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Abstract. We address the difficulty of image segmentation methods based on the
popular level set framework to handle an arbitrary number of regions. While in
the literature some level set techniques are available that can at least deal with
a fixed amount of regions greater than two, there is very few work on how to
optimise the segmentation also with regard to the number of regions. Based on a
variational model, we propose a minimisation strategy that robustly optimises the
energy in a level set framework, including the number of regions. Our evaluation
shows that very good segmentations are found even in difficult situations.
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1 Introduction

Image segmentation has a long tradition as one of the fundamental problems in com-
puter vision. Relatively early, the problem has been formalised by Mumford and Shah
as the minimisation of an energy functional that penalises deviations from smoothness
within regions and the length of their boundaries [13]. Later, Zhu and Yuille found out
that this formulation is closely related to theminimum description lengthcriterion and
themaximum a-posterioricriterion [22]. They presented a new energy functional that
unified many of the existing approaches on image segmentation. It can be interpreted
as the joint minimisation of the boundary length (as in the Mumford-Shah functional)
and the Bayes error in the regions’ interior. This is based on the fact that segmentation
is actually a clustering problem with a neighbourhood constraint. Since penalising the
Bayes error is optimal from the statistical point of view, the variational formulation of
Zhu-Yuille describes the segmentation problem very accurately.
However, a tricky issue on image segmentation is the representation of regions and their
boundaries. Although there exist neat energy functionals like the one of Mumford-Shah
or that of Zhu-Yuille, it is not easy to minimise them in practice. A very nice tool to
deal with this problem appeared with the introduction of level sets [8, 14]. One appli-
cation to image segmentation has been the active contour model [3, 4, 10], which is
completely edge based, and therefore a rather local approach to image segmentation.
Level set based segmentation that takes the region information into account has been
proposed later in [15] and [5]. Using level sets for image segmentation has many advan-
tages. First of all, level sets yield a nice representation of regions and their boundaries
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on the pixel grid without the need of complex data structures. This considerably sim-
plifies optimisation, as variational methods and standard numerics can be employed.
Furthermore, level sets can describe topological changes in the segmentation, i.e. parts
of a region can split and merge. Finally, the possibility to describe the image segmenta-
tion problem with a variational model increases the flexibility of the model and allows
to employ, for instance, additional features [1], shape knowledge [11, 7], or joint motion
estimation and segmentation [6].
The main problem of the level set representation lies in the fact that a level set function
is restricted to the separation of two regions. As soon as more than two regions are
considered, the level set idea looses parts of its attractiveness. This is why only a few
papers focus on level set based segmentation in the case of more than two regions. In
[21], a level set function is assigned to each region. This framework has been adapted
to classification in [18]. In another approach, the bi-modal case is extended to tri-modal
segmentation [20]. Both techniques, however, assume an initially fixed number of re-
gions. This assumption is omitted in [16] where the number of regions is estimated in
a preliminary stage by means of a Gaussian mixture estimate of the image histogram.
This way, the number of mixture coefficients determines the number of regions. How-
ever, this kind of estimation is only loosely connected to the energy functional that is
minimised. A considerably different approach is proposed in [19]. Here, the level set
functions are used in such a way thatN regions are represented by onlylog2 N level
set functions. Unfortunately, this will result in empty regions, if less thanN regions are
present in the image. These empty regions have undefined statistics, though the statis-
tics still appear in the evolution equations.
Altogether, the prominence of level set based segmentation is yet lost as soon as more
than two regions come into play, and other segmentation methods based for instance on
algebraic multigrid [9] often perform better. The purpose of this paper is to solve the
remaining problem of the level set framework while saving its advantages.
We show a way how to minimise the energy of Zhu-Yuille by means of level sets. This
includes also the minimisation with regard to the number of regions. As the objec-
tive function can be assumed to have plenty of local minima, we employ multi-scale
ideas and a divide-and-conquer strategy. The most precarious part of the segmentation,
namely the determination of the number of regions as well as the initialisation of the
level set functions, is based on the very robust two-region segmentation which splits a
domain into two parts in a way that is optimal according to the energy (Section 2). The
multi-phase level set evolution has then just to adapt the regions in the global scope with
more than two regions present (Section 3). With this minimisation strategy the level set
framework can be fully exploited, what leads to excellent segmentation results. This
will be demonstrated in some experiments in Section 4.

2 Two-region segmentation

Contrary to the general segmentation problem, two-region segmentation by means of a
level set framework is well understood. Consider the Bayes error, i.e. the probability of
misclassified pixels

L = 1−
∫

Ω1

p1P1 dx−
∫

Ω2

p2P2 dx (1)



Level Set Based Image Segmentation with Multiple Regions 3

with the probability densitiesp1 = p(x|Ω1) andp2 = p(x|Ω2) of the regionsΩ1 and
Ω2, and under the side conditionsΩ = Ω1 ∪ Ω2 andΩ1 ∩ Ω2 = ∅, i.e. the regions
cover the whole image domainΩ and do not overlap. The a-priori probabilities of both
regions are equal, soP1 = P2 = 0.5. Moreover, instead of minimising the Bayes error
directly, it is beneficial from the numerical point of view to work on the logarithms.
Together with a penalty on the length of the boundaryΓ , weighted by the parameterν,
this leads to the energy functional

E(Ω1, Ω2, p1, p2) = −
∫

Ω1

log p1 dx−
∫

Ω2

log p2 dx + ν

∫
Γ

ds. (2)

For minimising this energy, now a level set function is introduced. LetΦ : Ω → R be
the level set function withΦ(x) > 0 if x ∈ Ω1 andΦ(x) < 0 if x ∈ Ω2. The zero-
level line of Φ is the searched boundary between the two regions. We also introduce
the regularised Heaviside functionH(s) with lims→−∞H(s) = 0, lims→∞H(s) = 1,
andH(0) = 0.5. This allows to rewrite Eq. 2 as

E(Φ, p1, p2) = −
∫

Ω

H(Φ) log p1 + (1−H(Φ)) log p2 − ν|∇H(Φ)| dx. (3)

The minimisation with respect to the regions can now be performed according to the
gradient descent equation

∂tΦ = H ′(Φ)
(

log
p1

p2
+ ν div

(
∇Φ

|∇Φ|

))
(4)

whereH ′(s) is the derivative ofH(s) with respect to its argument. Note that the side
conditions are automatically satisfied due to the level set representation.
However, the probability densitiesp1 andp2 still have to be estimated. This is done
according to theexpectation-maximisation principle. Having the level set function ini-
tialised with some partitioning, the probability densities can be computed by a nonpara-
metric Parzen density estimate using the smoothed histogram of the regions. Then the
new densities are used for the level set evolution, leading to a further update of the prob-
ability densities, and so on. This iterative process converges to the next local minimum,
so the initialisation matters.
In order to attenuate this dependency on the initialisation, two measures are recom-
mendable. Firstly, the initialisation should be far from a possible segmentation of the
image, as this enforces the search for a minimum in a more global scope. We always
use an initialisation with many small rectangles scattered across the image domain.
The second measure is the application of a coarse-to-fine strategy. Starting with a down-
sampled image, there are less local minima, so the segmentation is more robust. The
resulting segmentation can then be used as initialisation for a finer scale, until the orig-
inal optimisation problem is solved.
Under the assumption of exactly two regions in the image, this framework works very
well. For some nice results obtained with this method we refer to [17, 1]. The only re-
maining problem is the fact, that the assumption of exactly two regions in an image is
mostly not true.
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3 Multiple Region Segmentation

For the before-mentioned reasons, the generalised version of the segmentation problem
with an arbitrary number of regionsN will now be considered. The general model is
described by the energy of Zhu-Yuille [22]

E(Ωi, pi, N) =
N∑

i=1

(
−

∫
Ωi

log pi dx +
ν

2

∫
Γi

ds + λ

)
. (5)

The additional term of this energy functional penalises the number of regions with the
parameterλ. Now also the number of regions is a free variable that has to be optimised.
Moreover, this variable is discrete and the increased number of regions is very sensitive
to different initialisations. Furthermore, the nice splitting into two regions by a single
level set function as described in the last section is not applicable anymore.

Reduced problem withN regions.In order to cope with all these additional difficul-
ties, the complexity of the problem is first reduced by settingN fixed and assuming
that a reasonable initialisation of the regions is available. In this case it is possible to
introduce again a level set based energy functional with a set of level set functionsΦi,
each representing one region asΦi(x) > 0 if and only if x ∈ Ωi.

E(Φi, pi) =
N∑

i=1

(
−

∫
Ω

H(Φi) log pi −
ν

2
|∇H(Φi)| dx

)
(6)

Note that, in contrast to the two-region case, this formulation does not implicitely re-
spect the side condition of disjoint regions anymore. Minimising the energy according
to the expectation-maximisation principle and the following evolution equations

∂tΦi = H ′(Φi)
(

log pi − max
j 6=i, H(Φj)>0

(
log pj

)
+

ν

2
div

(
∇Φi

|∇Φi|

))
. (7)

ensures the adherence to the side conditions at least for the statistical part, since the
maximum a-posteriori criterion ensures that a pixel is assigned uniquely to the region
with the maximum a-posteriori probability. The smoothness assumption, however, can
result in slight overlapping of regions close to their boundaries, like in all existing level
set based methods dealing with an arbitrary number of regions, beside [19]. If this is
not wanted in the final result, the pixels of such overlapping areas can be assigned to
the region, where the level set function attains its maximum value.

So up to this point we can handle the following two cases:
– A domain of the image can be split into two parts by the two-region segmentation

framework.
– A set of regions can evolve, minimising the energy in Eq. 5, if the number of regions

is fixed and reasonable initialisations for the regions are available.

Solving the general problem.By means of these two special cases, also the general
problem according to the model in Eq. 5 can be solved. Starting with the whole image
domainΩ being a single region, the two-region segmentation can be applied in order to
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find the best splitting of the domain. If the energy decreases by the splitting, this results
in two regions. On these regions, again the two-region splitting can be applied, and so
on, until the energy does not decrease by further splits anymore. With this proceeding,
not only the optimum number of regions is determined, but also suitable initialisations
for the regions. Of course, the resulting partitioning is not optimal yet, as for the two-
region splitting, possibilities of a region to evolve have been ignored. However, as the
region number and the initialisation are known, the energy can now be minimised in
the global scope by applying the evolution of Eq. 7, adapting the regions to the new
situation where they have more competitors.
This procedure is applied in a multi-scale setting. Starting the procedure as described
on the coarsest scale, with every refinement step on the next finer scale, it is checked
whether any further splitting or merging decreases the energy before the evolution ac-
cording to Eq. 7 is applied. So for each scale the optimumN is updated, as well as the
region boundaries and the region statistics.
Though a global optimum still cannot be guaranteed1, this kind of minimisation avoids
quite reliably to be trapped by far-away local minima, as it applies both a coarse-to-
fine strategy and the divide-and-conquer principle. The two-region splitting completely
ignores the cluttering rest of the image. This consistently addresses the problems of op-
timising the discrete variableN and of not knowing good initialisations for the regions.

4 Results

We evaluated this scheme with a couple of artificial and real-world images. In order
to handle texture and colour images, the features were computed and incorporated as
described in [1]. We also used the local scale measure proposed in [2] as additional
texture feature.
As Fig. 1 reveals, the method works fine for the artificial texture images. The optimum
number of regions has been detected. The same holds for the test image depicted in
Fig. 2, which is often used in the literature, e.g. in [9]. Often much more difficult, are
real world images. Comparing, however, the segmentation result of the penguin image
in Fig. 4 to the result in [12] shows that our method is competitive to other well-known
methods. While in [12] 6 regions have been detected, the 3 regions found by our method
are more reasonable. Our level set framework also compares favourably to the algebraic
multigrid method in [9], as can be observed by means of the difficult squirrel image in
Fig. 5a. Also Fig. 5b and Fig. 6 show an almost perfect segmentation.
It should be noted that all parameters that appear in the method have been set to fixed
values, so all results shown here have been achieved with thesameparameters. This
is important, as of course it is much easier to obtain good segmentation results, if the
parameters are tuned for each specific image. However, we think that this contradicts
somehow the task ofunsupervisedsegmentation.
The algorithm is reasonably fast. The169 × 250 koala image took 22.5 seconds on an
Athlon XP 1800+ including feature computation.

1 This will only be the case, if the simplified objective function at the coarsest scale is unimodal
and the global optimum of each next finer scale is the optimum closest to the global optimum
at the respective coarser scale.
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Fig. 1.Segmentation of two artificial texture images: In both cases 4 regions were detected.

5 Summary

In this paper we proposed a level set based minimisation scheme for the variational seg-
mentation model of Zhu-Yuille. While the popular level set framework has so far only
been used for two-region segmentation or segmentation with a fixed number of regions,
we described a way how to optimise the result also regarding the number of regions.
Moreover, the divide-and-conquer principle provides good initialisations, so the method
is less sensitive to local minima than comparable methods. All advantages of the level
set framework are preserved, while its main problem has been solved. The performance
of the variational model and its minimisation strategy has been demonstrated in several
experiments. It compares favourably to existing approaches from the literature.
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7. D. Cremers, N. Sochen, and C. Schnörr. Towards recognition-based variational segmentation
using shape priors and dynamic labeling. In L. D. Griffin and M. Lillholm, editors,Scale
Space Methods in Computer Vision, volume 2695 ofLecture Notes in Computer Science,
pages 388–400. Springer, Berlin, June 2003.

8. A. Dervieux and F. Thomasset. A finite element method for the simulation of Rayleigh–
Taylor instability. In R. Rautman, editor,Approximation Methods for Navier–Stokes Prob-
lems, volume 771 ofLecture Notes in Mathematics, pages 145–158. Springer, Berlin, 1979.



Level Set Based Image Segmentation with Multiple Regions 7

Fig. 2.Segmentation of a texture image: 5 regions have been detected.

Fig. 3.Segmentation of a leopard image (colour): 3 regions have been detected.

Fig. 4.Segmentation of a penguin image (colour): 3 regions have been detected.

Fig. 5. LEFT: (a) Segmentation of a squirrel image: 2 regions have been detected.
RIGHT: (b) Segmentation of a koala image (colour): 4 regions have been detected.
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Fig. 6.Segmentation of a castle image (colour): 3 regions have been detected.
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