sion matrix always ensures the positive semidefiniteness property to be preserved. 
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3 STRUCTURE TENSOR
3  Structure Tensor

In the last chapter a method for nonlinear smoothing of matrix-valued data was shown. This
chapter will now deal with an application for this new method: the structure tensor. First the
conventional linear structure tensor is reviewed, and its properties are carefully examined.
This examination of the existing method allows an exact definition of what an enhanced struc-
ture tensor at least has to perform and what improvements could be possible. In the second
part of this chapter such an enhanced, nonlinear structure tensor is developed and some basic
tests are performed.

3.1  Linear structure tensor
The linear structure tensor was first mentioned by Förstner and Gülch [FG87]. It is a matrix
field containing orientation and magnitude of structures for each pixel of an image f. The
structure tensor is computed from the image gradient by the tensor product . Although
this tensor product contains merely the same information as the gradient itself, it has the big
advantage that it can be smoothed without cancellation effects for areas where gradients have
opposite signs. This smoothing stabilizes the orientation information. The smoothed matrix
field is called structure tensor. 

Linear structure tensor 

3.1.1  Information content

Besides the information about orientation and magnitude of structures already present in the
gradient, the structure tensor contains a further information: the coherence. This additional
information has been gained by the smoothing process. Orientation, magnitude as well as
coherence can all be determined from the structure tensor by a principal axis transformation

, where the eigenvectors of are the columns of T and the eigenvalues are
the elements of a diagonal matrix. 
The eigenvector to the largest eigenvalue then determines the orientation of the structure,
while the Frobenius norm determines its magnitude. The coherence is expressed
by the condition number of (largest eigenvalue against smallest eigenvalue) or by the mea-
sure .

f fT∇∇

Jρ Kρ* f fT∇∇( )=

Jρ T λi( )TT= Jρ λi

Jρ λi
2

i
∑=

Jρ
λ1 λ2–( )2
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LINEAR STRUCTURE TENSOR
The magnitude and coherence information can be used for a structure analysis. Homogeneous
areas in the image yield the magnitude to be small. In areas around edges the structure tensor
has a high magnitude as well as a high coherence, while corners result in a high magnitude but
low coherence. 

3.1.2  Noise removal

Although it makes often more sense to remove noise of the image f already in the image itself
before computing the structure tensor, it is also removed in the structure tensor due to its
smoothing step. This is demonstrated in Figure 2. Figure 2a shows a synthetic test image dis-
torted by Gaussian noise with . In Figure 2b the matrix product  is
depicted as a colored orientation plot, where the direction of the eigenvector to the largest
eigenvalue is mapped to the hue value and the largest eigenvalue itself is mapped to the inten-
sity value of the HSI color model. The saturation value is set to its maximum. Figure 2c shows
the linear structure tensor. Most of the noise of Figure 2b has been removed here. 

3.1.3  Closing of structures

In many applications for the structure tensor it is desirable that structures of a certain scale are
closed. This means there has to be a filling effect of orientation information from structured
areas into areas without structure as far as these areas are small in respect to a certain scale. By
means of the structures in the lower left of Figure 2 it can be seen that the linear structure ten-
sor fulfills this requirement appropriately. 

σ 30= J0 f fT∇∇=

Figure 2: Synthetic test image
FROM LEFT TO RIGHT:

(a) Image f distorted by Gaussian noise with . (b) Tensor product .
(c) Linear structure tensor with .

σ 30= f fT∇∇
Jρ ρ 3=
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3 STRUCTURE TENSOR
3.1.4  Preservation of orientation discontinuities

Figure 2c, especially the rectangular structure in the lower left, also reveals the preservation of
orientation discontinuities. One would not expect such a property from a smoothing method
without explicit discontinuity preservation. In fact, discontinuities in the matrix field are not
preserved. The preservation of orientation discontinuities, however, is caused by its special
representation as a tensor product. Two neighboring orientations with the same magnitude and
a gap of 90 degree even would not influence each other at all. 

Proof

Consider two perpendicular vectors v1
x
y 
   and v2

y–
x 
  .= =

Their matrix products are then
a1 b1

b1 c1 
 
 

 and  
a2 b2

b2 c2 
 
 

  with  

a1 x2= b1 xy= c1 y2=

a2 y2= b2 x– y= c2 x2=

Thus the weighted average of both matrix fields with weight α 1
2
--- is>

a b
b c 

    with 

a αx2 1 α–( )y2+=
b 2α 1–( )xy=
c αy2 1 α–( )x2+=
The larger eigenvalue λ of this matrix is

λ a c+
2

------------ a c+
2

------------ 
  2

b2 ac–++ α x2 y2+( )= =

The eigenvector to the largest eigenvalue then is c u
1 
   with c IR∈  and⋅

u b
λ a–
------------ 2α 1–( )xy

α x2 y2+( ) αx2– 1 α–( )y2–
---------------------------------------------------------------------- 2α 1–( )xy

2α 1–( )y2
--------------------------- x

y
--= = = =

Thus the resulting vector has the same orientation as v1.
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NONLINEAR STRUCTURE TENSOR
Figure 3 shows the equilibration velocity
, where and are the difference in

orientation before and after the smoothing respec-
tively, in dependence of . For small differences
the velocity is small, since there is almost nothing
to equilibrate. It rises until a maximum is reached
for differences of about 60 degree. Then the curve
falls again, and for 90 degree there is no equilibra-
tion at all. 

However, this holds only for the equilibration
between two data elements with the same magni-
tude not influenced by further neighbors. In fact,
many data elements with the same orientation can
cause a single data element to adapt its orienta-
tion. Otherwise noise could not be removed. Also
a data element with a low magnitude will easily
adapt to a neighbor with a higher magnitude. In
these cases the order of the eigenvalues changes,
causing the eigenvector to the largest eigenvalue
to turn by 90 degree.

Nevertheless, there remains a discontinuity preserving property enabling two regions to keep
different orientations without blurring effects during the smoothing process. 

3.1.5  Dislocation and blurring effects

While orientation discontinuities are preserved rather well, discontinuities in the magnitude
are removed. This blurring effect is typical for Gaussian smoothing and can also be observed
in Figure 2. Edges disappear with increasing and the remaining edges dislocate. In fact this
effect is the most important drawback of the linear structure tensor and motivation for the con-
struction of a nonlinear structure tensor. 

3.2  Nonlinear structure tensor
A nonlinear structure tensor with discontinuity preserving capabilities addressing the blurring
effect of the conventional linear structure tensor can be built by using matrix-valued nonlinear
diffusion instead of Gaussian smoothing (or homogeneous diffusion). However, it has to be
ensured that the removal of one drawback will not harm all the positive properties of the linear
structure tensor. So it is conceivable that the diffusion method must be adapted specifically to
its application on the structure tensor. In the previous section of this chapter all important
properties of the linear structure tensor were discussed in detail. They will now serve as a kind
of duty book for the design of an appropriate nonlinear structure tensor.

Figure 3: Equilibration velocity of 
two orientations with an orientation 

difference of phi (rad).

ϕ1 ϕ0– ϕ0 ϕ1

ϕ0

ρ
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3 STRUCTURE TENSOR
3.2.1  What a nonlinear structure tensor has to accomplish

• Noise removal. Although image noise can also be removed in the image itself before com-
puting the structure tensor, a method containing a smoothing step should be able to handle
noise. 

• Closing of structures. Small areas without any structure should be filled with the struc-
ture information of bordering structured areas. A single parameter (like in the linear
case) should determine how small areas must be to be affected by this filling effect yield-
ing a scale space property. 

• Discontinuity preservation. Orientation discontinuities as well as discontinuities in the
magnitude should be preserved. In the best case the same parameter as mentioned above
would also determine whether a discontinuity is worth preserving or whether it should be
removed. This would lead to a scale space which respects closing of structures as well as
discontinuity preservation. 

• Few robust parameters. There should be as few parameters as possible. In the best case
there would be a single scale parameter like for the linear structure tensor. Further param-
eters should be at least robust against moderate variations so they can be fixed for a whole
set of input data. 

3.2.2  A nonlinear structure tensor using the standard diffusion technique

A straight-forward approach to a nonlinear structure tensor is to apply the matrix-valued diffu-
sion methods of the previous chapter. Starting with the matrix field of an image f, non-
linear diffusion with diffusion time t yields the nonlinear structure tensor . Figure 4 depicts
the results using isotropic and anisotropic diffusion respectively. 

ρ

f fT∇∇
Jt

Figure 4: Nonlinear structure tensor using the standard diffusion technique.
FROM LEFT TO RIGHT:

(a) Matrix field . (b) obtained by isotropic diffusion and .
(c) obtained by anisotropic diffusion and .

For both cases the Weickert diffusivity function with and
was used.

J0 f fT∇∇= Jt t 6=
Jt t 6=

λ 300=
σ 2.24=
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NONLINEAR STRUCTURE TENSOR
It is clearly visible that the anisotropic version of the nonlinear structure tensor outperforms
the isotropic one. The isotropic version shows the typical effect of noise not removed at dis-
continuities. This is obvious because at discontinuities isotropic diffusion reduces diffusivity
in all directions.
However, it can also be observed that there is another drawback of isotropic diffusion when
being applied to the structure tensor. The closing of structures is far more problematic than in
the anisotropic case. Especially at orientation discontinuities there is no appropriate closing of
structures. In fact there is no scale space property in this respect because the closing is irregu-
lar. Near orientation discontinuities unstructured areas must be smaller than elsewhere in the
image to be closed.
Both the isotropic and anisotropic version preserve orientation discontinuities what is not sur-
prising as even homogeneous diffusion has this property. Discontinuities in the magnitude are
mainly preserved, yet the diagonal structure with lower contrast dislocates in both versions.
While for the anisotropic case there is still hope that it is possible to fix this by choosing a
smaller diffusion time or a lower contrast parameter , there is no chance to find parameters
for the isotropic case that both close the remaining structures and preserve the discontinuity of
the low contrast structure. 
Thus summarizing the first three items of the above-mentioned requirements anisotropic dif-
fusion can more or less fulfill all of them while for isotropic diffusion there has to be made a
choice between closing of structures and discontinuity preservation. For applications like
optic flow estimation this is unacceptable. 

We now focus on the anisotropic version of the nonlinear structure tensor as it performed
quite well for the first three items. In order to optimize the discontinuity preservation capabil-
ities and to verify the performance in respect to the requirement of few robust parameters the
parameter settings are regarded in detail. 

λ

Figure 5: Parameter variations.
FROM LEFT TO RIGHT:

(a) (b) 
(c) 

t 6 λ, 150 σ, 2.24= = = t 12 λ, 150 σ, 2.24= = =
t 6 λ, 300 σ, 2.12= = =
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3 STRUCTURE TENSOR
In Figure 5a the contrast parameter has been reduced in order to improve discontinuity pres-
ervation for the low contrast structure. Although an improvement could be achieved, there is
still some blurring effect left. Nevertheless, the closing of structures is already affected. More-
over, noise removal is also reduced in some areas. 
Figure 5b shows that a higher diffusion time can not completely make up for the drawbacks
induced by the lower contrast parameter. This indicates that there is no perfect parameter set-
ting for the test image that closes all structures appropriately without any blurring effects at
the structure with lower contrast. 
Figure 5c reveals the parameter settings also to be quite sensitive to variations. A slight
change in the setting of the presmoothing parameter leads to a considerably worse result.
The contrast parameter is much more robust. However, it still has to be adapted to the
image and can not be fixed for a whole set of input data. So the requirement of only a few
robust parameters can not be fulfilled using standard matrix-valued diffusion techniques.
Although, besides these issues, the technique works quite well, it is therefore reasonable to try
some adaptations in order to remove the remaining drawbacks. 

3.2.3  A nonlinear structure tensor using an adapted diffusion technique

As we concentrate here merely on the structure tensor, it is possible to adapt the diffusion
technique specifically to this sort of matrix field. One major problem that arises using the stan-
dard technique is the double preservation of orientation discontinuities. While orientation dis-
continuities are already preserved for homogeneous diffusion due to the special representation
of orientations as a tensor product, they are preserved a second time due to the nonlinear diffu-
sion technique which handles orientation discontinuities the same way as discontinuities in the
magnitude. This results in an irregular closing of structures and noise reduction, what
becomes most obvious for the isotropic version of the nonlinear structure tensor but also
affects the anisotropic case (see for example Figure 5c). In fact, also the sensitivity to parame-
ter variations arises from this double preservation of orientation discontinuities, since the
parameter values are either too high for areas with orientation discontinuities or too low for
areas without them. 

Therefore the best way to improve the results of the nonlinear structure tensor is to avoid this
double preservation of orientation discontinuities. This can be achieved by steering the diffu-
sivity not by the complete matrix field, which also contains the orientation information, but
only by its magnitude. The diffusion equations for the isotropic and anisotropic case then are:

Isotropic diffusion

Anisotropic diffusion

λ

σ
λ

∂tu div g ukl
2
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∑4 

 
 
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2

 
 
 

 
 
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2
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 
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NONLINEAR STRUCTURE TENSOR
In these equations the fourth root seems to be quite arbitrary. Though there is a good motiva-
tion for it. For diffusion time the structure tensor of an image f is 

with subscripts denoting partial derivatives. Thus the corresponding expression of the diffu-
sion equation is

what can be interpreted as the image gradient driving the diffusion. However, this is only
exactly the case for . The diffusivity is adapted to the new structure tensor after each
time step. So it is still a nonlinear diffusion process. Note that also the positive semidefinite-
ness of the matrix field is still preserved with this technique, since there is still a coupling of
all matrix components [WB02]. 

Figure 6 depicts the results achieved with the new nonlinear structure ten-
sor. Obviously the isotropic technique does not produce satisfactory
results as there is almost no smoothing. An optimization of the parameter
setting did also not yield any improvements. On the other hand, the aniso-
tropic version performs rather well. The reason is obviously the fact that
anisotropic diffusion is able to smooth along edges while isotropic diffu-
sion is not. The fact that we use an edge detector (the gradient magnitude)
to drive the diffusion process therefore explains the bad performance of the isotropic tech-
nique. However, it is still surprising that the anisotropic version also closes structures very
well though it should not be able to smooth across discontinuities. This is because discrete
anisotropic diffusion mostly cannot adapt exactly to the direction of a discontinuity due to the
pixel grid. Thus anisotropic diffusion always smooths slightly across discontinuities. Excep-
tions are synthetic images where all edges perfectly fit to the pixel raster. An example is
shown in Figure 7. However, in real image data such structures do not occur. 

t 0=

J0

fx
2 fxfy

fxfy fy
2 

 
 

=

ukl
2

k l,
∑4 fx

4 2fx
2fy

2 fy
4+ +4 fx

2 fy
2+( )24 fx

2 fy
2+ f∇= = = =

t 0=

Figure 6: Adapted nonlinear structure tensor.
FROM LEFT TO RIGHT:

(a) Matrix product . (b) Nonlinear structure tensor with isotropic diffusion.
(c) Nonlinear structure tensor with anisotropic diffusion.

J0 f fT∇∇= Jt
Jt

Figure 7: 
Synthetic image
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3 STRUCTURE TENSOR
Nevertheless, Figure 6c looks somehow distorted in some regions. However, some smoothing
of the diffusivity has revealed to be suitable to avoid these unpleasant effects. Already some
slight smoothing is sufficient to remove them. Throughout this work a Gaussian kernel with a
standard deviation of has been used. In Figure 8 the resulting nonlinear structure tensor is
depicted together with its linear counterpart. 

Now that a version of the nonlinear structure tensor using an adapted diffusion technique has
been developed, it is time to review whether it can fulfill the requirements listed in section
3.2.1.
• Noise removal. In Figure 8 it is visible that the nonlinear structure tensor can handle noise

the same way as the linear original. 
• Closing of structures. It can also be seen that structures of a certain scale are closed

appropriately. Moreover, in Figure 11 it becomes obvious that the scale can be steered by
a single parameter, namely the diffusion time t. 

• Discontinuity preservation. In contrast to the linear structure tensor, which only pre-
serves orientation discontinuities, the nonlinear structure tensor also preserves discontinu-
ities in the magnitude. This was actually the motivation for the construction of a nonlinear
structure tensor and it can be seen that this goal could be achieved. 

• Few robust parameters. The main reason why the diffusion technique was adapted spe-
cifically to the structure tensor was the requirement of parameters to be more robust. Since
the linear structure tensor has only one single robust parameter (the standard deviation of
the Gaussian kernel), a similar outcome for the nonlinear structure tensor is necessary to
be useful for the same set of applications. Figure 9 and Figure 10 reveal the additional
parameters of the nonlinear structure tensor to be so robust that they can be fixed and be
seen as constants. All experiments for this work (also those of the following chapters)
have been performed with the same diffusivity function (Weickert diffusivity), the same
contrast parameter and the same presmoothing parameter . Moreover,
Figure 11 depicts the scale space property of the nonlinear structure tensor with the scale
determined by the last remaining parameter. The same way as the linear structure tensor
can be steered merely by the parameter the diffusion time t determines the result of the
nonlinear structure tensor.

2

Figure 8: Linear and nonlinear structure tensor
LEFT: Linear structure tensor. RIGHT: Nonlinear structure tensor

λ 0.1= σ 1.58=

ρ
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NONLINEAR STRUCTURE TENSOR
3.2.4  Summary

Summarizing this chapter it was possible to design a new nonlinear structure tensor preserving
all useful properties of the conventional linear structure tensor including its convenient usage
with only one decisive parameter. Moreover, as a further property, the nonlinear structure ten-
sor preserves discontinuities in the magnitude. Some basic tests were performed in this chap-
ter, yet only testing within the environment of a real application would show the effects of the
new technique. This is done in the next chapters. 

Figure 9: Variation of the contrast parameter .
FROM LEFT TO RIGHT:

(a) . (b) . (c) .
All other parameters were kept fixed at and . 

λ

λ 0.01= λ 0.1= λ 1=
t 15= σ 1.58=

Figure 10: Variation of the presmoothing parameter .
FROM LEFT TO RIGHT:

(a) . (b) . (c) .
All other parameters were kept fixed at and .

σ

σ 1= σ 1.58= σ 2=
t 15= λ 0.1=
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3 STRUCTURE TENSOR
Figure 11: Variation of the diffusion time t.
UPPER ROW FROM LEFT TO RIGHT:
(a) . (b) . (c) .

LOWER ROW FROM LEFT TO RIGHT:
(d) . (e) . (f) .

All other parameters were kept fixed at and .

t 2= t 5= t 10=

t 15= t 25= t 50=
λ 0.1= σ 1.58=
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4 OPTIC FLOW ESTIMATION
4  Optic Flow Estimation

In the previous chapter a nonlinear structure tensor has been developed. In order to verify its
performance in real world applications optic flow estimation as a popular application field of
computer vision will be considered in this chapter. There is one classic differential optic flow
estimation technique using a structure tensor. Is was introduced 20 years ago by Lucas and
Kanade [LK81,Luc84]. A spatio-temporal version of this technique was proposed by Bigün et
al. [BG88,BGW91]. In the first part of this chapter both methods will be reviewed in order to
apply and test the nonlinear structure tensor later. 

Recently, Weickert et. al [WBS01] used the structure tensor for an extension of the Horn and
Schunck method [HS81]. They also demonstrated that the Lucas-Kanade/Bigün as well as the
Horn-Schunck approach are both special cases of their new CLG technique. In this chapter the
nonlinear structure tensor will also be applied to the CLG method, and therefore the tech-
niques of Horn-Schunck and CLG will be reviewed in the first part as well. 

Based on the discussion about the role of smoothing in the field of differential optic flow esti-
mation techniques [WBS01] as well as a framework for convex regularizers [WS01a] a gen-
eral differential optic flow estimation technique will be presented at the end of this chapter.
This general method unifies the Lucas-Kanade/Bigün approach, along with its adaptation
using the nonlinear structure tensor, and the Horn-Schunck approach, along with its disconti-
nuity preserving adaptations. The result can also be interpreted as a discontinuity preserving
version of the CLG method. 

First some notions concerning optic flow estimation are introduced. Consider an image
sequence with z standing for the time axis and let be the searched
optic flow field. Corresponding image objects at times z and are assumed to have the
same grey-value. This results in the original optic flow constraint:

For small displacements this can be linearized by a first order Taylor expansion leading to the
linearized optic flow constraint:

where subscripts denote partial derivatives. 

f x y z, ,( ) u v,( )T x y z, ,( )
z 1+

f x u y v z 1+,+,+( ) f x y z, ,( )=

fxu fyv fz+ + 0=
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REVIEW OF EXISTING TECHNIQUES
As this is only one equation for two flow components, the optic flow is not uniquely deter-
mined by this constraint. Only the displacement parallel to the image gradient, the so-called
normal flow, can be computed. This is called the aperture problem. An additional assumption
has to be made in order to obtain a unique solution for the optic flow field. 

While most optic flow estimation techniques have the linearized or at least the original optic
flow constraint in common, they differ in the way how they circumvent the aperture problem. 

4.1  Review of existing techniques
In this section, which is based on [WBS01], [Bru01] and [WS01a], the existing techniques
used for this work are reviewed. All these techniques belong to the class of differential optic
flow estimation methods and can be covered by the general method introduced later in section
4.3. 

4.1.1  Lucas-Kanade and Bigün

First the methods of Lucas-Kanade [LK81,Luc84] and Bigün et al. [BG88,BGW91] are con-
sidered. Their idea to cope with the aperture problem is to assume the optic flow vector to be
constant in a neighborhood of size . Since the aperture problem is circumvented by using
local assumptions, Lucas-Kanade and Bigün are so-called local flow estimation techniques. 

According to Lucas-Kanade, for each point  the optic flow can be estimated by a least
square fit minimizing the local energy function

Instead of the sharp window often a convolution with a Gaussian kernel is used yield-
ing 

Lucas-Kanade

A minimum of E satisfies and , leading to the linear system

Provided the system matrix is not singular this linear system can be solved. Such singular
matrices appear in regions where the image gradient vanishes or the aperture problem remains
present, because the direction of the gradient is all the same within the neighborhood. Using
sufficiently broad Gaussian filters avoid such situations to appear in practice. However, the
smaller eigenvalue of the system matrix can still become close to zero resulting in an uncer-
tain estimation of the optic flow in such regions. Therefore the smaller eigenvalue of the sys-
tem matrix is often used as a confidence measure. For points where the value becomes too
small the estimated optic flow is rejected yielding non-dense flow fields. 
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4 OPTIC FLOW ESTIMATION
Although the methods of Lucas-Kanade and Bigün make the same assumptions to circumvent
the aperture problem, they differ in the way how the least square fit is performed. Bigün for-
mulates the minimization problem as follows:

Bigün

with and denoting the linear structure tensor . It is easy to see
that both formulations are equivalent. 
Bigün minimizes by performing a principal axis transformation of the structure ten-
sor. The eigenvector w to the smallest eigenvalue then determines the optic flow vector (the
third component of w is normalized to 1). Again there is a confidence measure, which allows
to identify uncertain estimations in order to sparsify the flow field. If the aperture problem is
still relevant for some points, the second smallest eigenvalue becomes close to zero and can
therefore serve as confidence measure. Additionally, the Bigün approach allows to identify
uncertain estimations due to noise or discontinuities. In such cases the smallest eigenvalue is
not close to zero. This additional information can also be used to sparsify the flow field. 

Although the energy function is equivalent in both cases, the optic flow estimated by the two
versions of Lucas-Kanade and Bigün turns out to be different. Until now, there are only spec-
ulations to explain this phenomenon. A possible explanation is the following: The linear sys-
tem proposed by Lucas and Kanade is a least square approach. In the case of the aperture
problem it returns the vector with the smallest magnitude from the subspace given by the two
eigenvectors which both have eigenvalues close to zero. The method of Bigün, however,
returns an arbitrary vector from this subspace. This explanation also goes together with exper-
imental results, where the Lucas-Kanade method yields a flow field, the magnitude of which
is often to small in regions where the aperture problem is still relevant, while the results
obtained by the method of Bigün et al. show some bad estimates with very high magnitudes in
such areas. For this work the linear system proposed by Lucas and Kanade was used as its
results are more robust. 

However, Bigün et al. made a further extension to the Lucas-Kanade approach. While Lucas
and Kanade assumed the optic flow only to be constant in a spatial neighborhood, Bigün et al.
extended the neighborhood to the temporal domain. As a result the structure tensor is also
smoothed along the time axis. However, there are no further adaptations necessary. Therefore
the spatio-temporal extension can also be used together with the linear system of Lucas and
Kanade. In general a spatio-temporal approach leads to better estimation results. 

ELK u v,( ) wTJρw=

wT u v 1, ,( )= Jρ Kρ* f fT∇∇( )

E u v,( )
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REVIEW OF EXISTING TECHNIQUES
4.1.2  Horn-Schunck

While Lucas-Kanade and Bigün made local assumptions to circumvent the aperture problem,
the method proposed by Horn and Schunck [HS81] is a global approach. The optic flow con-
straint is embedded in the global energy functional

Horn-Schunck

that has to be minimized in order to determine the optic flow components and .
Note that these components are now functions in x and y, since they are not constant as in the
local approach of Lucas-Kanade. 

The energy functional consists of a data term

reflecting the optic flow constraint and a smoothness term 

assuming the flow field to be smooth by penalizing high gradient magnitudes. This assump-
tion again tackles the aperture problem. 

The regularization parameter weighs the importance of the two assumptions against each
other. While small favour the grey-value constance, large lead to a smoother flow field.
Note that for areas where few image structure is available the data term becomes small yield-
ing an automatic strengthening of the smoothness term. Therefore the flow information is
transferred from areas with a clear image structure to areas where the image is poorly struc-
tured. 

Since the flow components are not constant like in the Lucas-Kanade case, their computation
is a bit more complicated and leads to differential equations. A theorem from the calculus of
variations [CH53,Els61] states that the minimizing functions of the convex energy functional

are necessarily satisfying the Euler-Lagrange equations

with the boundary conditions and .
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4 OPTIC FLOW ESTIMATION
Thus the Euler-Lagrange equations for the Horn-Schunck functional are:

with reflecting boundary conditions and where denotes the Laplace operator
. These diffusion equations have a unique solution [Sch91]. Using finite differ-

ence approximations they yield the sparse linear system

where denotes the set of neighbors of pixel i, and are the optic flow components in
pixel i, and M is the total number of pixels.
As already known from Chapter 2, such a linear system can be solved iteratively by numerical
methods like the Jacobi method, the Gauss-Seidel method or the SOR method. They can be
shown to converge for arbitrary initial values. 

Another possibility is to use the differential equations to obtain a diffusion-reaction system
given by

The functions u and v can then be computed by a vector-valued diffusion approach with the
explicit scheme

where k denotes the time index, denotes the time step size and A is the diffusion matrix
known from Chapter 2 (see especially section 2.2.3). The solution for u and v is obtained for

. The advantage of such a diffusion approach is the direct applicability of discontinuity
preserving diffusion methods. This is interesting in the case of discontinuity preserving vari-
ants of the Horn-Schunck method that will be discussed next. The disadvantage of the diffu-
sion approach with the explicit scheme is its slow convergence. The numerical methods
solving the linear system converge much faster. Especially the SOR method is a good choice.
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REVIEW OF EXISTING TECHNIQUES
Thus for the Horn-Schunck approach, the smoothness term of which comes down to simple
homogeneous diffusion, solving the linear system should be favoured. An alternative that has
not been tested for this work is given by implicit diffusion schemes also using fast converging
methods. 

4.1.3  Extensions of the Horn-Schunck approach

The Horn-Schunck method has been extended in two ways. One extension is its formulation in
the spatio-temporal domain. The other extension is the usage of discontinuity preserving
smoothness terms. While spatio-temporal extensions have not been so popular, the literature
knows a lot of discontinuity preserving versions of the Horn-Schunck approach [AELS99,
ADK99, BA91, Coh93, HB93, KTB96, Nag83, Nes93, PGPO94, Sch94, SH89, WS01a]. In
the following we will concentrate on the framework described in [WS01a] that considers both
discontinuity preserving as well as spatio-temporal regularizers. 

In [WS01a] Weickert and Schnörr distinguish the regularizers in image-driven and flow-
driven as well as isotropic and anisotropic. The latter classification is in compliance with the
classification of diffusion methods made in Chapter 2. While image-driven methods use the
gradient of the image sequence to determine discontinuities, a flow-driven approach deter-
mines discontinuities by means of the estimated optic flow field. Since discontinuities in the
image sequence do not necessarily induce discontinuities in the optic flow field, especially for
strongly textured image sequences, image-driven methods often yield oversegmentations.
Therefore flow-driven methods in general perform better than image-driven methods. In this
work only the flow-driven approach has been considered. 

Nonlinear isotropic regularizers

With an isotropic, flow-driven regularizer the global energy functional looks like

Horn-Schunck with a nonlinear isotropic regularizer

where is a differentiable and increasing penalizer function that is strictly convex in s.
With this comes down to the conventional Horn-Schunck approach. Weickert
and Schnörr described a penalizer function based on Charbonnier [CBFAB94] which is

The parameter is only required for proving well-posedness and can be fixed to some very
small value close to zero. The other parameter has already been introduced in Chapter 2 in
the term of diffusivity functions. It serves as a contrast parameter determining whether a dis-
continuity is strong enough to be preserved. 
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4 OPTIC FLOW ESTIMATION
The Euler-Lagrange equations for the above-mentioned energy functional are

with the diffusivity denoting the derivative of with respect to its argument. 
For the above-mentioned penalizer function it is

Diffusivity functions have already appeared in Chapter 2. In fact, as already mentioned in the
last subsection, the minimum of the energy functional can also be found by a vector-valued
diffusion process. While for the conventional Horn-Schunck method such an approach results
in homogeneous diffusion, in this case it comes down to isotropic diffusion. However, for the
isotropic case it is still possible to solve the linear system using fast converging iterative meth-
ods like SOR. As already mentioned above it is recommendable to use them instead of the
explicit diffusion scheme, because in experiments they revealed to converge more than 20
times faster. 

Nonlinear anisotropic regularizers

Having in mind the classification of diffusion methods mentioned in Chapter 2, one could also
think of an anisotropic regularizer. In fact, Weickert and Schnörr introduced in [WS01a] an
anisotropic, flow-driven regularizer yielding the energy functional

Horn-Schunck with a nonlinear anisotropic regularizer

where denotes the sum of the diagonal elements of a matrix A. 
The energy functional can again be minimized in compliance with the Euler-Lagrange equa-
tions leading to

or the diffusion-reaction system

Using the diffusion-reaction system, a solution can again be computed by means of a vector-
valued diffusion approach, now applying anisotropic diffusion. The linear system obtained by
the Euler-Lagrange equations, however, may cause problems, since the iterative methods to
solve the linear system do not necessarily converge. A possibility to speed up the computation
used for this work is to compute an initial estimation of the flow field with the help of isotro-
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REVIEW OF EXISTING TECHNIQUES
pic diffusion and SOR. Afterwards the explicit scheme can be used to get an anisotropic solu-
tion. As both methods have very similar results, now there are only few iterations necessary to
obtain a solution very close to the minimum. 

Spatio-temporal regularizers

Considering the spatio-temporal extension of the conventional Horn-Schunck method intro-
duced by Elad and Feuer [EF98], the flow components u and v become functions in x, y and z.
Besides, the Nabla operator has to be understood as a spatio-temporal operator

. The resulting energy functional is

where now includes the time axis. In the Euler-Lagrange equations this leads to 

with the spatio-temporal Laplace operator . In the discretization leading
to the linear system this only yields for each pixel two additional neighbors along the time
axis. If seeking the minimum by the diffusion-reaction system the extension is just as simple,
since the two-dimensional diffusion process simply becomes three-dimensional. The major
drawback of the spatio-temporal approach is though the increased amount of memory neces-
sary to hold the complete image sequence as well as the flow components. 

In [WS01a] Weickert and Schnörr also described the spatio-temporal versions of their isotro-
pic and anisotropic regularizers. They work the same way as the spatio-temporal version of
the basic Horn-Schunck method. A more detailed treatment of especially the spatio-temporal
extension and its advantages against the spatial version can be found in [WS01b]. In general
the additional regularizing along the time axis yields better results than the pure spatial pro-
cessing. 
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4 OPTIC FLOW ESTIMATION
4.1.4  CLG

In [WBS01] Weickert et al. introduced CLG (Combined Local-Global) as a combination of
the local Lucas-Kanade and the global Horn-Schunck approach. It can also be seen as an
extension of the Horn-Schunck approach using the structure tensor known from the Lucas-
Kanade and Bigün method. Rewriting the global energy functional of Horn-Schunck

the following way

with and , the similarities to the quadratic form of the energy func-
tion of the Lucas-Kanade method introduced by Bigün et al. 

with denoting the structure tensor, becomes evident. For the CLG method from the
Horn-Schunck method is simply replaced by the structure tensor :

CLG

Since only pre-computed data is changed, the process in order to minimize the global energy
functional stays the same. The only thing that has to be done is to smooth the components of

before minimizing the energy functional. By extending the structure tensor as well as the
smoothness term to the spatio-temporal domain, as shown for Lucas-Kanade and Horn-
Schunck, a spatio-temporal version of CLG is obtained. 

Although the idea of CLG is quite simple it constitutes an important progress, as both the
Lucas-Kanade method and Horn-Schunck method can be seen as special cases of CLG with
certain parameter settings. For the Lucas-Kanade technique the parameter is zero, while for
the Horn-Schunck approach the same holds for the parameter . This combination of two
existing techniques leads later in this chapter to an even more general formulation where also
discontinuity preserving variants can be integrated into the concept. 

4.1.5  Characteristics of the mentioned techniques

At the end of this section the characteristics of the mentioned techniques are being discussed.
This should only be seen as a brief summary. A more detailed discussion about the perfor-
mance of the presented techniques including the extensions developed in this work can be
found in the next chapter where the results of several experiments with the different methods
are presented. 

On the previous pages two basic optic flow estimation techniques have been described: first
the local method of Lucas-Kanade and Bigün and then the global method of Horn-Schunck.
Finally a technique was mentioned that combined both approaches, the CLG method. One rea-
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OPTIC FLOW ESTIMATION WITH THE NONLINEAR STRUCTURE TENSOR
son why such a combined method appeared was the fact that local and global methods have
different benefits and drawbacks. 

The Lucas-Kanade technique works fine for sequences where mainly translational motion is
present. On the other hand it has problems to cope with divergent motion. This is mainly
because this local method assumes the flow field to be constant within a local area, and this
assumption is violated for divergent motion. The same problem appears with flow discontinu-
ities. Here again the flow field can not be assumed to be constant. However, the Lucas-Kanade
method has a useful confidence measure to sort out where the flow estimation is rather reliable
and where not. Moreover, it is quite robust against noise and compared to other techniques an
estimation can be computed very quickly. Also the technique is more or less simple to imple-
ment. 

The global approach of Horn and Schunck behaves differently. First it can handle both transla-
tional and divergent motion, as the flow field is assumed to be smooth but not constant. Of
course, this still creates problems at flow discontinuities, yet for this reason several disconti-
nuity preserving extensions of the Horn-Schunck technique have been developed. Another
benefit of a global method is that a dense flow field can be guaranteed. On the other hand, a
major drawback of the Horn-Schunck method is its sensitivity to image noise. Maybe the most
important problem with a global approach, however, is the implementation aspect. Besides the
fact that more computation time is necessary to find a solution, it is not straight-forward to
implement a global approach in a correct way. This might be the reason why global methods
like Horn-Schunck in the literature often yield suboptimal results.

It is not surprising that a combined method like CLG can not circumvent the last-mentioned
problem. However, CLG can combine some other benefits of local and global methods. So the
noise sensitivity of Horn-Schunck is not a problem anymore. The same holds for divergent
motion that caused problems in local approaches. Furthermore, it can be observed that even in
sequences with hardly any noise CLG is sometimes superior to the pure Horn-Schunck tech-
nique [Bru01]. Flow discontinuities, however, are not yet addressed by the CLG method. Both
the structure tensor as well as the smoothness term are based on linear homogeneous diffu-
sion. This will be changed at the end of this chapter. 

4.2  Optic flow estimation with the nonlinear structure tensor
Reminding the intention why considering optic flow estimation we will now come back to the
nonlinear structure tensor developed in the last chapter. From all optic flow estimation tech-
niques the Lucas-Kanade method seems to be the best choice to verify the performance of the
nonlinear structure tensor in comparison to the linear original. The reason is that in Lucas-
Kanade all assumptions made to estimate the flow field are already taken into account by the
structure tensor. The only additional processing step is the solution of the linear system which
is numerical standard work. So a possible superiority of the nonlinear structure tensor against
the linear structure tensor must become obvious when being applied to the method of Lucas-
Kanade. 
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4.2.1  Lucas-Kanade and the nonlinear structure tensor

For the original Lucas-Kanade technique the linear system was

where the are the components of the linear structure tensor .
Applying the nonlinear structure tensor instead, the same linear system is obtained

with now denoting the components of the nonlinear structure tensor . As a result a bet-
ter discontinuity preservation can be expected. This will be tested in the next chapter. 

Of course, this new version of the Lucas-Kanade technique can also be extended to the spatio-
temporal domain. In this case the diffusion process used to obtain the nonlinear structure ten-
sor must be three-dimensional. As the extension of diffusion methods to arbitrary dimensional
data is quite simple, this implies no problem. 

4.2.2  CLG and the nonlinear structure tensor

Since also the CLG technique as a combination of the Lucas-Kanade method and Horn-
Schunck method uses a structure tensor, the nonlinear structure tensor can also be applied
here. In this case the differences between the both versions of the structure tensor may become
less obvious than with the purely local approach, because the smoothness term of the CLG
method could conceal most of the benefits gained with the nonlinear structure tensor. Never-
theless, it seems interesting whether such an extension could yield better results. 

The global energy functional of the original CLG method was

with being the linear structure tensor. Replacing it by the nonlinear structure tensor 
yields

Again this spatial version can be extended to the spatio-temporal domain by using a spatio-
temporal structure tensor and a spatio-temporal regularizer. 
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4.3  A general differential optic flow estimation technique
When Weickert et al. presented their CLG method in [WBS01] they also considered the mean-
ing of smoothing steps with regard to optic flow estimation. They distinguished three smooth-
ing steps for their CLG technique:

1. Noise scale. There is a presmoothing of the image sequence in order to remove noise or 
aliasing effects.

2. Integration scale. There is a smoothing step in order to integrate across an area of certain 
size where a constant flow field is expected. This leads to the structure tensor. 

3. Regularization. The smoothness term in the global approach can also be considered as a 
smoothing step that smooths the resulting flow field. 

For all three smoothing steps they used homogeneous diffusion (or equivalent methods). On
the other hand Weickert and Schnörr introduced in [WS01a] a framework that unifies several
global optic flow estimation techniques by regarding them as one method using different dif-
fusion techniques for the regularization. When we focus on flow-driven regularizers there
appear three kinds of diffusion:

1. Homogeneous diffusion 

2. Isotropic diffusion 

3. Anisotropic diffusion 

The same possibilities exist for the scalar-valued data at the noise scale. Thus there is only the
integration scale missing to complete the framework. With the help of matrix-valued diffusion
and the nonlinear structure tensor, however, nonlinear diffusion is available for the integration
scale, too. 

These reflections yield a general differential optic flow estimation technique, which can be
formulated by the following energy functional: 

Dicontinuity preserving CLG

where and is a structure tensor using an arbitrary diffusion technique with
diffusion time t to smooth the initial matrix product . Here denotes the image
sequence smoothed by an arbitrary diffusion technique with diffusion time . is
in the isotropic case (including the homogeneous case) and in the anisotro-
pic case . 
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4 OPTIC FLOW ESTIMATION
For this general technique there are four relevant parameters:

1. The diffusion time for the presmoothing of the image sequence

2. The diffusion time t for the structure tensor

3. The regularization parameter 

4. The contrast parameter in the case of a non-quadratic regularizer 

With set to zero, one ends up with the conventional or discontinuity preserving Lucas-
Kanade/Bigün method depending on the kind of diffusion used for the structure tensor. On the
other hand, a diffusion time t of zero for the structure tensor yields a Horn-Schunck based
method, the discontinuity preserving capabilities of which depending on the regularizer. All
other cases are mixtures between those purely local or global methods and are based on the
CLG approach that is also covered by this framework using only linear diffusion techniques.
A discussion about which parameter settings and combinations of diffusion methods are use-
ful will follow in the next chapter after some test results have been presented. 

In the review of the optic flow estimation techniques used for this framework it could be seen
that all techniques can be extended to the spatio-temporal domain. Therefore there also exists
a spatio-temporal version of the general method. All smoothing steps have simply to be per-
formed in the spatio-temporal domain. 
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5  Tests

In this chapter some tests with the previously described optic flow estimation techniques are
performed. These tests have three intensions. First, the performance of the nonlinear structure
tensor in comparison to its linear counterpart should be determined. Second, the results of the
CLG method with discontinuity preserving extensions presented in the last chapter are com-
pared to current results from the literature. Finally, the tests should show the baviour of differ-
ent combinations of diffusion methods and give a hint on what combinations are appropriate
for certain applications. 

5.1  Test environment
For testing all estimation techniques mentioned in the last chapter the general optic flow esti-
mation technique was implemented. For each of the three smoothing steps one of the follow-
ing diffusion methods could be selected: none, homogeneous, isotropic, anisotropic. 

The first two smoothing steps were computed using scalar-valued diffusion and the linear or
nonlinear structure tensor respectively. The nonlinear structure tensor based on isotropic dif-
fusion was ignored in the tests, as it was already shown in Chapter 3 to produce inappropriate
results. 
As far as there was no regularization term selected (yielding a pure local method) the optic
flow was estimated by solving the linear system according to Lucas-Kanade. Otherwise the
SOR method was used to solve the linear system resulting from the Euler-Lagrange equations.
Here, 150 iterations with an overrelaxation factor of 1.95 were performed in the case of a
quadratic regularizer. For a non-quadratic, isotropic regularizer the extrapolation factor was
reduced to 1.9 in order to avoid stability problems for small contrast parameters. The number
of iterations consequently had to be increased to 500 iterations. In the case of an anisotropic
regularizer first the SOR method was executed with the respective isotropic regularizer and
the same parameters. Afterwards 500 iterations with the explicit scheme for anisotropic diffu-
sion were performed to get the final result. For details about the SOR method see [Bru01],
[Yo71] or [PTVF92].

The results were obtained on a standard PC with an Intel Pentium III 450 CPU and Windows
98. The depicted flow fields are colored orientation plots with the direction of the flow field
mapped on the hue value and its magnitude mapped on the intensity value of the HSI color

ω
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model. The saturation value has always been set to its maximum. With this illustration method
details of the flow field are better visible than with the generally used vector plots, as it need
not to be subsampled. This is especially important to verify the performance of the methods in
respect to their discontinuity preservation properties. 

5.1.1  Sequences

In the following the sequences used for testing are described. They are all well-known
sequences from the literature and can be obtained from the internet. While one sequence
allows only a subjective assessment, for the others the ground truth flow field is available.
This allows a quantitative comparison of the performance of different techniques. The
sequences have been selected in order to ensure a wide variety of challenging features. In the
following description those features are named for each sequence. Due to the great number of
different techniques that had to be tested small sequences were preferred. 

Hamburg Taxi sequence

Size: 256, 190, 20
Correct Flow field: Not available

Flow estimated between frame 9 and 10
Origin: ftp://csd.uwo.ca/pub/vision

Created at the university of Hamburg
Description: The Hamburg Taxi sequence is a real world sequence with no correct 

flow field available. It is of a rather poor quality with a lot of noise. 
There are four moving objects: A taxi going around the corner, a car in 
the lower left moving to the right, a van in the lower right moving to 
the left and a pedestrian in the upper left moving along the pavement. 
The motion is mainly translational. 
Besides the low quality and the minimum movement of the pedestrian 
also the large areas without any motion and the resulting discontinui-
ties are interesting features of this sequence.

Figure 12: Hamburg Taxi sequence, frame 9.
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Street sequence

Size: 200, 200, 20
Correct Flow field: Available between frame 10 and 11
Origin: www.cs.otago.ac.nz/research/vision

Created by Galvin et al. [GMN+98]
Description: The Street sequence is a synthetic sequence with the correct flow field 

available. There is a car moving from the left to the right. Additionally 
the camera pans to the right. The motion is completely translational 
except the wheels of the car which is rotational motion. 
Challenging features of this sequence are aliasing effects as well as 
discontinuities and the motion of the wheels. 

Figure 13: Street sequence.
LEFT: Frame 10. 

RIGHT: Correct flow field between frame 10 and 11.
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Office sequence

Size: 200, 200, 20
Correct Flow field: Available between frame 10 and 11
Origin: www.cs.otago.ac.nz/research/vision

Created by Galvin et al. [GMN+98]
Description: The Office sequence is a synthetic sequence with the correct flow field 

available. There is no movement apart from the camera moving 
towards the center of the image. The motion is completely divergent.
Challenging features are aliasing effects as well as the window, 
because outside the window there is hardly any motion. There are fur-
ther discontinuities at the chair and the desk. 

Figure 14: Office sequence.
LEFT: Frame 10.

RIGHT: Correct flow field between frame 10 and 11.
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Yosemite sequence with cloudy sky

Size: 316, 252, 15
Correct Flow field: Available between frame 8 and 9
Origin: ftp://ftp.csd.uwo.ca/pub/vision

Created by Lynn Quam at SRI
Description: The Yosemite sequence with cloudy sky is a synthetic sequence with 

the correct flow field available. The clouds move to the right and the 
camera moves towards the horizon. There is both translational and 
divergent motion in this sequence. 
This mixture of motion types is one interesting aspect. Other challeng-
ing features are large displacements up to 5 pixels/frame in the lower 
left, discontinuities at the horizon, and the mountains as well as the 
clouds changing their grey-value. 

Note: The y-components of the correct flow field have opposite sign. 

Figure 15: Yosemite sequence with cloudy sky.
LEFT: Frame 8.

RIGHT: Correct flow field between frame 8 and 9.
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5.1.2  Quality measure

For the sequences with the correct flow field available the average angular error (AAE) intro-
duced by Barron et al. [BFB94] was used as a quantitative quality measure. This measure is
very popular and therefore enables a more or less fair comparison between the results of the
tested techniques and those from the literature. 

With being the correct flow field and being the estimated flow the angular
error for some pixel i is

The AAE then is

with N being the number of pixels. 

Note that this measure not only penalizes errors in the orientation but also errors in the magni-
tude. However, it is limited to a maximum of 180°, so some large errors do not have much
influence on the AAE. For this reason the standard deviation of the angular error serves as an
additional measure pointing out large errors for some pixels. It is defined as

5.1.3  Parameter optimization

There appear parameters for each of the three smoothing steps. For the first step, the noise
scale, these are:

• Diffusion time 

• Anisotropy factor (appears only for spatio-temporal smoothing)

• Contrast parameter (appears only in the case of isotropic or anisotropic diffusion)

All those parameters were only optimized once for each sequence. 

For the second smoothing step, the structure tensor, the parameters are:

• Diffusion time 

• Anisotropy factor (appears only with spatio-temporal techniques)

• Contrast parameter (appears only within the nonlinear structure tensor)

• Presmoothing parameter (appears only within the nonlinear structure tensor)

While the diffusion time was optimized for each sequence and each technique, the other
parameters were kept fixed at ,  and .
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Finally, for the regularization term of the global energy functional there are:

• Regularization parameter 

• Contrast parameter (appears only in the case of a non-quadratic regularizer)

Both parameters were optimized for each sequence and each technique. 

So there are three parameters which had to be optimized for each sequence and technique. The
main problem is, that those parameters depend on each other. In order to find the optimal
parameter setting, combinations of a set of values for each of the three parameters had to be
tested. These sets were constructed by first choosing a wide range within which the optimal
parameter setting was expected. This range was sampled with a sampling rate that still yielded
an acceptable number of test runs. The best combination of parameters was then used to
restrict the ranges enabling an increase of the sampling rates. This procedure was performed
iteratively until the AAE changed only by 1% or, in the case of a non-existent ground truth
flow field, differences in the result were only marginal. For a first idea of what the best param-
eter setting would look like the work of Bruhn [Bru01] has been very helpful. 

5.2  Testing the nonlinear structure tensor
In this section the nonlinear structure tensor is tested with the help of the Lucas-Kanade
method. The results of the Lucas-Kanade method using the nonlinear structure tensor are jux-
taposed to the original Lucas-Kanade method using the conventional linear structure tensor. 

5.2.1  Hamburg Taxi sequence - Preservation of discontinuities in the magnitude

The Hamburg Taxi sequence seems to be a good choice to test the new discontinuity preserv-
ing property of the nonlinear structure tensor as there are four moving objects in front of a
non-moving background. This yields lots of discontinuities in the magnitude of the structure
tensor. Unfortunately, there is no correct flow field available for this sequence, so only a
visual assessment of the results is possible. However, since there is no synthetic sequence yet
available in the literature with moving objects in front of a non-moving background, the
sequence was chosen anyway. Moreover, it is a good test for a method to apply it to a real
image sequence. 

Figure 16 shows the optic flow fields estimated by the spatial Lucas-Kanade method using the
linear structure tensor and the nonlinear structure tensor respectively. Due to artefacts in tem-
poral direction caused by the camera hardware at that time some presmoothing along the time
axis with homogeneous diffusion and diffusion time 0.5 has been performed. 

α

λ
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TESTING THE NONLINEAR STRUCTURE TENSOR
Comparing the results achieved with the two different structure tensors the superiority of the
nonlinear structure tensor becomes obvious. Discontinuities in the magnitude are much better
preserved than in the linear case, and therefore the moving objects do not dislocate that much.
This proves that the nonlinear structure tensor can fulfill the expectations and replace the con-
ventional linear structure tensor in a real application in order to improve results. 

5.2.2  Street sequence - Preservation of orientation discontinuities

In another test the Street sequence was used to verify the performance of the nonlinear struc-
ture tensor in respect to orientation discontinuities. Although the linear structure tensor is also
able to preserve orientation discontinuities, as mentioned in chapter 3, it should be tested
whether there are still some advantages with the nonlinear structure tensor in the case of optic
flow estimation. Moreover, the Street sequence offers the correct flow field enabling the use
of a quantitative measure like the average angular error to notice also small differences in
quality.
For the spatial Lucas-Kanade method the Street sequence was presmoothed with homoge-
neous diffusion and a diffusion time of 0.25. For the spatio-temporal variant there has also
been applied a spatio-temporal presmoothing with the same diffusion time and an anisotropy
factor of 1.

Figure 17 shows the result with the spatial Lucas-Kanade method. There is not that much dif-
ference between the linear and the nonlinear structure tensor visible than in the case of the
Hamburg Taxi sequence. This is because orientation discontinuities are preserved in both
cases. The problem of an area around the discontinuity where the flow is underestimated also
remains in both cases. However, Table 1 reveals that the method using the nonlinear structure
tensor still performs better than the original Lucas-Kanade method as the average angular
error is reduced by 7%. The same holds for the spatio-temporal versions depicted in Figure 18,
though the difference here is only 3%. 

Figure 16: Optic flow field of the Hamburg Taxi sequence
estimated with the spatial Lucas-Kanade method.

LEFT: Linear structure tensor at .
RIGHT: Nonlinear structure tensor at .

t 10=
t 15=
48
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Table 1: AAE of the Street sequence

method diffusion time AAE standard 
deviation

Lucas-Kanade 2D linear 10 6.29° 13.55°
Lucas-Kanade 2D nonlinear 34 5.88° 13.18°
Lucas-Kanade 3D linear 5 5.28° 13.41°
Lucas-Kanade 3D nonlinear 7 5.14° 13.03°

Figure 17: Optic flow of the Street sequence 
estimated with the spatial Lucas-Kanade method.

LEFT: Linear structure tensor.
RIGHT: Nonlinear structure tensor.

Figure 18: Optic flow of the Street sequence 
estimated with the spatio-temporal Lucas-Kanade method.

LEFT: Linear structure tensor.
RIGHT: Nonlinear structure tensor.

 ±
 ±
 ±
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TESTING THE NONLINEAR STRUCTURE TENSOR
5.2.3  Yosemite sequence - Overall performance

Finally, some tests with the Yosemite sequence have been performed. This sequence consists
of a combination of both translational and divergent motion so it is not optimal for the Lucas-
Kanade technique. However, it has a lot of challenging features as well as the correct flow
field available and so makes a good sequence for a conclusion of this test series. The sequence
was presmoothed spatially by homogeneous diffusion and a diffusion time of 0.75. For the
spatio-temporal version an additional presmoothing along the time axis with a diffusion time
of 0.25 has been performed.
Figure 19 and Figure 20 show the optimal results of the spatial and spatio-temporal Lucas-
Kanade method respectively. The average angular errors are listed in Table 2. There the non-
linear structure tensor can be seen to result in a 9% better AAE in the spatial case. For the spa-
tio-temporal case the lead again reduces to 3% but is still relevant. 

Figure 19: Optic flow of the Yosemite sequence 
estimated with the spatial Lucas-Kanade method.

LEFT: Linear structure tensor.
RIGHT: Nonlinear structure tensor.

Figure 20: Optic flow of the Yosemite sequence 
estimated with the spatio-temporal Lucas-Kanade method.

LEFT: Linear structure tensor.
RIGHT: Nonlinear structure tensor.
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It has also been tested whether the quality of the confidence measure mentioned for the Lucas-
Kanade method in the last chapter suffers from the nonlinear structure tensor. The last two
entries in Table 2 reveal that the method using the nonlinear structure tensor is still superior to
the original method for non-dense flow fields. Of course, the difference in quality becomes
smaller because the critical areas where the nonlinear structure tensor performs better than the
linear one, especially the discontinuity at the horizon, are no longer part of the measurement. 

Since the classic Lucas-Kanade method
using the linear structure tensor is known
to be quite robust against noise, the
Yosemite sequence has been degraded by
Gaussian noise to test whether the nonlin-
ear structure tensor yields any drawbacks
in this respect. For this test the pre-
smoothing has not been changed com-
pared to the sequence without noise in
order to observe the noise robustness of
the structure tensor. No confidence mea-
sure has been applied yielding a flow
field density of 100%. Table 3 demon-
strates the Lucas-Kanade method using the nonlinear structure tensor to be still robust against
noise and that it can keep its lead for rather high noise levels. For very severe noise, however,
it looses its superiority against the linear structure tensor and even performs worse. This is
because for such high noise levels texture information and noise can not be distinguished any-
more. While the nonlinear structure tensor misinterprets some noise as additional structure, its
linear counterpart is more conservative, as it does not try to find information in the data but
simply removes both noise and structure. Table 3 reveals that for high noise levels such a con-
servative behaviour gets beneficial. For usual noise levels, however, this strategy neglects use-
ful information. In a test at the end of this chapter it will also be demonstrated that severe
noise can be handled quite well by an appropriate presmoothing of the sequence. 

Table 2: AAE of the Yosemite sequence

method diffusion 
time AAE standard 

deviation
Lucas-Kanade 2D linear 21 8.94° 13.14°
Lucas-Kanade 2D nonlinear 135 8.22° 12.59°
Lucas-Kanade 3D linear 13 7.69° 12.58°
Lucas-Kanade 3D nonlinear 18 7.49° 12.53°
Lucas-Kanade 2D linear, 55% density 15 6.43° 13.34°
Lucas-Kanade 2D nonlinear, 55% density 40 6.06° 13.06°

 ±
 ±
 ±
 ±
 ±
 ±

Table 3: AAE of the Yosemite sequence at 
different noise levels.

denotes the standard deviation of the noise. 
Spatial version, 100% density.

Linear Nonlinear

AAE AAE
0 21 8.94° 135 8.22°
5 30 9.61° 164 8.93°
10 54 11.42° 229 11.19°
20 133 15.38° 543 16.56°
40 180 23.07° 717 24.59°

σn

σn tST tST
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RESULTS WITH THE GENERAL OPTIC FLOW ESTIMATION TECHNIQUE
5.3  Results with the general optic flow estimation technique
After the usefulness of the nonlinear structure tensor has been verified in the last section, now
the performance of the general technique is regarded. There are many combinations of diffu-
sion methods for the three stages. It is expected that the most complex combination, where for
all stages anisotropic diffusion is used, will supply the best results. However, such a combina-
tion would also induce the highest computational costs. Thus the more simple combinations
have also been tested. 

However, there is another reason why also the more simple combinations have been tested. A
series of different combinations nicely reveals the benefits of replacing a simple diffusion
method like homogeneous diffusion by a more complex one. In particular, it becomes obvious
of how large the gain of quality is. Moreover, it can be seen which challenges of a sequence
can be addressed by a certain increase in complexity. This promotes the understanding of what
a certain diffusion method really does at the corresponding smoothing stage and what kind of
problems still appear with the general method because of incorrect assumptions or other rea-
sons. 

For the tests in this section only sequences with the correct flow field available have been
used. This facilitates the comparison of the different combinations of diffusion methods, espe-
cially since some improvements might be so minimal that only a quantitative measure can
make them visible. 

5.3.1  Street sequence

We begin with the synthetic Street sequence. Like in the tests before homogeneous diffusion
with a diffusion time of 0.25 has been used for presmoothing. Other diffusion methods for this
first smoothing step will only be discussed for the Yosemite sequence. There also some noise
was added to the sequence. As will be seen then it makes no sense to use a more complex dif-
fusion method for presmoothing as long as the sequence is not degraded by noise.

All results are listed in Table 5 by a descending average angular error. There it becomes visi-
ble that for the Street sequence the classic Horn-Schunck method with a linear structure tensor
supplies the worst result. Even the simpler linear Lucas-Kanade method performs better. The
original CLG technique can improve the result of Lucas-Kanade only marginally. This is
because the Street sequence with its merely translational motion fits perfectly well to the
assumption of a locally constant flow field. On the other hand, the smoothness assumption of
the Horn-Schunck approach is violated due to the discontinuity of the car. Regarding the
parameter settings of the original CLG reveals that in fact it works mainly as local method in
this case, as the regularization parameter is rather small. So the smoothing of the structure ten-
sor is very useful for this sequence. However, the standard deviation can also be observed to
rise in the case of a smoothed structure tensor. This indicates some essential errors made by
smoothing the structure tensor. Using the nonlinear structure tensor improves the result. How-
ever, the standard deviation, even though it gets better in this case, is still high. On the other
hand, it can be seen that it is much smaller for the Horn-Schunck method despite its poor
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AAE. A CLG approach can benefit from both the better AAE of the local method and the
lower standard deviation of the global method. 
Using a discontinuity preserving regularizer improves the AAE as well as the standard devia-
tion significantly. This is because the main problem of the Horn-Schunck method for this
sequence is addressed in this case. The additional usage of the nonlinear structure tensor can
further improve the result a little. The linear structure tensor, however, has not a positive
effect anymore. This again proves the superiority of the nonlinear structure tensor. Some fur-
ther improvement is obtained by replacing the isotropic regularizer by an anisotropic one.
Also interesting, of course, is the step from the spatial to the spatio-temporal domain. Here
some further improvements of almost 10% can be obtained. 
Summarizing the results for this sequence almost every additional step towards a higher com-
plexity also yields better results.

The estimated flow fields are depicted in Figure 21 and Figure 23 for the spatial and spatio-
temporal methods respectively. Figure 22 and Figure 24 show the angular errors for each
pixel. Here the problems of the respective methods become obvious. It is visible that the alias-
ing effects in the trees cause many methods to estimate a too large flow there. This need not be
a drawback in every application. A human observer also detects some increased motion in this
area. However, most applications want these aliasing effects to be ignored. This is best done
by smoothing the structure tensor. 
However, it gets also visible that, on the other hand, the smoothness term is very important for
a more reliable estimation of the flow. Whenever the local part of the technique dominates the
estimation process there are large errors in the frontal area of the car. This also explains the
higher standard deviations for those methods.

Table 4: AAE for the Street sequence

method 
(ST, regularizer, dimension) AAE standard 

deviation
None, Linear, 2D - 500 - 6.50° 11.32°
Linear, None, 2D 10 - - 6.29° 13.55°
Linear, Linear, 2D 7 50 - 6.27° 12.89°
Nonlinear, None, 2D 34 - - 5.88° 13.18°
Nonlinear, Linear, 2D 45 5 - 5.67° 12.23°
None, Isotropic, 2D - 23000 0.0025 3.82° 8.59°
Linear, Isotropic, 2D 0 23000 0.0025 3.82° 8.59°
Nonlinear, Isotropic, 2D 1 22000 0.0025 3.73° 8.82°
Nonlinear, Anisotropic, 2D 1 21000 0.0025 3.65° 8.83°
None, Linear, 3D - 60 - 6.02° 11.97°
Linear, None, 3D 5 - - 5.28° 13.41°
Nonlinear, None, 3D 7 - - 5.14° 13.03°
None, Isotropic, 3D - 9000 0.0025 3.52° 9.33°
Nonlinear, Isotropic, 3D 0 9000 0.0025 3.52° 9.33°
Nonlinear, Anisotropic, 3D 0 9000 0.0025 3.31° 9.40°

tST α λ

 ±
 ±
 ±
 ±
 ±

 ±
 ±
 ±
 ±

 ±
 ±
 ±
 ±
 ±
 ±
53



RESULTS WITH THE GENERAL OPTIC FLOW ESTIMATION TECHNIQUE
Figure 21: Estimated flow fields of the Street sequence, spatial versions.
FROM LEFT TO RIGHT, TOP TO BOTTOM:

(a) None, Linear. (b) Linear, None. (c) Linear, Linear.
(d) Nonlinear, None. (e) Nonlinear, Linear. (f) None, Isotropic.

(g) Nonlinear, Isotropic. (h) Nonlinear, Anisotropic. (i) Correct flow field.
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Figure 22: Street sequence. Angular error of the estimated flow fields, spatial versions.
FROM LEFT TO RIGHT, TOP TO BOTTOM:

(a) None, Linear. (b) Linear, None. (c) Linear, Linear.
(d) Nonlinear, None. (e) Nonlinear, Linear. (f) None, Isotropic.

(g) Nonlinear, Isotropic. (h) Nonlinear, Anisotropic.
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RESULTS WITH THE GENERAL OPTIC FLOW ESTIMATION TECHNIQUE
In Table 5 some of the results are compared to results from the literature. For the Street
sequence there where results available from Galvin et al. [GMN+98] as well as Weickert and
Schnörr [WS01b]. Comparing the results reveals the importance of implementation aspects,
since some of the methods in the literature should be equivalent to some of ours, but supply
worse results. So the result of our implementation of the Horn-Schunck method has a better
AAE with a significantly higher density than that mentioned in [GMN+98]. The differences
between the results of Weickert and Schnörr and ours (None, Isotropic, 2D/3D) can be
explained by the fact that they used the explicit diffusion scheme instead of the SOR method.
It seems that the explicit scheme requires more iterations to reach its steady state. 

Figure 23: Estimated flow fields of the Street sequence, spatio-temporal versions.
FROM LEFT TO RIGHT, TOP TO BOTTOM:

(a) None, Linear. (b) Nonlinear, None. (c) None, Isotropic. 
(d) Nonlinear, Anisotropic. (e) Correct flow field.
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Table 5: Street sequence. Our results compared to some in the literature.

method AAE density
Camus [GMN+98] 13.69° 100%
Proesman et al. [GMN+98] 7.41° 100%
Weickert-Schnörr 2D [WS01b] 6.62° 100%
None, Linear, 2D (Horn-Schunck) 6.50° 100%
Weickert-Schnörr 3D [WS01b] 4.85° 100%
None, Isotropic, 2D (Weickert-Schnörr 2D) 3.82° 100%
Nonlinear, Anisotropic, 2D 3.65° 100%
None, Isotropic, 3D (Weickert-Schnörr 3D) 3.52° 100%
Nonlinear, Anisotropic, 3D 3.31° 100%
Anandan [GMN+98] 10.58° 54%
Horn-Schunck [GMN+98] 6.62° 46%
Singh [GMN+98] 6.18° 78%
Linear, None, 2D (Lucas-Kanade) 4.82° 52%
Nonlinear, None, 2D 4.51° 53%
Linear, None, 3D (Bigün) 3.49° 58%
Nonlinear, None, 3D 3.30° 57%

Figure 24: Angular error of the estimated flow fields, spatio-temporal versions.
FROM LEFT TO RIGHT, TOP TO BOTTOM:

(a) None, Linear. (b) Nonlinear, None. (c) None, Isotropic. 
(d) Nonlinear, Anisotropic.
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5.3.2  Office sequence

The next test sequence is the Office sequence. It consists of totally divergent motion with
some discontinuities due to near and distant objects. For presmoothing the same settings as for
the Street sequence have been used: Homogeneous diffusion with a diffusion time of 0.25. For
the spatio-temporal methods this presmoothing has also be done along the time axis. 

Table 6 shows the results for the different methods. As expected, the purely local methods
give rather bad results, because their assumption of constant flow is violated for divergent
motion. Moreover, for the Lucas-Kanade method with the nonlinear structure tensor there is
an area where the flow can not be estimated at all (see Figure 25b), as the linear system gets
singular due to missing gradients in this region. 
The global methods perform much better. However, the local philosophy can improve those
results. For the conventional CLG technique with a linear structure tensor this improvement is
rather small. With the nonlinear structure tensor, however, the result gets 7% better compared
to the classic Horn-Schunck method. 
Non-quadratic, discontinuity preserving regularizers, on the other hand, have no effect on the
results. This is surprising especially because there are lots of discontinuities in this sequence.
However, those discontinuities are very weak. A much smaller contrast parameter would have
to be used in order to preserve them, yet this has negative effects because of the aliasing in the
sequence. The positive effect of preserved discontinuities is therefore compensated by the
negative effects due to the aliasing and in fact leads, because of the large contrast parameter in
the optimal parameter setting, to a quadratic regularizer. 
A spatio-temporal approach, however, improves the results considerably. Gains up to 30% can
be achieved here. 

Table 6: AAE for the Office sequence

method 
(ST, regularizer, dimension) AAE standard 

deviation
Linear, None, 2D 134 - - 5.72° 5.17°
Nonlinear, None, 2D 328 - - 5.19° 5.00°
None, Linear, 2D - 2500 - 4.37° 4.29°
None, Isotropic, 2D - 2500 3 4.37° 4.29°
Linear, Linear, 2D 6 2800 - 4.34° 4.40°
Linear, Isotropic, 2D 6 2800 3 4.34° 4.39°
Nonlinear, Linear, 2D 50 1800 - 4.08° 4.19°
Nonlinear, Isotropic, 2D 50 1800 3 4.08° 4.19°
None, Linear, 3D - 350 - 3.37° 3.82°
None, Isotropic, 3D - 350 3 3.37° 3.82°
Nonlinear, Linear, 3D 1 450 - 3.34° 3.96°

tST α λ
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In Figure 25 the estimated flow fields are depicted. They show that the nonlinear structure ten-
sor can deal with the aliasing effects to some degree but most of the work has to be done by
the global part of the method. Spatio-temporal versions yield more accurate results. This is
beneficial especially for this sequence with its fine structures within the smoothly changing
divergent flow field. 
Unfortunately, there are no accurate numbers for the Office sequence available in the litera-
ture. Therefore a comparison like for the other sequences is not possible here. 

Figure 25: Estimated flow fields of the Office sequence.
FROM LEFT TO RIGHT, TOP TO BOTTOM:

(a) Linear, None, 2D. (b) Nonlinear, None, 2D. (c) None, Linear, 2D. 
(d) Nonlinear, Linear, 2D. (e) None, Linear, 3D. (f) Nonlinear, Linear, 3D.

(g) Correct flow field.
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5.3.3  Yosemite sequence

The last test sequence in this series is again the popular Yosemite sequence. It consists of
mostly divergent motion in the canyon area and translational motion in the clouds region.
However, for the clouds region the assumption of grey-value constancy is not fulfilled. Fur-
thermore, in the lower left there are large displacements of up to 5 pixels/frame. This can be a
problem for differential estimation methods. The motion discontinuity at the horizon is also a
feature that causes problems, especially because the motion of the clouds alone is already dif-
ficult to estimate. Therefore the Yosemite sequence with cloudy sky is one of the most chal-
lenging test sequences in the literature and in general yields the worst average angular errors
from all sequences. 

As Table 7 reveals, this is also true for our methods. The results have all been obtained with
the presmoothed sequence using homogeneous diffusion and a diffusion time of 0.75 in spatial
direction. For the spatio-temporal methods an additional smoothing along the time axis with a
diffusion time of 0.25 has been performed. 

Of course, the purely local methods perform worst, since their assumption of locally constant
flow is violated for divergent motion. Furthermore, Figure 26 reveals them also to have more
problems with the discontinuity at the horizon than the global methods. Although the nonlin-
ear structure tensor can handle this problem better than the linear one, the estimation results
for the canyon still reach too far into the sky. 

Table 7: AAE for the Yosemite sequence without noise and different combinations of 
diffusion methods.

method 
(ST, regularizer, dimension) AAE standard 

deviation
Linear, None, 2D 21 - - 8.94° 13.14°
Nonlinear, None, 2D 135 - - 8.22° 12.59°
None, Linear, 2D - 450 - 7.20° 9.01°
Linear, Linear, 2D 0 450 - 7.20° 9.01°
Nonlinear, Linear, 2D 14 360 - 7.07° 9.48°
None, Isotropic, 2D - 2000 0.02 6.39° 8.30°
Linear, Isotropic, 2D 0 2000 0.02 6.39° 8.30°
Nonlinear, Isotropic, 2D 0 2000 0.02 6.39° 8.30°
None, Anisotropic, 2D - 2000 0.02 6.33° 8.28°
Nonlinear, Anisotropic, 2D 0 2000 0.02 6.33° 8.28°
Linear, None, 3D 13 - - 7.69° 12.58°
Nonlinear, None, 3D 18 - - 7.49° 12.53°
None, Linear, 3D - 190 - 6.31° 8.87°
None, Anisotropic, 3D - 2100 0.01 6.11° 8.85°
None, Isotropic, 3D - 2500 0.01 5.76° 8.77°
Nonlinear, Isotropic, 3D 0 2500 0.01 5.76° 8.77°
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Regarding Table 7 reveals the smoothing of the structure tensor in a global approach to yield
only marginal effects, and merely in the case of the nonlinear structure tensor combined with a
quadratic regularizer there is any improvement at all. With a non-quadratic regularizer or the
linear structure tensor the smoothing step is useless for this sequence. The non-quadratic regu-
larizer, on the other hand, causes improvements of approximately 10% compared to the qua-
dratic regularizer. The same holds for a spatio-temporal approach when compared to the
corresponding spatial method. Replacing the isotropic regularizer by an anisotropic one, how-
ever, has only little effects. 
With the spatio-temporal approach the anisotropic regularizer performs even worse. However,
it must be noted that, due to its large computation time, for the optimization of the anisotropic
case the optimum parameters from the isotropic approach were taken and only slightly
changed. Perhaps a better result could have been achieved with some completely different
parameter setting. 

Because of its popularity there are quite many results for this sequence available in the litera-
ture. In Table 8 only those results with 100% density have been chosen in order to guarantee a
fair comparison. It can be seen that the tested methods perform rather well compared to those
in the literature. Only Alvarez et al. as well as Mémin and Pérez using multiscale approaches
perform better. 

 
Table 8: Yosemite sequence with cloudy sky. Our results 

compared to those in the literature.

method AAE
Anandan [BFB94] 13.36°
Singh [BFB94] 10.44°
Nagel [BFB94] 10.22°
Horn-Schunck [BFB94] 9.78°
Uras et al. [BFB94] 8.94°
CLG 2D [WBS01] 7.14°
None, Anisotropic, 2D 6.33°
CLG 3D [WBS01] 6.18°
None, Isotropic, 3D 5.76°
Alvarez et al. [AELS99] 5.53°
Mémin-Pérez [MP98] 5.38°
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Figure 26: Estimated flow fields of the Yosemite sequence, spatial versions.
FROM LEFT TO RIGHT, TOP TO BOTTOM:
(a) Linear, None. (b) Nonlinear, None. 
(c) None, Linear. (d) Nonlinear, Linear. 

(e) None, Anisotropic. (f) Correct flow field.
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Figure 27: Estimated flow fields of the Yosemite sequence, spatio-temporal versions.
FROM LEFT TO RIGHT, TOP TO BOTTOM:
(a) Linear, None. (b) Nonlinear, None. 
(c) None, Linear. (d) None, Isotropic. 

(e) Correct flow field.
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5.3.4  Noise and presmoothing methods

While up to now the test sequences were without noise, in the following tests the Yosemite
sequence was degraded by different levels of Gaussian noise in order to test different diffusion
methods for the presmoothing step. So far only homogeneous diffusion has been applied here.
In the following it will be checked whether other diffusion methods perform better for certain
noise levels. 

In order to verify the performance of the different presmoothing methods the conventional
Horn-Schunck technique with no smoothing of the structure tensor and a quadratic regularizer
was applied to the presmoothed sequence, since this technique is known to be very sensitive to
noise. A presmoothing that performs best for this technique can also be assumed to be nearly
optimal for the other estimation methods. 
For the nonlinear diffusion methods the Charbonnier diffusivity was chosen. There is no back-
ward diffusion with this diffusivity function, so there is edge preservation but no edge
enhancement. Edge enhancement would have negative effects for the optic flow estimation
methods, because it propagates areas without structure information. 

The results show that for a sequence without noise a nonlinear diffusion method yields no
improvements. In fact, the nonlinear diffusion methods work like the linear method, as the
contrast parameter is chosen very high for the optimum result. When noise is added to the
sequence things become different. It can be seen that even for rather low noise levels the non-
linear methods perform better, and for the heavily distorted sequence they are clearly superior.
Mostly the anisotropic version performs slighly better than the isotropic one.

Table 9: Results for the Yosemite sequence and different noise levels with the conventional 
Horn-Schunck technique and different presmoothing methods. 

denotes the Gaussian noise added to the sequence. 

method AAE standard 
deviation

Homogeneous
0

0.75 - 450 7.20° 9.01°
Isotropic 0.75 64 500 7.23° 9.06°
Anisotropic 0.75 64 500 7.24° 9.06°
Homogeneous

5
1.5 - 700 8.27° 9.57°

Isotropic 1.5 16 700 7.97° 10.18°
Anisotropic 5 1 700 7.87° 9.33°
Homogeneous

10
2.25 - 1000 10.10° 9.95°

Isotropic 2 16 1000 9.02° 9.69°
Anisotropic 3 4 1000 8.91° 9.59°
Homogeneous

40
5.25 - 2000 19.07° 12.84°

Isotropic 4.5 16 2250 15.50° 11.74°
Anisotropic 5.5 8 2000 15.54° 11.80°

σn

σn tpre λpre α

 ±
 ±
 ±
 ±

 ±
 ±
 ±
 ±
 ±

 ±
 ±
 ±
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5 TESTS
As the structure tensor has also some capabilities to remove noise, it was tested with the noisy
sequence, too. For presmoothing the optimum settings from Table 9 were taken. 

For low noise levels the linear structure tensor obviously does not yield any improvements.
Only for rather high noise levels the CLG technique is considerably better than the conven-
tional Horn-Schunck method. Then it outperforms even the technique with the nonlinear
structure tensor that is in principle superior for lower noise levels. Such kind of behaviour
could already be observed when the nonlinear structure tensor was tested with the Lucas-
Kanade method. However, the difference between the linear and nonlinear structure tensor
now decreased to only 1%.

Table 10: Yosemite sequence at different noise levels. Comparison between different 
smoothing methods for the structure tensor. For all methods the optimum presmoothing 

parameters from Table 9 were taken. denotes the Gaussian noise added to the sequence. 

Smoothing method for the ST AAE standard 
deviation

None (Horn-Schunck)
0

- 450 7.20° 9.01°
Linear (CLG) 0 450 7.20° 9.01°
Nonlinear 14 360 7.07° 9.48°
None (Horn-Schunck)

5
- 700 7.87° 9.33°

Linear (CLG) 0 700 7.87° 9.33°
Nonlinear 40 400 7.71° 10.61°
None (Horn-Schunck)

10
- 1000 8.91° 9.59°

Linear (CLG) 0 1000 8.91° 9.59°
Nonlinear 56 600 8.65° 10.90°
None (Horn-Schunck)

40
- 2250 15.50° 11.74°

Linear (CLG) 150 1400 13.75° 13.24°
Nonlinear 550 1200 13.92° 13.21°

σn

σn tST α

 ±
 ±
 ±
 ±
 ±

 ±
 ±
 ±

 ±
 ±
 ±
 ±
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SUMMARY
5.4  Summary
At the end of this chapter, having the results from the test runs in mind, some summarizing
statements can be made. First of all, the nonlinear structure tensor turned out to be useful not
only for the Lucas-Kanade method but also for the general technique. It always performed bet-
ter than the linear structure tensor, except in the case of sequences that were heavily distorted
by noise. However, such high levels of noise are very rare in practise. 

From a theoretical point of view the nonlinear structure tensor is also important in order to
complete the framework of the general optic flow estimation technique. In most cases the
application of the nonlinear structure tensor yielded better results. Of course it could not
always improve results, as especially for divergent motion the assumptions that justify the
application of a smoothed structure tensor are not valid. In such cases the diffusion time of the
structure tensor, also the nonlinear one, is better set to zero. 

Although the general method can not always take advantage of all smoothing steps, in general
the most complex combination of diffusion methods using anisotropic diffusion for all stages
is the best one, at least from a scientific point of view. In practical applications, of course, it
would have to be decided whether a slightly improved result is worth the additional effort.
This holds especially for the usage of an anisotropic regularizer. In cases where computational
costs play an important role the CLG technique using the nonlinear structure tensor and a qua-
dratic regularizer probably offers the best compromise between quality and efficiency. For
noisy sequences it is further advisable to use a nonlinear diffusion method for presmoothing. 
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6 CONCLUSIONS
6  Conclusions

6.1  Summary
In the previous chapters two novel methods were introduced. First, it was demonstrated that
recent concepts for matrix-valued diffusion can be used to construct a new nonlinear structure
tensor. As the straight-forward approach was shown to have some drawbacks, a modified dif-
fusion process was introduced. This diffusion process was designed to be closer to homoge-
neous diffusion in order to keep the benefits of the conventional linear structure tensor. The
result was demonstrated to meet the requirements for a nonlinear structure tensor. In tests with
optic flow estimation techniques the nonlinear structure tensor then also proved to be superior
to the linear structure tensor in a real application. 

Secondly, the CLG technique from Weickert et al. [WBS01] based on linear smoothing pro-
cesses was extended to a discontinuity preserving, nonlinear version. The resulting technique
unifies several methods in the field of differential optic flow estimation such as Horn-
Schunck, Lucas-Kanade and their discontinuity preserving variants. Furthermore, all these
methods are put in a framework that consists of three smoothing steps and different combina-
tions of diffusion techniques. In this scope the novel nonlinear structure tensor was important
in order to complete the framework. In a test series the performance of various of such combi-
nations was verified. It could be observed that the usage of more advanced nonlinear diffusion
processes improved the results. The best combinations were shown to be competitive or even
superior to state-of-the-art optic flow estimation techniques described in the literature. By
comparing the results of actually similar methods it also turned out that implementation
aspects are very important to make use of the full potential of a technique. 
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FURTHER WORK
6.2  Further Work
The results achieved with the nonlinear structure tensor nourish expectations that, besides
optic flow estimation, it can also be applied in other methods where the linear structure tensor
is used. Especially in the field of texture analysis the nonlinear structure tensor will likely ben-
efit from its discontinuity preservation property. However, there are further applications such
as edge and corner detection where improvements in comparison to the linear structure tensor
are also possible. However, it must be mentioned that the nonlinear structure tensor has higher
computational costs than the linear one. Therefore efficient algorithms for anisotropic diffu-
sion are also an essential topic for future research. 

For the presented general optic flow estimation technique there are still several improvements
conceivable. So it is possible to try a method based on robust statistics [BA96, YD99] instead
of the structure tensor. In the sense of robust statistics the nonlinear structure tensor can only
avoid outliers caused by motion discontinuities. Other violations against the assumption of
local constant flow are not treated. However, it must be mentioned that the nonlinear structure
tensor does more than just ignore outliers. It rather changes the assumption of local constant
flow itself to the assumption of piecewise constant flow. Nevertheless, a direct and fair com-
parison between results of the Lucas-Kanade method with the nonlinear structure tensor and a
method based on robust statistics for various image sequences would be quite interesting.

The test results suggest the structure tensor and the regularizer not to be orthogonal to each
other, i.e. the regularizer often smooths in directions where smoothing would no longer be
necessary due to the structure tensor. Therefore results could possibly be improved by adjust-
ing the regularizer to the structure tensor. The regularizer would then be “structure-tensor-
driven” instead of flow-driven. This could also speed up computation compared to flow-
driven approaches, as the underlying diffusion process would become linear again. 

Another possible improvement that comes into mind when regarding the cloudy sky of the
Yosemite sequence is a non-quadratic data term in order to permit some violations against the
assumption of grey-value constancy. In such a case some changes in the grey-value, as it hap-
pens for the clouds in the Yosemite sequence, would probably no longer lead to daring estima-
tions of the flow field in those areas. Using a non-linearized optic flow constraint like in
[AWS00] would furthermore improve the estimation of large displacements like those in the
lower left corner of the Yosemite sequence. 

Considering the applicability of the mentioned optic flow estimation techniques it becomes
obvious that they are not usable for real time applications yet. Especially the nonlinear meth-
ods, which supply the best results, yield computation times up to an hour on contemporary
hardware. Therefore the development of efficient algorithms is also an important item in
future research. The same way suitable hardware that allows to make use of the high parallel-
ism in the methods, together with the suitable parallel algorithms, is a very interesting issue in
this scope. 
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6 CONCLUSIONS
Besides this aspect of high computation times, the applicability of the mentioned techniques
also suffers from the parameters that have to be optimized for each case of application. In
Chapter 5 the optimal parameter settings can be seen to differ considerably for two different
image sequences, like for example the Yosemite sequence and the Street sequence. This limits
the application on cases with very sharply restricted environment conditions. In this respect,
methods with less or more robust parameters are very useful. It was shown in the case of the
nonlinear structure tensor that it is possible to get rid of several free parameters. The same way
it might be possible to develop a diffusion method for the regularizers without a contrast
parameter. Another strategy is to develop techniques that find a nearly optimal parameter set-
ting automatically by analyzing the input data. First approaches in this direction are statistical
methods that estimate the noise in the data in order to choose a good parameter for the noise
scale. Similar approaches for the remaining smoothing steps would certainly be more compli-
cated. 
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