
On the well-posedness of uncalibrated
photometric stereo under general lighting

Mohammed Brahimi, Yvain Quéau, Bjoern Haefner and Daniel Cremers

Abstract Uncalibrated photometric stereo aims at estimating the 3D-shape of a
surface, given a set of images captured from the same viewing angle, but under
unknown, varying illumination. While the theoretical foundations of this inverse
problem under directional lighting are well-established, there is a lack of mathemat-
ical evidence for the uniqueness of a solution under general lighting. On the other
hand, stable and accurate heuristical solutions of uncalibrated photometric stereo
under such general lighting have recently been proposed. The quality of the results
demonstrated therein tends to indicate that the problem may actually be well-posed,
but this still has to be established. The present paper addresses this theoretical issue,
considering first-order spherical harmonics approximation of general lighting. Two
important theoretical results are established. First, the orthographic integrability
constraint ensures uniqueness of a solution up to a global concave-convex ambi-
guity, which had already been conjectured, yet not proven. Second, the perspective
integrability constraint makes the problem well-posed, which generalizes a previous
result limited to directional lighting. Eventually, a closed-form expression for the
unique least-squares solution of the problem under perspective projection is pro-
vided, allowing numerical simulations on synthetic data to empirically validate our
findings.
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1 Introduction

Among the many photographic techniques which can be considered for the 3D-
reconstruction of a still surface, photometric stereo [43] is often considered as
a first choice when it comes to the recovery of very thin geometric structures.
Nevertheless, the classic formulation of photometric stereo requires illumination
to be highly controlled: each image must be captured under a single collimated
light source at infinity, and the direction and relative intensity of each source must be
calibrated beforehand. In practice, this restricts possible applications of the technique
to laboratory setupswhere collimation of light can be ensured and a (possibly tedious)
calibration procedure can be carried out.

Considering uncalibrated general lighting i.e., lighting induced by unknown, non-
collimated sources and in the presence of ambient lighting, would both drastically
simplify the 3D-scanning process for non-experts, and allow to bring photometric
stereo outside of the lab [37]. The theoretical foundations of the problem under uncal-
ibrated directional lighting are well-understood: the solution can be recovered only
up to a linear transformation [12]. When integrability is enforced, this linear ambigu-
ity reduces to the generalized bas-relief one under orthographic projection [44], and
vanishes under perspective projection [25]. This work rather focuses on uncalibrated
general lighting represented using first-order spherical harmonics [2, 35], in which
case the solution can be recovered only up to a Lorentz transformation [3] and it has
been conjectured - but not proven yet, that additional constraints such as integrability
may reduce this ambiguity. One reason for thinking that this conjecture might hold
is that stable numerical implementations of uncalibrated photometric stereo under
general illumination have been proposed recently, under both orthographic [1, 23]
and perspective [11] projections. Despite having no theoretical foundation, the re-
sults provided therein do not exhibit a significant low-frequency bias which would
reveal an underlying ambiguity: empirically, the problem seems well-posed.

The objective of this paper is thus to establish the uniqueness of a solution to the
problem of uncalibrated photometric stereo under general illumination, represented
by first-order spherical harmonics. After discussing the classic case of directional
lighting in Section 2, we characterize in Section 3 the ambiguities arising in uncal-
ibrated photometric stereo under first-order spherical harmonics lighting. Then, we
show in Section 4 that imposing integrability of the sought normal field resolves
such ambiguities. In the orthographic case, only a global concave-convex ambiguity
remains, hence the ambiguity is characterized by a single binary degree of free-
dom. For comparison, in the directional case there are three real degrees of freedom
characterizing the generalized bas-relief (GBR) ambiguity [4]. Moreover, under per-
spective projection the problem becomes completely well-posed, which generalizes
the result of [25] to more general lighting. In this case the solution can even be
determined in closed-form, as shown in Section 5. Section 6 eventually recalls our
findings, and suggests future research directions.
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2 Preliminaries: photometric stereo under directional lighting

Assuming a Lambertian surface is observed from a still camera under< ≥ 1 different
directional lighting indexed by 8 ∈ {1, . . . , <}, the graylevel in the 8-th image can be
modeled as follows:

� 8 (G) = d(G) n(G)> l8 , ∀G ∈ Ω, (1)

where Ω ⊂ R2 is the reconstruction domain (projection of the 3D-surface onto the
image plane), d(G) > 0 is the albedo at the surface point conjugate to pixel G,
n(G) ∈ S2 ⊂ R3 is the unit-length outward normal at this point, and l8 ∈ R3 is a
vector oriented towards the light source whose norm represents the relative intensity
of the source. Photometric stereo consists, given a set of graylevel observations
� 8 , 8 ∈ {1, . . . , <}, in estimating the shape (represented by the surface normal n)
and the reflectance (represented by the surface albedo d). Depending whether the
lighting vectors l8 are known or not, the problem is called calibrated or uncalibrated.

2.1 Calibrated photometric stereo under directional lighting

Woodham showed in the late 70s [42] that < ≥ 3 images captured under non-
coplanar, known lighting vectors were sufficient to solve this problem. Indeed, defin-
ing for every G ∈ Ω the following observation vector i(G) ∈ R<, lighting matrix
L ∈ R<×3 and surface vector m(G) ∈ R3 :

i(G) =

�1 (G)
...

�< (G)

 , L =


l1>
...

l<>

 , m(G) = d(G)n(G), (2)

the set of equations (1) can be rewritten as a linear system in m(G):

i(G) = L m(G), ∀G ∈ Ω. (3)

Provided that L is of rank three, (3) admits a unique least-squares solution in m(G),
from which the normal and albedo can be extracted according to:

d(G) = |m(G) |, n(G) = m(G)
|m(G) | . (4)

Such a simple least-squares approach may be replaced by robust variational or
learning-based strategies to ensure robustness [13, 17, 33, 34]. There also exist
numerical solutions for handling non-Lambertian reflectance models [7, 15, 21, 40],
non-distant light sources [18, 22, 29, 32], or the ill-posed cases where < = 2 [16, 20,
24, 31] or< = 1 [5, 8, 39, 45]. Such issues are not adressed in the present paper which
rather focuses on the theoretical foundations of uncalibrated photometric stereo.
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2.2 Uncalibrated photometric stereo under directional lighting

The previous strategy relies on the knowledge of the lighting matrix L, and it is not
straightforward to extend it to unknown lighting. Let us illustrate this in the discrete
setting, denoting the pixels as G 9 , 9 ∈ {1, . . . , =} where = = |Ω| is the number of
pixels, and stack all the observations in an observation matrix I ∈ R<×= and all the
surface vectors in a surface matrix M ∈ R3×=:

I =
[
i(G1), . . . , i(G=)

]
, M =

[
m(G1), . . . ,m(G=)

]
. (5)

Now, the set of = linear systems (3) can be represented compactly as:

I = LM (6)

where both the lighting matrix L and the surface matrix M are unknown. Since
we know that L should be of rank three, a joint least-squares solution in (L,M)
can be computed using truncated singular value decomposition [12]. Nevertheless,
such a solution is not unique, since given a possible solution (L,M), any couple
(LA−1,AM) with A ∈ �! (3,R) is another solution:

I = LM =

(
LA−1

)
(AM) , ∀A ∈ �! (3,R), (7)

or equivalently, in the continuous setting:

i(G) = Lm(G) =
(
LA−1

)
(Am(G)) , ∀(G,A) ∈ Ω × �! (3,R). (8)

However, not any surface matrix M (or m-field, in the continuous setting) is
acceptable as a solution. Indeed, this encodes the geometry of the surface, through
its normals. Assuming that the surface is regular, its normals should satisfy the so-
called integrability (or zero-curl) constraint. This constraint permits to reduce the
ambiguities of uncalibrated photometric stereo, as shown in the next two subsections.

2.3 Integrability under orthographic projection

Let us assume orthographic projection and denote n(G) := [=1 (G), =2 (G), =3 (G)]>
the surface normal at 3D-point conjugate to pixel G. Let us further represent the
surface as a Monge patch i.e., a differentiable mapping - : Ω → R3 of the form
- (G) = (G, I(G)), where I : Ω → R is a depth map. Let us assume this map I is
twice differentiable, and let ∇I(G) = [ID (G), IE (G)]> ∈ R2 be its gradient in some
orthonormal basis (D, E) of the image plane. The integrability constraint is essentially
a particular form of Schwarz’ theorem, which implies that

IDE = IED over Ω. (9)
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From the definition n(G) =
[
ID (G), IE (G), −1

]>√
ID (G)2 + IE (G)2 + 1

of the surface normal, and since

m(G) = d(G) n(G), Eq. (9) can be rewritten as:(
<1
<3

)
E

=

(
<2
<3

)
D

over Ω. (10)

Now, let us assume that one has found an m-field solution of the left-hand
side of (8), which further satisfies the integrability constraint (10) (in the discrete
setting, this can be achieved using matrix factorization [44] or convex optimization
techniques [36]). It can be shown that not all transformationsA in the right-hand side
of (8) preserve this constraint. Indeed, the only ones which are acceptable are those
of the generalized bas-relief group. Such matrices define a subgroup of �! (3,R)
under the matrix product, and have the following form [4]:

G =
©­«
_ 0 −`
0 _ −a
0 0 1

ª®¬ , G−1 =
©­«
1 0 `/_
0 1 a/_
0 0 1

ª®¬ , (_, `, a) ∈ R3 and _ ≠ 0. (11)

The three parameters `, a and _ characterize the GBR ambiguity inherent to
uncalibrated photometric stereo under directional illumination and orthographic
viewing. Intuitively, they can be understood as follows: any set of photometric stereo
images can be reproduced by scaling the surface shape (this is the role of _), adding
a plane to it (this is the role of ` and a), and moving the lighting vectors accordingly.
If one is given a prior on the distribution of albedo values, on that of lighting
vectors, or on the surface shape, then the three parameters can be estimated i.e.,
the ambiguity can be resolved. The literature on that particular topic is extremely
dense, see e.g. [38] for an overview, [6] for a modern numerical solution based on
deep learning, and [27] for an application to RGB-D sensing. As we shall prove later
in Section 4.1, in the case of non-directional lighting represented using first-order
spherical harmonics, the ambiguity is much simpler since it comes down to a global
concave/convex one.

2.4 Integrability under perspective projection

To terminate this discussion on uncalibrated photometric stereo under directional
lighting, let us discuss the case of perspective projection, which was shown to be
well-posed by Papadhimitri and Favaro in [25]. In the following, G = (D, E) denotes
the pixel coordinates with respect to the principal point (which is the projection of
the camera center onto the image plane) and 5 > 0 denotes the focal length. The
surface is now represented as the set of 3D-points I(G) [D/ 5 , E/ 5 , 1]>. Now, let us
examine the perspective counterpart of the orthographic integrability constraint (10).
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It is easy to show (see, e.g., [30]) that the surface normal is now defined as

n(G) = 1√
5 2 |∇I(G) |2 +

(
−I(G) − [D, E]> ∇I(G)

)2

[
5 ∇I(G)

−I(G) − [D, E]> ∇I(G)

]
. (12)

If we define the log depth map as:

Ĩ = log(I), (13)

and denote:

? = −=1
=3
, @ = −=2

=3
, (14)

?̂ =
?

5 − D? − E@ , @̂ =
@

5 − D? − E@ , (15)

then it is straightforward to show that

∇Ĩ = [ ?̂, @̂]> , (16)

and that Schwarz’ theorem (9) can be equivalently rewritten in terms of the gradient
of the log depth map:

ĨDE = ĨED . (17)

This equation can be equivalently rewritten in terms of the coefficients ofm = d n,
just as we obtained (10) for the orthographic case. This rewriting is given by the
following proposition, whose proof can be found in Appendix A:

Proposition 1 Let m = [<1, <2, <3]> : Ω → R3 a field defined as m := d n, with
d : Ω→ R an albedo map and n : Ω→ S2 ⊂ R3 a normal field. The normal field
n is integrable iff the coefficients of m satisfy the following relationship over Ω:

D(<1<2D − <1D<2) + E(<1<2E − <1E<2)
+ 5 (<1<3E − <1E<3) + 5 (<2D<3 − <2<3D) = 0. (18)

The integrability constraint (18) is slightly more complicated than the ortho-
graphic one (10). Yet, this slight difference is of major importance, because the set
of linear transformations A in (8) which preserve this condition is restricted to the
identity matrix [25]. This means, under perspective projection and directional light-
ing the uncalibrated photometric stereo problem is well-posed. As we shall prove
later in Section 4.2, such a result can actually be extended to more general lighting
represented using first-order spherical harmonics. Let us now elaborate on such a
modeling of general lighting, and characterize the ambiguities therein.



On the well-posedness of uncalibrated photometric stereo under general lighting 7

3 Characterizing the ambiguities in uncalibrated photometric
stereo under general lighting

The image formation model (1) is a simplified model, corresponding to the presence
of a single light source located at infinity. However, this assumption is difficult to
ensure in real-world experiments, and it would be more convenient to have at hand
an image formation model accounting for general lighting (to handle multiple light
sources, ambient lighting, etc.).

3.1 Spherical harmonics approximation of general lighting

The most general image formation model for Lambertian surfaces would integrate
the incident lighting received from all directions u; ∈ S2:

� 8 (G) = d(G)
∫
S2
B8 (G, u;) : (n(G), u;) du; , ∀G ∈ Ω, (19)

where we denote B8 (G, u;) ∈ R the intensity of the light source in direction u; ∈
S2 at the surface point conjugate to pixel G in the 8-th image, and : (n(G), ul) =
max{n(G)>u; , 0} is the irradiance at this point. In this expression, the max operator
encodes self-shadows: it ensures that the amount of reflected light does not take
negative values for surface elements not facing the light source.

Assuming a single light source illuminates the scene in the 8-th image, and
neglecting self-shadows, then Eq. (19) obviously comes down to the simplified
model (1). However, there exist other simplifications of the integral model (19),
which allow to handle more general illumination. Namely, the spherical harmonics
approximation which were introduced simultaneously in [2] and [35]. In the present
work we focus on first-order spherical harmonics approximation, which is known to
capture approximately 87% of general lighting [10]. Using this approximation, (19)
simplifies to (see the aforementioned papers for technical details):

� 8 (G) = d(G)
[

1
n(G)

]>
l8 , ∀G ∈ Ω, (20)

with l8 ∈ R4 a vector representing the general illumination in the 8-th image. Denoting
L =

[
l1, . . . , l<

]> ∈ R<×4 the general lighting matrix, System (20) can be rewritten
in the same form as the directional one (6):

i(G) = Lm(G), ∀G ∈ Ω, (21)

with m(G) = d(G)
(

1
n(G)

)
. (22)
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3.2 Uncalibrated photometric stereo under first-order spherical
harmonics lighting

Uncalibrated photometric stereo under first-order spherical harmonics lighting
comes down to solving the set of linear systems (21) in terms of both the gen-
eral ligthing matrix L and the m-field (which encodes albedo and surface normals).
In the directional case discussed previously, this was possible only up to an invertible
linear transformation, as shown by (8). Despite appearing more complicated at first
glance, the case of first-order spherical harmonics is actually slightly more favorable
than the directional one: not all such linear transformations are acceptable, because
they have to preserve the particular form of the m-field, given in Eq. (22). That is to
say, given one m-field solution and another one m∗ = Am obtained by applying an
invertible linear transformation A ∈ �! (4,R), the entries 21, 22, 23, 24 of m∗ should
respect the constraint 21

2 = 22
2 + 23

2 + 24
2 over Ω (cf. Eq. (22), remembering that

each surface normal has unit length).
As discussed in [3], thismeans that ambiguities in uncalibrated photometric stereo

under first-order spherical harmonics are characterized as follows:

i(G) = Lm(G) =
(
LA−1

)
(Am(G)) , ∀(G,A) ∈ Ω × !B , (23)

where !B is the space of scaled Lorentz transformations defined by

!B = {BA | B ∈ R\{0} and A ∈ !}, (24)

with ! the Lorentz group [28] arising in Einstein’s theory of special relativity [9]:

! = {A ∈ �! (4,R) | ∀x ∈ R4, ; (Ax) = ; (x)}, (25)
with ; : (C, G, H, I) ↦→ G2 + H2 + I2 − C2. (26)

In spite of the presence of the scaled Lorentz ambiguity in Eq. (23), several
heuristical approaches to solve uncalibrated photometric stereo under general light-
ing have been proposed lately. Let us mention the approaches based on hemispherical
embedding [1] and on equivalent directional lighting [23], which both deal with the
case of orthographic projection, and the variational approach in [11] for that of
perspective projection. The empirically observed stability of such implementations
tends to indicate that the problem might be better-posed than it seems, as already
conjectured in [3]. In order to prove this conjecture, we will show in Section 4 that
not all scaled Lorentz transformations preserve the integrability of surface normals.
To this end, we need to characterize algebraically a scaled Lorentz transformation.
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3.3 Characterization of the scaled Lorentz transformation

We propose to characterize any ambiguity matrix A ∈ !B in (23) by means of a scale
factor B ≠ 0 (one degree of freedom), a vector inside the unit R3-ball v ∈ �(0, 1)
(three degrees of freedom, where �(0, 1) =

{
x ∈ R3, |G | < 1

}
) and a 3D-rotation

matrix O ∈ ($ (3,R) (three degrees of freedom, hence a total of seven). More
explicitly, any scaled Lorentz transformation can be characterized algebraically as
follows:

Theorem 1 For any scaled Lorentz transformation A ∈ !B , there exists a unique
triple (B, v,O) ∈ R\{0} × �(0, 1) × ($ (3,R) such that:

A = B
©­­«
n1 (A) W n1 (A) W v>O

n2 (A) W v n2 (A) (I3 + W2

1+W vv>)O

ª®®¬ , (27)

with

W =
1√

1 − |v|2
, (28)

n1 (A) =
{

1 if %> (A),
−1 else, (29)

n2 (A) =
{
−1 if (%? (A) ∧ %> (A)) ∨ (%? (A) ∧ %> (A)),

1 else,
(30)

and %? (A) stands for “A is proper”, %> (A) for “A is orthochronous”,

where we recall that a Lorentz matrix A is “proper” iff it preserves the orientation
of the Minkowski spacetime, and it is “orthochronous” iff it preserves the direction
of the time, i.e.:

A ∈ ! is proper ⇐⇒ det(A) > 0, (31)
A ∈ ! is orthochronous ⇐⇒ ∀x = [C, G, H, I]> ∈ R4, sign(C) = sign(C ′),

where Ax = [C ′, G ′, H′, I′]> . (32)

The opposites are improper and non-orthochronous, and we note ! ?
> , !

8
>, !

?
= and !8=

the sets of Lorentz transformations which are respectively proper and orthochronous,
improper and orthochronous, proper and non-orthochronous, and improper and non-
orthochronous. The Lorentz group is the union of all these spaces, i.e. ! = !

?
> ∪

!8> ∪ !
?
= ∪ !8=.

Using Theorem 1 (whose proof can be found in Appendix B) to characterize the
underlying ambiguity of uncalibrated photometric stereo under general lighting, we
are ready to prove that imposing integrability disambiguates the problem.
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4 Integrability disambiguates uncalibrated photometric stereo
under general lighting

As we have seen in the previous section, uncalibrated photometric stereo under
general lighting is ill-posed without further constraints, since it is prone to a scaled
Lorentz ambiguity, cf. Eq. (23). Now, let us prove that not all scaled Lorentz trans-
formations preserve the integrability of the underlying normal field.

We shall assume through the next two subsections that the pictured surface is twice
differentiable and non-degenerate, in a sense which will be clarified in Section 4.3.
Then, the only acceptable Lorenz transformation is the one which globally exchanges
concavities and convexities in the orthographic case, while it is the identity in the
perspective case. That is to say, the orthographic case suffers only from a global
concave/convex ambiguity, while the perspective one is well-posed.

4.1 Orthographic case

First, let us prove that under orthographic projection and first-order spherical har-
monics lighting, there are only two integrable solutions to uncalibrated photometric
stereo, and they differ by a global concave/convex transformation.

To this end, we consider the genuine solution m(G) of (21) corresponding to
a normal field n(G) and albedo map d(G), and another possible solution m∗ (G) =
Am(G), A ∈ !B , with (d∗ (G), n∗ (G)) the corresponding albedo map and surface
normals. The pictured surface being twice differentiable, the genuine normal field
n is integrable by construction. We establish in this subsection that if the other
candidate normal field n∗ is assumed integrable as well, then both the genuine and
the alternative solutions differ according to:

d∗ (G) = U d 9 (G)
=∗1 (G) = _ =1 (G)
=∗2 (G) = _ =2 (G)
=∗3 (G) = =3 (G)

, ∀G ∈ Ω, (33)

where U > 0 and _ ∈ {−1, 1}. That is to say, all albedo values are globally scaled by
the same factor U, while the sign of the first two components of all normal vectors
are inverted i.e., concavities are turned into convexities and vice-versa. The global
scale on the albedo should not be considered as an issue, since such values are
relative to the camera response function and the intensities of the light sources, and
they can be manually scaled back in a post-processing step if needed. However, the
residual global concave/convex ambiguity shows that shape inference remains ill-
posed. Still, the ill-posedness is characterized by a single binary degree of freedom,
which is to be compared with the three real degrees of freedom characterizing the
GBR ambiguity arising in the case of directional lighting [4].
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More formally, this result can be stated as the following theorem, which charac-
terizes the scaled Lorentz transformations in (23) preserving the integrability of the
underlying normal field:

Theorem 2 Under orthographic projection, the only scaled Lorentz transformation
A ∈ !B which preserves integrability of normals is the following one, where U > 0
and _ ∈ {−1, 1}:

A = U


1 0 0 0
0 _ 0 0
0 0 _ 0
0 0 0 1

 . (34)

Proof Let m : Ω→ R4 a field with the form of Equation (22), and let d and n the
corresponding albedo map and normal field, assumed integrable. The normal field n
being integrable, ? = −=1

=3
and @ = −=2

=3
satisfy the integrability constraint ?E = @D

over Ω. Denoting by (21, 22, 23, 24) the four components of the field m, and using
the expression (22) of m, this implies:(

22
24

)
E

=

(
23
24

)
D

over Ω,

⇐⇒ 22E24 − 2224E

242 =
23D24 − 2324D

242 over Ω,

⇐⇒ (22E − 23D)24 + 24D23 − 24E22 = 0 over Ω. (35)

Let m∗ = Am, with A a scaled Lorentz transformation having the form given
by Theorem 1, and let d∗ and n∗ the corresponding albedo map and normal field,
assumed integrable. The same rationale as above on the alternative normal field n∗
yields:

(2∗2E − 2
∗
3D)2

∗
4 + 2

∗
4D2
∗
3 − 2

∗
4E2
∗
2 = 0 over Ω. (36)

Since m∗ = Am, (36) writes as:

(�2121E + �2222E + �2323E + �2424E − �3121D − �3222D

−�3323D − �3424D) (�4121 + �4222 + �4323 + �4424)
+ (�4121D + �4222D + �4323D + �4424D) (�3121 + �3222 + �3323 + �3424)
− (�4121E + �4222E + �4323E + �4424E ) (�2121 + �2222 + �2323 + �2424)

= 0 over Ω. (37)

Let us introduce the following notation, 1 ≤ 8 < 9 ≤ 4, and : ∈ {D, E}:

2
8, 9

:
(G) = 2 9 (G)28: (G) − 28 (G)2 9: (G), ∀G ∈ Ω, (38)

and denote as follows the minors of size two of matrix A:

�
8, 9

:,;
= �8 9�:; − �: 9�8; , 1 ≤ 8 < : ≤ 4, 1 ≤ 9 < ; ≤ 4. (39)
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Then, factoring (37) firstly by the coefficients �8 9 and after by 28, 9D and 28, 9E for
every (8, 9) ∈ {1, 2, 3, 4} with 8 < 9 , we get:

21,2
E �

2,1
4,2 + 2

1,3
E �

2,1
4,3 + 2

1,4
E �

2,1
4,4 + 2

2,3
E �

2,2
4,3 + 2

2,4
E �

2,2
4,4 + 2

3,4
E �

2,3
4,4

− 21,2
D �

3,1
4,2 − 2

1,3
D �

3,1
4,3 − 2

1,4
D �

3,1
4,4 − 2

2,3
D �

3,2
4,3 − 2

2,4
D �

3,2
4,4 − 2

3,4
D �

3,3
4,4 = 0 over Ω.

(40)

In addition, (35) also writes as:

22,4
E = 23,4

D over Ω. (41)

Thus, substituting 22,4
E by 23,4

D , Eq. (40) can be rewritten as:

i> (G)>a = 0, ∀G ∈ Ω, (42)

where i> (G) ∈ R11 is the “orthographic integrability vector” containing factors
2
8, 9
D (G) and 28, 9E (G), and a ∈ R11 contain the minors �8, 9

:,;
of A appearing in (40).

Since the surface is assumed to be non-degenerate (cf. Section 4.3), there exist at
least 11 points G ∈ Ω such that a full-rank matrix can be formed by concatenating
the vectors i> (G)> row-wise. We deduce that the only solution to (42) is a = 0, which
is equivalent to the following equations:

�
3,2
4,3 = �

3,2
4,4 = �

2,3
4,4 = �

2,2
4,3 = 0,

�
3,3
4,4 = �

2,2
4,4,

�
2,1
4,2 = �

3,1
4,2 = �

2,1
4,3 = �

3,1
4,3 = �

2,1
4,4 = �

3,1
4,4 = 0.

(43)

According to Corollary 1 provided in Appendix C, this implies that the submatrix
of A formed by its last three rows and columns is a scaled generalized bas-relief
transformation, i.e.: there exists a unique quadruple (_, `, a, V) ∈ R4 with _ ≠ 0, V ≠
0, such that:

A =

©­­­«
�11 �12 �13 �14
�21 V_ 0 −V`
�31 0 V_ −Va
�41 0 0 V

ª®®®¬ . (44)

By taking into account the last equation of System (43), we get :

A =

©­­­«
�11 �12 �13 �14
0 V_ 0 −V`
0 0 V_ −Va
0 0 0 V

ª®®®¬ . (45)
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Identifying (45) with the expression in Theorem 1, v = 0, W = 1 and B n2 (A)O =

V
©­«
_ 0 −`
0 _ −a
0 0 1

ª®¬. In addition, O ∈ ($ (3,R), which implies O>O = I3. Thus, since

n2 (A)2 = 1, we have: (B n2 (A)O)> n2 (A)O) = B2 I3. Equivalently:

V
©­«
_ 0 0
0 _ 0
−` −a 1

ª®¬ V ©­«
_ 0 −`
0 _ −a
0 0 1

ª®¬ = ©­«
B2 0 0
0 B2 0
0 0 B2

ª®¬ ,
⇐⇒ V2 ©­«

_2 0 −`_
0 _2 −a_
−`_ −a_ `2 + a2 + 1

ª®¬ = ©­«
B2 0 0
0 B2 0
0 0 B2

ª®¬ , (46)

which implies _2 = 1, ` = 0, a = 0, V2 = B2.
Finally, det(B n2 (A)O) = V _2 V = n2 (A) B, thus according to (45):

A = B

©­­­«
n1 (A) 0 0 0

0 n2 (A)_ 0 0
0 0 n2 (A)_ 0
0 0 0 n2 (A)

ª®®®¬ . (47)

Plugging (47) into m∗ = Am, we obtain:

©­­­«
d∗ (G)

d∗ (G) =∗1 (G)
d∗ (G) =∗2 (G)
d∗ (G) =∗3 (G)

ª®®®¬ = B
©­­­«

n1 (A) d(G)
n2 (A) _ d(G) =1 (G)
n2 (A) _ d(G) =2 (G)
n2 (A) d(G) =3 (G)

ª®®®¬ , ∀G ∈ Ω. (48)

Now, knowing that albedos d, d∗ > 0 (they represent the proportion of light which
is reflected by the surface), and that the last component of normals =3, =

∗
3 ≤ 0 (the

normals point toward the camera), Eq. (48) implies that n1 (A) and n2 (A) have exactly
the same sign as B.

Two cases must be considered. If B > 0, then n1 (A) = n2 (A) = 1, and plugging
these values into (47) we obtain the expression provided in Theorem 2. If B < 0, then
n1 (A) = n2 (A) = −1, and we again get the expression provided in Theorem 2. �

From a practical point of view, once an integrable normal field candidate has
been found heuristically, using e.g. hemispherical embedding [1] or an equivalent
directional lighting model [23], the residual ambiguity i.e., the sign of _, needs to
be set manually, as proposed for instance in in [23]. As we shall see now, in the case
of perspective projection the problem becomes even completely well-posed, which
circumvents the need for any manual intervention.
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4.2 Perspective case

Now we will prove that uncalibrated photometric stereo under first-order spherical
harmonics lighting and perspective projection is well-posed. This means, imposing
integrability restricts the admittible ambiguity matrices A in (23) to the identity
matrix (up to a factor scaling all albedo values without affecting the geometry):
Theorem 3 Under perspective projection, the only scaled Lorentz transformation
A ∈ !B which preserves integrability of normals is the identity matrix, up to a scale
factor U > 0:

A = UI4. (49)
Proof Let m : Ω→ R4 a field with the form of Equation (22), whose normal field
is integrable. Let m∗ = Am another such field whose normal field is integrable, with
A ∈ !B a scaled Lorentz transformation having the form given by Theorem 1.

Let us denote by (21, 22, 23, 24) the four components of the field m, and by
(2∗1, 2

∗
2, 2
∗
3, 2
∗
4) those of m∗. According to Proposition 1, the integrability constraint

of the normal field associated with m∗ writes as follows:

D(2∗)2,3D + E(2∗)2,3E + 5 (2∗)2,4E − 5 (2∗)3,4D = 0 over Ω, (50)

with the same notations as in (38).
As in the previous proof of Theorem 2, we substitute in the integrability con-

straint (50) the entries of m∗ = Am with their expressions in terms of entries of A
and m. Then, by factoring firstly by the coefficients �8 9 and then by 28, 9D and 28, 9E for
every (8, 9) ∈ {1, 2, 3, 4} with 8 < 9 , we get:(

D21,2
D + E21,2

E

)
�

2,1
3,2 +

(
D21,3

D + E21,3
E

)
�

2,1
3,3

+
(
D21,4

D + E21,4
E

)
�

2,1
3,4 +

(
D22,3

D + E22,3
E

)
�

2,2
3,3

+
(
D22,4

D + E22,4
E

)
�

2,2
3,4 +

(
D23,4

D + E23,4
E

)
�

2,3
3,4

+ 5
(
21,2
E �

2,1
4,2 + 2

1,3
E �

2,1
4,3 + 2

1,4
E �

2,1
4,4 + 2

2,3
E �

2,2
4,3 + 2

2,4
E �

2,2
4,4 + 2

3,4
E �

2,3
4,4

)
− 5

(
21,2
D �

3,1
4,2 + 2

1,3
D �

3,1
4,3 + 2

1,4
D �

3,1
4,4 + 2

2,3
D �

3,2
4,3 + 2

2,4
D �

3,2
4,4 + 2

3,4
D �

3,3
4,4

)
= 0 over Ω. (51)

By concatenating equations (51) for all pixels G ∈ Ω, we get the following set of
linear systems:

i? (G)>w = 0, ∀G ∈ Ω, (52)

where w ∈ R18 contains all the minors �8, 9

:,;
of the ambiguity matrix A in Eq.(51),

and the “perspective integrability” vector i? (G) depends only on D, E, 5 and 28, 9:
i.e.,

known quantities. We will see later in Section 5, that numerically solving the set of
equations (52) provides a simple way to numerically solve uncalibrated perspective
photometric stereo under first-order spherical harmonics lighting.
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If in addition we use the fact thatm fulfills the integrability constraint (50), we can
substitute (D22,3

D + E22,3
E ) by (− 5 22,4

E + 5 23,4
D ) in Eq. (51), and we get 17 summands

instead of 18, turning (52) as follows

c(G)>a = 0 over Ω, (53)

where c(G), a ∈ R17.
Since the surface is assumed to be non-degenerate (cf. Section 4.3), there exist

at least 17 points G ∈ Ω such that a full-rank matrix can be formed by row-wise
concatenation of vectors c(G)>, G ∈ Ω. We deduce that a = 0 and we get the
following equations: 

�
3,2
4,3 = �

3,2
4,4 = �

2,3
4,4 = �

2,2
4,3 = 0,

�
2,2
3,3 = �

3,3
4,4,

�
2,2
3,3 = �

2,2
4,4,

�
2,1
3,2 = �

2,1
3,3 = �

2,1
3,4 = �

2,2
3,4 = �

2,3
3,4 = 0,

�
2,1
4,2 = �

2,1
4,3 = �

2,1
4,4 = �

2,2
4,3 = �

2,3
4,4 = 0,

�
3,2
4,3 = �

3,2
4,4 = �

3,1
4,2 = �

3,1
4,3 = �

3,1
4,4 = 0.

(54)

According to the first three equations of System (54), the submatrix of A formed
by the last three rows and columns is a scaled generalized bas-relief transformation
(see Corollary 1 in Appendix C). That is to say, there exists a unique quadruple
(_, `, a, U) ∈ R4 with _ ≠ 0, U ≠ 0, such that:

A =

©­­­«
�11 �12 �13 �14
�21 U_ 0 −U`
�31 0 U_ −Ua
�41 0 0 U

ª®®®¬ . (55)

Taking into account the other equations of system (54), we get _ = 1, ` = a =
�21 = �31 = �41 = 0. Then, the same arguments as those used around Eq. (47)
yield �12 = �13 = �14 = 0, and the form (22) of m∗ = Am implies �11 = U, which
concludes the proof. �

Let us remark that such a particular form of a scaled Lorentz transformation only
scales all albedo values, leaving the geometry unchanged. From a practical point of
view, this means that once an integrable candidate has been found, it corresponds
to the genuine surface and there is no need to manually solve any ambiguity, unlike
in the orthographic case. In Section 5, we will see that such a candidate can be
estimated in closed-form in the discrete setting. This will allow us to empirically
verify the validity of our theoretical results, through numerical experiments on
simulated images. Before that, let us briefly elaborate on degenerate surfaces i.e.,
surfaces for which the two theorems in the present section do not hold.
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4.3 Degenerate surfaces

The two previous theorems rely on the assumption that the surface is non “degen-
erate”. Although degenerate surfaces are rarely encountered in practice, this notion
needs to be clarified for the completeness of this study.

Degenerate surfaces are those having a particularly simple shape, which causes the
matrix formed by concatenation of the integrability vectors (i> (G) in the orthographic
case, cf. (42), or c(G) in the perspective case, cf. (53)) not to be full-rank. Here we
algebraically characterize such surfaces, for which the integrability constraint is not
enough to solve the Lorentz ambiguity.

4.3.1 Orthographic case

Let m : Ω→ R4 be a field of the form of (22), and let d and n be the corresponding
albedo map and normal field, respectively. We denote by (21, 22, 23, 24) the four
components of the field m, and use the definition (38) of the coefficients 28, 9

:
,

8, 9 ∈ {1, . . . , 4}, : ∈ {D, E}. Then, the surface defined by the field m is degenerate
iff the

(
2
8, 9

:

)
(:,8, 9)≠(E,2,4)

are linearly dependent, i.e. if there exists a non-zero vector

(_8, 9
:
) ∈ R11\{0} such that for any pixel G ∈ Ω∑

:∈{D,E }
1≤8< 9≤4

(:,8, 9)≠(E,2,4)

_
8, 9

:
2
8, 9

:
(G) = 0. (56)

To illustrate this notion on some examples, let us remark that by definition of the
coefficients

(
2
8, 9

:

)
:

d n × d nD =
©­­«
−23,4

D

2
2,4
D

−22,3
D

ª®®¬ , d n × d nE =
©­­«
−23,4

E

2
2,4
E

−22,3
E

ª®®¬ over Ω, (57)

where × denotes the cross-product.
Therefore, the following sufficient (but not necessary) conditions to be a degen-

erate surface can be formulated:

• nD = nE = 0: a planar surface.
• nD = 0 and nE ≠ 0: a surface with vanishing curvature along D (see Figure (1a)) ;
• nD ≠ 0 and nE = 0: a surface with vanishing curvature along E (see Figure (1b)) ;
• nD = nE : a surface with vanishing curvature along D = −E (see Figure (1c)) ;
• nD = −nE , a surface with vanishing curvature along D = E (see Figure (1d)).
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u

v

(a) nD = 0, nE ≠ 0

u

v

(b) nD ≠ 0, nE = 0

v

u

u = −v

u = v

(c) nD = nE

v

u

u = −v

u = v

(d) nD = −nE

Fig. 1: Examples of degenerate surfaces in the orthographic case.

4.3.2 Perspective case

Analogously, a surface is degenerate under perspective projection iff there exists
a non-zero vector

(
(U8, 9

:
), (V8, 9 )(8, 9)≠(2,3)

)
∈ R17\{0} such that, for any pixel G =

(D, E) ∈ Ω:
∑

:∈{D,E }

∑
1≤8< 9≤4

(
U
8, 9

:

)
5 2

8, 9

:
(G)

 +
∑

1≤8< 9≤4
(8, 9)≠(2,3)

V8, 9

(
D2

8, 9
D (G) + E28, 9E (G)

)
= 0, (58)

where 5 is the focal length.
The surfaces shown in Figure 1 are examples of degenerate surfaces. There exist

other examples, yet it is not straightforward to characterize them in a simple way. On
the other hand, in practice if the surface was simple enough to yield degeneracy, one
would not resort to photometric stereo at all. In real-world problems, the geometry
of the pictured surface is rich enough, so degenerate surfaces rarely or never arise.
This means, it is possible to numerically solve equations such as (52) in a stable
manner. As shown in the next section, this provides a practical way to numerically
solve perspective uncalibrated photometric stereo under general lighting.
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5 Numerical solving of the perspective case

In this section, we derive a practical algorithm for solving perspective uncalibrated
photometric stereo under first-order spherical harmonics lighting. More specifically,
we provide a closed-form solution for an integrable normal field satisfying the image
formation model (21), provided that the perspective camera is calibrated (i.e., its
focal length and principal point are known).

5.1 Discrete formulation

First, let us reformulate the problem in the discrete setting. Let us stack all the
observations � 8 (G), 8 ∈ {1, . . . , <}, G ∈ Ω, in a matrix I ∈ R<×=, with = = |Ω| the
number of pixels. Similarly to the directional lighting case represented by (6), the
set of linear systems (21) can be rewritten in matrix form as:

I = LM, (59)

where L ∈ R<×4 is the general lighting matrix, and M ∈ R4×= stacks all the
unknown m(G)-vectors columnwise (each column m 9 = m(G 9 ) has thus the form
given in Eq. (22)).

As shown in [3], a least-squares solution (L1,M1) of (59) satisfying the con-
straint (22) can be obtained by singular value decomposition of I. Since we know
that any other M-matrix solution of (59) differs from M1 according to a scaled
Lorentz transform, the genuine solution M∗ ∈ R4×= is given by

M∗ = AM1, (60)

with A ∈ !B an unknown scaled Lorentz transformation.
In the last section we have seen that there exists a unique m-field which both

satisfies the image formation model and is integrable. This means, that if the pictured
surface is twice differentiable and non degenerate, then matrix A in (60) is unique
(up to scale). In fact, we only need the last three rows of matrix A: left-multiplying
the last three rows of the initial guess M1 by this submatrix, we obtain a matrix
of size 3 × = where the norm of the 9-th column is the albedo at the surface point
conjugate to pixel G 9 , and normalizing each column yields the surface normal at this
point.

The problem thus comes down to estimating the last three rows of matrix A.
According to Proposition 8 in Appendix C, these rows can be written in the form
(v | Q) ∈ R3×4, where v ∈ R3 and Q ∈ �! (3,R). Next we show how to estimate
v and Q in closed-form, using a discrete analogous of the perspective integrability
constraint.
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5.2 Closed-form solution through discrete integrability enforcement

During the proof of Theorem 3, we showed that the integrability constraint yields
the set of linear systems (52) over Ω. In the discrete setting, this set of equations can
be written compactly as

I?w = 0, (61)

where w ∈ R18 contains several minors of size 2 denoted by
(
�
8, 9

:,;

)
, and I? ∈

R=×18 is a “perspective integrability matrix” depending only upon the known camera
parameters and entries of M1.

Matrix I? is in general full-rank. Thus, the least-squares solution (up to scale)
of (61) in terms of vector w can be determined by singular value decomposition of
I?: denoting by Ip = U�V> this decomposition, the solution w is the last column of
V. We denote by

(
�̃
8, 9

:,;

)
=

(
_ �

8, 9

:,;

)
its entries, where _ ≠ 0 denotes the unknown

scale factor.
Now, recall that matrix Q ∈ R3×3 to be determined is the sub-matrix formed

by the last three rows and columns of A. It relates to the aforementioned minors
according to

Q−1 =
1

det(Q) com(Q)
> =

1
det(Q)

©­­­«
�

3,3
4,4 −�

2,3
4,4 �

2,3
3,4

−�3,2
4,4 �

2,2
4,4 −�

2,2
3,4

�
3,2
4,3 −�

2,2
4,3 �

2,2
3,3

ª®®®¬ , (62)

where com(Q) is the comatrix of Q. Thus:

_Q−1 =
1

det(Q)�
−1, where � =

©­­­«
�̃

3,3
4,4 −�̃

2,3
4,4 �̃

2,3
3,4

−�̃3,2
4,4 �̃

2,2
4,4 −�̃

2,2
3,4

�̃
3,2
4,3 −�̃

2,2
4,3 �̃

2,2
3,3

ª®®®¬
−1

. (63)

Hence, we can determine Q up to scale:

Q = (_ detQ) �. (64)

Next, we turn our attention to the estimation of vector v ∈ R3 (recall that this
vector is formed by the first column and last three rows of A), up to scale. To this
end, we consider the last nine minors. For example, considering �̃2,1

3,2:

�̃
2,1
3,2 =_ (�21�32 − �31�22) (65)

=_ (�21&21 − �31&11) (66)

=
(64)

(
_2det(Q)�21

)
Δ21 −

(
_2det(Q)�31

)
Δ11. (67)
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Let v̂ = ©­«
Ê1
Ê2
Ê3

ª®¬ = _2 det(Q) ©­«
�21
�31
�41

ª®¬ = (_2det(Q))v. Eq. (67) can be written as:

Δ21Ê1 − Δ11Ê2 = �̂
2,1
3,2. (68)

In the same manner, by using all the other minors which involve �21, �31 or �41, we
get the following over-constrained linear system:

Sv̂ = b, (69)

where S ∈ R9×3 and b ∈ R9. A least-squares solution for v̂ can be found using, e.g.,
the pseudo inverse:

v̂ = S†b. (70)

Besides,

_2det(Q) (v | Q) = (_2det(Q)v | _2det(Q)Q) (71)
= (v̂ | _3det(Q)2�), (72)

and applying the determinant to both sides of Eq. (64) yields:

_3det(Q)2 = 1
det(�) . (73)

Plugging (73) into (72),we eventually obtain the following closed-form expression
for (v | Q):

(v | Q) = 1
_2det(Q)

(
v̂ |

1
det(�)�

)
. (74)

Since _ and det(Q) in (74) are unknown, the solution (v | Q) is known only up to
scale. As already stated, the actual value of this scale factor is not important, since
it only scales all abedo values simultaneously without affecting the geometry. Let us
denote by M̃1 the submatrix formed by the last three rows of the initial guess M1.
Then, matrix M̃2 = (v | Q)M̃1 is a 3 × = matrix where each column corresponds
to one surface normal, scaled by the albedo. The norm of each column of M̃2 thus
provides the sought albedo (up to scale), and normalizing each column provides the
sought surface normal.

Therefore, we now have at hand a practical way to find an integrable normal
field solving uncalibrated photometric stereo under general lighting and perspective
projection. In the next subsection, we show on simulated data that such a solution
indeed corresponds to the genuine surface, which provides an empirical evidence for
the theoretical analysis conducted in the previous section.
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5.3 Experiments

To empirically validate the well-posedness of perspective uncalibrated photometric
stereo under general lighting, we implemented the previous algorithm in Matlab,
and evaluated it against 16 synthetic datasets. These datasets were created by con-
sidering four 3D-shapes (“Armadillo”, “Bunny”, “Joyful Yell” and “Thai Statue”1)
and four different albedo maps (“White”, “Bars”, “Ebsd” and “Voronoi”). Ground
truth normals were deduced from the depth maps using (12), approximating partial
derivatives of the depth with first-order finite differences. Then, for each of the 16
combinations of 3D-shape and albedo, < = 21 images were simulated according
to (20), while varying the lighting coefficient, as illustrated in Figure 2. Each image is
of size 1600× 1200, and comes along with the ground-truth normals, reconstruction
domain Ω, and intrinsic camera parameters (the focal length 5 , and the principal
point used as reference for pixel coordinates). For the evaluation, we measured the
mean angular error (in degrees) between the estimated and the ground-truth normals.

Armadillo Bunny Joyful Yell Thai

Statue

White Bars Ebsd Voronoi

Three images with different

lighting

3
D

 S
h

ap
es

A
lb

ed
o

s

Fig. 2: The four 3D-shapes and four albedo maps used to create 16 (3D-shape,
albedo) datasets. For each dataset, < = 21 images were rendered under varying
first-order spherical harmonics lighting. On the right, we show three images of the
(“Armadillo”, “White”) dataset.

As can be seen in Table 1, the mean angular error on the estimated normals is very
low (less than 10 degrees for all datasets). This confirms that the geometry of the scene
is unambiguously estimated. The images being synthesized without any additional
noise or outlier to the Lambertian model (e.g., shadows or specularities), one may
however be surprised that the mean angular error is non-zero. As suggested in [25],
the observed residual errors may be due to the finite differences approximation of
partial derivatives arising in the perspective integrability matrix (matrix I? in (61),
which contains the partial derivatives of the entries of the initial m-field, cf. (51)).
In our implementation, we considered first-order finite differences: other choices of
finite differences might reduce the error, yet we leave this as a perspective.

1 Joyful Yell: https://www.thingiverse.com/thing:897412; other datasets: http://
www-graphics.stanford.edu/data/3dscanrep

https://www.thingiverse.com/thing:897412
http://www-graphics.stanford.edu/data/3dscanrep
http://www-graphics.stanford.edu/data/3dscanrep


22 Mohammed Brahimi, Yvain Quéau, Bjoern Haefner and Daniel Cremers

Albedo

3D-shape White Bars Ebsd Voronoi

Armadillo 2.01 1.81 2.13 2.03
Bunny 1.42 1.38 1.63 1.42
Joyful Yell 5.13 5.35 5.46 5.28
Thai Statue 6.33 6.40 6.46 7.62

Table 1: Mean angular error (in degrees), for each (3D-shape, albedo) combination.
The error remains below 10 degrees for each dataset. This indicates that the genuine
geometry is recovered, and empirically confirms the well-posedness of perspective
uncalibrated photometric stereo under first-order spherical harmonics lighting.

Next, we evaluated the robustness of the proposed approach to an increasing
amount of zero-mean, Gaussian noise added to the images of the (Armadillo, White)
dataset. As can be seen in Table 2, the proposed method dramatically fails as soon
as the noise becomes really perceptible (here, failure is observed when standard
deviation f > 0.5%). For comparison, we also provide the results obtained with
the state-of-the-art method [11], which is based on heuristical shape initialization
followed by regularized nonconvex refinement. The heuristical nature of the initial-
ization induces a non-negligible bias in shape estimation, which is clearly visible on
noise-free data. However, this alternative is much more robust to noise.

Standard deviation f (in percents of the maximum intensity)

Method 0.00 0.01 0.02 0.04 0.1 0.2 0.3 0.4 0.5

[11] 18.19 18.19 18.19 18.19 18.19 18.19 18.19 18.20 18.20
Ours 2.01 2.07 2.12 2.33 2.90 4.43 6.56 9.14 113.38

Table 2: Mean angular error (in degrees) on the (Armadillo, White) dataset, with
increasing amount of zero-mean Gaussian noise added to the input images. When
noise is negligible, the proposed method largely outperforms the state-of-the-art
method from [11]. However, it should be discarded in the presence of strong noise.

This is not really surprising, since the proposed method is spectral, and the
alternative one is based on evolved nonconvex optimization. In general, the former
is faster (in our implementation on a recent computer, our results were obtained
in less than 10 seconds, and the alternative ones in around 30 minutes), but the
latter is more robust. Similar observations have been made in other computer vision
communities, e.g. pose estimation: the 8-point algorithm [19] is usually replaced by
bundle adjustment techniques [41] in order to handle the unavoidable noise arising
in real-world data. Overall, the proposed algorithm should be considered only as
a way to empirically confirm the well-posedness of the problem, yet on real-world
data the existing numerical implementations should be preferred.
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6 Conclusion and perspectives

Wehave studied the well-posedness of uncalibrated photometric stereo under general
illumination, represented by first-order spherical harmonics. We have established
that integrability reduces the scaled Lorentz ambiguity to a global concave/convex
ambiguity in the orthographic case, and resolves it in the perspective one. As Table 3
summarizes, this generalizes previous results which were restricted to the directional
lighting model. Still, open questions remain concerning further generalization of
these results to even more evolved lighting models. For instance, future research on
the topic may consider the case of unknown second-order spherical harmonics [3],
or that of unknown nearby point light sources [26]. Such generalizations would
be of interest from a practical perspective, because the former represents natural
illumination very accurately [10], and the latter allows using inexpensive light sources
such as LEDs [29].

Effect of imposing integrability

Lighting model Underlying ambiguity Orthographic Perspective

Directional 9-dof (linear) [12] 3-dof (GBR) [44] Well-posed [25]
SH1 6-dof (scaled Lorentz) [3] 1-dof (concave/convex) Well-posed
SH2 9-dof (linear) [3] ? ?
Nearby point 4-dof (rotation and scale) [26] ? ?

Table 3: State-of-the-art of theoretical results concerning the well-posedness of un-
calibrated photometric stereo under different lighting models (directional, spherical
harmonics of order 1 and 2, or nearby point sources). We indicate the number of de-
grees of freedoms (dof) of the underlying ambiguity, and how imposing integrability
reduces this number under both orthographic and perspective projection. The bold
results refer to the findings in the present paper, and the question marks to remaining
open problems.
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Appendix

A) Proof of Proposition 1

Proposition 1 characterizes the integrability of a normal field in terms of the coeffi-
cients <1, <2 and <3 of m := dn. The following proof of this proposition is largely
inspired by [25].

Proof According to Equations (15) to (17), integrability of the normal field under
perspective projection can be written as:

?̂E = @̂D over Ω,

⇐⇒
(

?

5 − D? − E@

)
E

=

(
@

5 − D? − E@

)
D

over Ω,

⇐⇒ 5 ?E − E@?E + E?@E − 5 @D + D?@D − D@?D = 0 over Ω,

⇐⇒ ©­«
?E
@E
0

ª®¬
> ©­«

0
− 5
E

ª®¬ × ©­«
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@

−1

ª®¬ + ©­«
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0

ª®¬
> ©­«
− 5
0
D

ª®¬ × ©­«
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@

−1

ª®¬ = 0 over Ω, (75)

where × denotes the cross-product.

Besides, − m
<3

=
©­«
?

@

−1

ª®¬ according to (14). If we denote w1 = [0,− 5 , E]> and

w2 = [− 5 , 0, D]>, then (75) yields the following equation over Ω:(
−m
<3

)>
E

w1 ×
(
−m
<3

)
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(
−m
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D

w2 ×
(
−m
<3

)
= 0,
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(
−<3mE − <3Em

<32
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w1 ×

(
−m
<3

)
+

(
−<3mD − <3Dm

<32
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w2 ×

(
−m
<3

)
= 0.

(76)

Multiplying Eq. (76) by <3
3:

(<3mE − <3Em)>w1 ×m + (<3mD − <3Dm)>w2 ×m = 0 over Ω. (77)

In addition, (w1 ×m) ⊥ m and (w2 ×m) ⊥ m, thus the following relationship
holds over Ω:

<3m>E (w1 ×m) + <3m>D (w2 ×m) = 0,
⇐⇒ m>E (w1 ×m) +m>D (w2 ×m) = 0,
⇐⇒ D(<1D<2 − <1<2D) + E(<1E<2 − <1<2E )

+ 5 (<1E<3 − <1<3E ) − 5 (<2D<3 − <2<3D) = 0. (78)

which concludes the proof. �
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B) Proof of Theorem 1

Theorem 1 characterizes scaled Lorentz transformations. Its proof relies on the
following Propositions 2, 3 and 4 from Lorentz’ group theory (proofs of these
propositions can be found in [14]).

Proposition 2 For any proper and orthochronous Lorentz transformation A ∈ ! ?
> ,

there exists a unique couple (v,O) ∈ �(0, 1) × ($ (3,R) such that

A = S(v) R(O) =
©­­­­«
W W v>O

W v (I3 + W2

1+W vv>)O

ª®®®®¬
, (79)

where W = 1√
1−‖v‖2

, and

S(v) =
©­­­­«
W W v>

W v I3 + W2

1+W vv>

ª®®®®¬
, R(O) =

©­­­«
1 0 0 0
0
0 O
0

ª®®®¬ . (80)

Proposition 3 The product of two proper/improper transformations is a proper one,
and the product of a proper and improper transformations is an improper one. The
same for the orthochronous property.

Proposition 4 Matrix T =

©­­­«
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

ª®®®¬ is improper and non-orthochronous, and

matrix P =
©­­­«
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

ª®®®¬ is improper and orthochronous.

Using these already known results, we propose the following characterization of
Lorentz transformations:

Proposition 5 For any Lorentz transformation A ∈ !, there exists a unique couple
(v,O) ∈ �(0, 1) × ($ (3,R) such that

A =
©­­«
n1 (A) W n1 (A) W v>O

n2 (A) W v n2 (A) (I3 + W2

1+W vv>)O

ª®®¬ . (81)
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Proof We first assume that A ∈ !8=.
According to Proposition 4,T ∈ !8=. Thus using Proposition 3 :TA ∈ ! ?

> . Therefore,
according to Proposition 2, there exists a unique couple (v,O) ∈ �(0, 1) × ($ (3,R)
such that TA = S(v)R(O). Since TT = I4, this implies that A = TS(v)R(O). In
addition, n1 (A) = −1 and n2 (A) = 1, hence:

A =
©­­«
n1 (A)W n1 (A)Wv>O

n2 (A)Wv n2 (A) (I3 + W2

1+W vv>)O

ª®®¬ . (82)

With the same reasoning, we get the result for all the other transformations. �

Combining Proposition 5 and the definition (24) of scaled Lorentz transforma-
tions, we get Theorem 1.

C) Some useful results on GBR and Lorentz matrices, and Corollary 1

The aim of this section is to prove Corollary 1, which was used in the proofs of
Theorems 2 and 3. Its proof relies on a few results on GBR and Lorentz matrices,
which we provide in the following.

Let us denote by � the group of GBR transformations, and by �B that of scaled
GBR transformations defined by:

�B = {BA | B ∈ R\{0} and A ∈ �}. (83)

Both are subgroups of �! (3,R) under the matrix product. For all B = BA ∈ �B , we
call B the scale part of B, and A its GBR part.

Let C ∈ R=×= with = > 1 and �8 9 its entries. We will use the following notation
for a minor of size two:

�
8, 9

:,;
= �8 9�:; − �: 9�8; , (84)

where 1 ≤ 8 < : ≤ = and 1 ≤ 9 < ; ≤ =.
Such minors allow to characterize scaled GBR matrices:

Proposition 6 Let A ∈ R3×3, �8 9 the entries of A. Then, A is a scaled GBR transfor-
mation iff A is invertible and fulfills the following equations:{

�
2,1
3,2 = �

2,1
3,3 = �

1,2
3,3 = �

1,1
3,2 = 0,

�
2,2
3,3 = �

1,1
3,3.

(85)

Proof See [4]. �

Proposition 7 Let v ∈ �0 (1), W = 1√
1−‖v‖2

, then C = I3+ W2

1+W vv> is positive definite.
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Proof Let B =
W2

1+W vv>. We note �_ (B) the eigenspace associated to the eigenvalue
_ of B. B is symmetric, thus according to the spectral theorem, all the eigenvalues of

B are real, and R3 =
A⊕
8=1

�_8 (B) with A ≤ 3 the number of eigenvalues, and {_8}8=1..A

the eigenvalues of B. Hence: dim(R3) =
A∑
8=1

dim(�_8 (B)). According to the rank-

nullity theorem, dim( 4A (B)) + A0=: (B) = 3, and by definition A0=: (B) = 1, thus
dim( 4A (B)) = dim(�0 (B)) = 2. We deduce that there exists a unique non-zero
eigenvalue _ ∈ R\{0} such that R3 = �0 (B)

⊕
�_ (B) with dim(�_ (B)) = 1.

Let Πv the orthogonal projection onto B?0={v}, and let x ∈ R3 : Πv (x) = vv>
‖v‖2 x

and Πv (v) = v. We have: B =
W2

1+W ‖v‖
2 Πv and Bv = ( W2

1+W ‖v‖
2)v. Thus, W2

1+W ‖v‖
2 is

an eigenvalue ofB and _ = W2

1+W ‖v‖
2 . Besides, _

W−1 =
W2

(W−1) (W+1) ‖v‖
2 =

W2

W2−1 ‖v‖
2 =

1
1− 1

W2
‖v‖2 = 1

1−(1−‖v‖2) ‖v‖
2 = 1. Therefore, _ = W − 1 and the eigenvalues of B are

0 and (W − 1). Let U ∈ {0, W − 1} and u ∈ �U (B). We have:

Bu = Uu ⇐⇒ u + Bu = u + Uu ⇐⇒ Cu = (U + 1)u. (86)

Thus, 1 > 0 and W > 0 are the eigenvalues of C with �1 (C) = �0 (B) and �W (C) =
�W−1 (B). Consequently, C is positive definite. �

Proposition 8 LetAB ∈ !B a scaled Lorentz transformation. The submatrixB formed
by the last 3 rows and 3 columns of AB is invertible.

Proof By definition of AB , there exists a unique couple (B, Ã) ∈ R\{0}× ! such that
AB = BÃ. Hence, from Proposition 5, there exists a unique couple (v,O) ∈ �(0, 1) ×
($ (3,R) such that B = B n2 (Ã) (I3 + W2

1+W vv>)O. Since O ∈ ($ (3,R), det(O) = 1.

In addition, Proposition 7 implies det(I3 + W2

1+W vv>) > 0, thus det(B) ≠ 0. �

Corollary 1 Let AB ∈ !B a scaled Lorentz transformation. If its entries �8 9 fulfill:{
�

3,2
4,3 = �

3,2
4,4 = �

2,3
4,4 = �

2,2
4,3 = 0,

�
3,3
4,4 = �

2,2
4,4,

(87)

then the submatrix B of AB formed by the last 3 rows and 3 columns is a scaled GBR,
i.e. there exists a unique quadruple (_, `, a, V) ∈ R4 with _ ≠ 0, V ≠ 0 such that :

AB =

©­­­«
�11 �12 �13 �14
�21 V_ 0 −V`
�31 0 V_ −Va
�41 0 0 V

ª®®®¬ . (88)

Proof According to Proposition 8, B is invertible. Besides, AB fulfill equations (87)
iff B fulfill equations (85), thus according to Proposition 6, B ∈ �B . �
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