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Abstract
Spectral methods have recently gained popularity in many domains of computer graphics and geometry processing, especially
shape processing, computation of shape descriptors, distances, and correspondence. Spectral geometric structures are intrinsic
and thus invariant to isometric deformations, are efficiently computed, and can be constructed on shapes in different repre-
sentations. A notable drawback of these constructions, however, is that they are isotropic, i.e., insensitive to direction. In this
paper, we show how to construct direction-sensitive spectral feature descriptors using anisotropic diffusion on meshes and
point clouds. The core of our construction are directed local kernels acting similarly to steerable filters, which are learned in a
task-specific manner. Remarkably, while being intrinsic, our descriptors allow to disambiguate reflection symmetries. We show
the application of anisotropic descriptors for problems of shape correspondence on meshes and point clouds, achieving results
significantly better than state-of-the-art methods.

Categories and Subject Descriptors (according to ACM CCS): I.3 [Computer Graphics]: Shape modeling—Shape analysis

1. Introduction

In the past decade, spectral methods have gained popularity in
many domains of computer graphics and geometry processing, es-
pecially in problems of shape analysis [Lév06, R∗13] and syn-
thesis [RCG08, BEKB15], symmetry detection [OSG08], shape
retrieval [BBGO11], correspondence [O∗12], and segmentation
[SOCG10]. The main idea of spectral methods is to use the eigen-
decomposition of the Laplace-Beltrami operator to represent lo-
cal and global geometric structures. Examples of such structures
include diffusion distances [CL06, LRF10], global point signa-
tures [Rus07], heat- [SOG09, GBAL09] and wave-kernel [ASC11]
signatures, heat kernel maps [OMMG10], stable regions [LBB11,
RRBC14], functional maps [O∗12,R∗16], and shape difference op-
erators [R∗13].

The popularity of spectral geometric structures is owed to several
nice properties. First, they are intrinsic by construction and thus
invariant to isometric deformations. Second, they are efficiently
computable. Third, they can be constructed on shapes in different
representations such as meshes or point clouds, provided one has
the right discretization of the Laplace-Beltrami operator. A notable
drawback of these constructions, however, is that they are isotropic,
i.e., insensitive to direction. Furthermore, they are ambiguous un-
der intrinsic symmetries [OSG08, Y∗14].

In this paper, we show how to construct direction-sensitive spec-
tral feature descriptors using anisotropic diffusion on meshes and
point clouds. The core of our construction, referred to in the follow-
ing as anisotropic diffusion descriptors (ADD) are directed local

kernels acting similarly to oriented filter banks, which are learned
in a task-specific manner. Remarkably, our descriptors allow to dis-
ambiguate reflection symmetries.

Related work. Works on adaptive diffusion in image analysis
date back to the classical paper of Perona and Malik [PM90],
which introduced inhomogeneous diffusion (erroneously called
‘anisotropic’ by the authors) for edge-preserving image filtering.
Follow-up works [KS02] used true anisotropic diffusion, driven
e.g., by texture gradients. In the computer graphics and geom-
etry processing community, inhomogeneous diffusion driven by
texture discontinuities was used to fuse geometric and photo-
metric information on 3D shapes [KBBK12]. Anisotropic diffu-
sion processes were used for fairing [DMSB99] and smoothing
[TWBO02, CRT04] of meshes, as well as for processing of vol-
umetric medical data [BES11]. The construction of anisotropic
Laplacians driven by principal curvatures was shown in [ARAC14]
on meshes and in [KTT13] for abstract high-dimensional data.

On the other side, our work is related to the recent line of works
on applying machine learning methods to geometric data [S∗13,
R∗14, DMAMS14, W∗14, COC14, LBBC14, W∗15, SMKLM15].
Litman and Bronstein [LB14] showed that heat and wave kernel
signatures can be considered as particular parametric families of
transfer functions applied to the Laplace-Beltrami operator eigen-
values and proposed to learn an optimal transfer function. Their
work follows the recent trends in the image analysis domain, where
hand-crafted descriptors are abandoned in favor of learning ap-
proaches [KSH12,CGGS12,SZ14,KF15]. The remarkable success
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of deep learning architectures such as convolutional neural net-
works (CNN) [Fuk80, L∗89] in computer vision, has driven recent
attempts to bring these methods to non-Euclidean domains. Bruna
et al. [BZSL14] used a spectral formulation of convolution to ap-
ply CNNs on graphs. Boscaini et al. [B∗15] used localized spectral
CNNs based on vertex-frequency analysis [SRV15] to learn intrin-
sic 3D shape descriptors. A similar ShapeNet model [MBBV15]
used local geodesic polar coordinates [KBLB12] to define convo-
lutions on meshes.

Contributions. The key contribution of this paper is the construc-
tion of shape feature descriptors based on anisotropic oriented
learnable diffusion kernels. Unlike [ARAC14], we do not use a
single anisotropic diffusion kernel in the direction of the principal
curvature, but a multitude of kernels at different directions. Such
kernels capture local directional structures similarly to the geodesic
polar coordinates used in the intrinsic shape context [KBLB12] and
ShapeNet [MBBV15], however, with several notable advantages.
First, we do not have an ambiguity in the definition of the angu-
lar coordinate. Second, unlike geodesic patches that are not always
guaranteed to be valid topological disks, anisotropic kernels are al-
ways valid. Third, our construction is not limited to meshes and is
advantageous computationally.

Learning optimal anisotropic kernels can be considered as an ex-
tension of the optimal spectral descriptors method of [LB14]. One
of the main advantages is that anisotropy allows to disambiguate
intrinsic symmetry. We show that using a different learning cost,
we can learn intrinsic correspondence between shapes.

Finally, we show experimentally that our approach outper-
forms state-of-the-art intrinsic feature descriptors [SOG09,ASC11,
LB14], including the most recent Riemannian CNNs [B∗15,
MBBV15] that so far have held the record of top performance on
standard descriptors benchmarks. In shape correspondence experi-
ments, our approach beats popular non-learnable methods such as
blended maps [KLF11] and functional maps [O∗12], as well as a
recent learning approach based on random forests [R∗14].

The rest of the paper is organized as follows. In Section 2, we re-
view basic notions in differential geometry and define anisotropic
diffusion on manifolds. Section 3 overviews standard spectral
shape descriptors. In Section 4 we show the construction of
anisotropic heat kernels as a motivating example leading to more
general learnable anisotropic kernels discussed in Section 5. Sec-
tion 6 discussed the numerical computation of our descriptors. Sec-
tion 7 shows experimental results, and finally, Section 8 concludes
the paper.

2. Background

Manifold. We model a 3D shape as a two-dimensional compact
Riemannian manifold (surface) X , for simplicity assumed to have
no boundary. Let TxX denote the tangent plane at x, modeling the
manifold locally as a Euclidean space, T X denote the tangent bun-
dle, and let expx : TxX → X be the exponential map, mapping tan-
gent vectors onto the manifold. A Riemannian metric is an inner
product on the tangent plane 〈·, ·〉TxX : TxX ×TxX → R depending
smoothly on x. The Riemannian metric is represented as a 2×2 ma-

trix referred to as first fundamental form. Quantities which are ex-
pressible entirely in terms of Riemannian metric, and therefore in-
dependent on the way the manifold is embedded, are called intrin-
sic. Such quantities are invariant to isometric (metric-preserving)
deformations.

Curvature. Given an embedding of the manifold, the second fun-
damental form, represented as a 2× 2 matrix, describes how the
manifold locally differs from a plane. The eigenvalues κm,κM of
the second fundamental form are called the principal curvatures;
the corresponding eigenvectors vm,vM called the principal curva-
ture directions form an orthonormal basis on the tangent plane.

Differential operators on manifolds. Let f : X → R be a smooth
scalar field. We define the intrinsic gradient as

∇X f (x) =∇( f ◦ expx)(0),

where ∇ denotes the standard Euclidean gradient acting in the
tangent plane. The intrinsic gradient can be interpreted as the di-
rection (tangent vector on TxX) in which f changes the most at
point x; it is thus an operator acting on a scalar field and pro-
ducing a vector field. First-order Taylor expansion takes the form
( f ◦ expx)(v) ≈ f (x)+ 〈∇X f (x),v〉TxX , where the second term is
the directional derivative of f in the direction v ∈ TxX .

Given a smooth vector field v : X→ T X , the intrinsic divergence
is an operator acting on vector fields producing scalar fields, de-
fined as the negative adjoint of the intrinsic gradient operator,∫

X
〈∇X f (x),v(x)〉TxX dx =−

∫
X

f (x)divX v(x)dx, (1)

where the area element dx is induced by the Riemannian metric.

Combining the two, we can now define the Laplacian or
Laplace-Beltrami operator as

∆X f (x) =−divX (∇X f (x)). (2)

The Laplacian can be interpreted as the difference between the av-
erage of f on an infinitesimal sphere around x and f (x).

Spectral analysis on manifolds. The Laplacian is a positive-
semidefinite operator, admitting real eigen-decomposition

∆X φk = λkφk , (3)

with countable eigenvalues 0 = λ0 ≤ λ1 ≤ . . . . The corresponding
eigenfunctions φ0,φ1, . . . are orthonormal w.r.t. the standard inner
product 〈φi,φ j〉X =

∫
X φi(x)φ j(x)dx = δi j and form an orthonormal

basis for the functional space L2(X) = { f : X→R : 〈 f , f 〉X <∞}.
Quantities expressed in terms of the Laplacian eigenvalues and
eigenfunctions are commonly referred to as spectral.

The Laplacian eigenfunctions are a generalization of the classi-
cal Fourier basis to non-Euclidean domains: a function f ∈ L2(X)
can be represented as the Fourier series

f (x) = ∑
k≥0
〈 f ,φk〉X φk(x), (4)

where the eigenvalues {λk}k≥1 play the role of frequencies (the
first eigenvalue λ0 = 0 corresponds to a constant eigenvector or
‘DC component’).
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Heat diffusion on manifolds. The Laplacian operator is ubiqui-
tous in physics, appearing in differential equations describing dif-
fusion, wave, and quantum phenomena. We are interested in heat
propagation on manifolds, governed by the diffusion equation

ft(x, t) =−∆X f (x, t), (5)

which is a mathematical description of a physical principle known
as Newton’s cooling law, stating that the rate of change of the tem-
perature of an object (lhs) is proportional to the difference between
its own temperature and the temperature of the surrounding (rhs).
Here f (x, t) is the temperature at point x at time t.

Given some initial heat distribution f0(x) = f (x,0), the solution
of heat equation (5) at time t is obtained by applying the heat oper-
ator Ht = e−t∆X to f0,

f (x, t) = Ht f0(x) =
∫

X
f0(ξ)ht(x,ξ) dξ , (6)

where ht(x,ξ) is called the heat kernel, and the above equation can
be interpreted as a non-shift-invariant version of convolution. In
the Euclidean case, the heat kernel has the form ht(x− ξ) and the
solution is given as f = f0 ∗ht .

In the spectral domain, the heat kernel is expressed as

ht(x,ξ) = ∑
k≥0

e−tλk φk(x)φk(ξ) ; (7)

appealing again to the signal processing intuition, e−tλ acts as a
low-pass filter (larger t, corresponding to longer diffusion, lowers
the pass band). We will revisit this intuition in Section 3 in relation
to spectral descriptors.

Anisotropic diffusion. The heat diffusion equation (5) assumes
that the heat conduction properties of the manifold are constant at
every point. A more general diffusion equation has the form

ft(x, t) = divX (D(x)∇X f (x, t)), (8)

where D(x) is the thermal conductivity tensor (2× 2 matrix) ap-
plied to the gradient in the tangent plane. The thermal conductivity
tensor allows modeling heat flow that is position- and direction-
dependent; the diffusion equation in this case is called anisotropic;
the special case D(x) = c(x)I is called inhomogeneous, and D(x) =
cI is called homogeneous.

One of the most celebrated applications of such diffusion equa-
tions for edge-preserving image enhancement is the seminal work
of Perona and Malik [PM90], where the scalar diffusion coeffi-
cient was chosen to be inversely proportional to the edge strength,
to avoid diffusing across edges. † In a recent work, Andreux et
al. [ARAC14] considered anisotropic diffusion driven by the sur-
face curvature. Assuming that at each point x the tangent vectors are

† The authors erroneously referred to their equation as ‘non-linear
anisotropic diffusion’, where the term non-linear is meant in the sense of
non-shift-invariant (i.e., the diffusion cannot be expressed as a linear convo-
lution), and the diffusion is in fact isotropic but inhomogeneous. We stress
that the anisotropic Laplacian is still a linear operator.

expressed w.r.t. the orthogonal basis vm,vM of principal curvature
directions, they used

Dα(x) =
(

ψα(κM(x))
ψα(κm(x))

)
, (9)

with ψα(x) = 1
1+α|x| . Such a thermal conductivity tensor drives the

diffusion in the direction of the maximum curvature, where α con-
trols the degree of anisotropy (α = 0 corresponds to the classical
isotropic case), and the amount of diffusion depends on the extrin-
sic principal curvatures κm,κM . A simpler alternative is

Dα(x) =
(

α

1

)
, (10)

which is independent of the extrinsic curvature.

3. Isotropic spectral descriptors

Several recent works have exploited spectral properties of the
Laplace-Beltrami operator to construct local shape descriptors.
Many popular spectral shape descriptors are constructed taking the
diagonal values of heat-like operators. A generic Q-dimensional
descriptor of this kind has the form

f(x) = ∑
k≥0

τ (λk)φ
2
k(x)≈

K

∑
k=0

τ (λk)φ
2
k(x), (11)

where τ (λ) = (τ1(λ), . . . ,τQ(λ))
> is a bank of ‘transfer functions’

acting on the Laplacian eigenvalues. Such descriptors are dense
(computed at every point x), intrinsic by construction, and typically
can be efficiently computed using a small number K of Laplacian
eigenfunctions and eigenvalues.

Heat Kernel Signature (HKS) [SOG09, GBAL09] is a particular
case of (11) where τt(λ) = e−tλ are low-pass filters parametrized
over t. In other words, the HKS is the diagonal of the heat ker-
nel (7) evaluated at some time values t1, . . . , tQ. As a consequence,
it can be interpreted as autodiffusivity, i.e., the amount of heat re-
maining at point x after time t, which is equal (up to constant) to
the Gaussian curvature for small t [MP49]. A notable drawback of
HKS stemming from the use of low-pass filters is its poor spatial
localization.

Wave Kernel Signature (WKS). Aubry et al. [ASC11] proposed
to define a shape descriptor by looking at the behavior of a quantum
particle on the manifold. The particle is assumed to have a log-
normal initial energy distribution with mean energy level ν. The
WKS measures the probability of finding a particle of energy ν at
point x, and turns out as a particular instance of (11) with band-

pass filters of the form τν(λ) = exp
(
− (log ν−log λ)2

2σ2

)
. Compared to

HKS, WKS have better localization, but at the same time tend to
produce noisier matches.

Optimal Spectral Descriptor (OSD). Given the great effective-
ness of HKS and WKS and the fact that they differ only in the
choice of the filter τ , Litman and Bronstein [LB14] proposed to
consider a parametric family of filters expressed as

τq(λ) =
M

∑
m=1

aqmβqm(λ) (12)

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



D. Boscaini et al. / Anisotropic Diffusion Descriptors

Figure 1: Examples of anisotropic heat kernels computed on
meshes (top) and point clouds (bottom) for different values of α,
θ, and t. Leftmost image shows the isotropic case.

in the B-spline basis β1(λ), . . . ,βM(λ), where aqm (q =
1, . . . ,Q,m = 1, . . . ,M) are the parametrization coefficients. Plug-
ging (12) in (11), one can express the spectral descriptor as

fq(x) =
M

∑
m=1

aqm ∑
k≥0

βm(λk)φ
2
k(x) ,︸ ︷︷ ︸

gm(x)

(13)

where g(x) = (g1(x), . . . ,gM(x))> is called geometry vector and
depends only on the intrinsic geometry of the shape. Thus, (11) is
parametrized by the Q×M matrix A = (alm) and can be written in
matrix form as f(x) = Ag(x). The main idea of [LB14] is to learn
the optimal parameters A by minimizing a task-specific loss which
reduces to a Mahalanobis-type metric learning.

Windowed Fourier Transform (WFT). Boscaini et al. [B∗15]
used the generalization of the windowed Fourier transform
[SRV15] in order to capture the local context of a signal on the
manifold. Given a function f ∈ L2(X), its WFT is given by

(S f )x,l = 〈 f ,gx,l〉X = ∑
k≥0

ĝkφk(x)〈 f ,φkφl〉X , (14)

where

gξ,l(x) = (MlTξg)(x) = φl(x) ∑
k≥0

ĝkφk(ξ)φk(x) (15)

are the transform atoms obtained by displacing a window (given in
the spectral domain by the coefficients ĝk) to point ξ by means of
the translation operator Tξ, and modulating it by the lth frequency
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Figure 2: Anisotropic HKS descriptors computed on two different
poses of a human shape at the three points (marked in red, blue, and
green). Solid and dotted lines represent the shape on the left and
right, respectively. Each AHKS is computed with L =16 diffusion
angles.

by means of the modulation operator Ml . In [B∗15], local descrip-
tors were constructed by applying the WFT to geometry vectors;
the window function was learned to minimize a task-specific cost.

4. Anisotropic diffusion descriptors

One of the notable drawbacks of spectral descriptors discussed in
the previous section is that they ignore directional information.
Such information, however, may often carry important cues about
the local structure of the surface, which are important for the con-
struction of a good feature descriptor. Furthermore, intrinsic de-
scriptors are ambiguous under intrinsic symmetries: given an intrin-
sic symmetry η : X → X , an intrinsic descriptor would be invariant
to it, f◦η = f.

In this paper, we propose to construct a novel class of descriptors
based on anisotropic diffusion. Specifically, we consider diffusion
that is driven at each point by an angle θ w.r.t. the principal curva-
ture direction, arising from the thermal conductivity tensor

Dαθ(x) = RθDα(x)R>θ , (16)

where Dα(x) is as defined in equation (9) or (10). We refer
to the operator ∆α,θ f (x) = −divX (RθDα(x)R>θ ∇X f (x)) as the
anisotropic Laplacian, and denote by {φαθk,λαθk}k≥0 its eigen-
functions and eigenvalues.

Note that strictly speaking, our anisotropic Laplacian is not in-
trinsic: it depends on the principal curvature direction, and addi-
tionally, if formula (9) is used, on the principal curvature values
κm,κM . If formula (10) is used and we consider all the possible ro-
tations θ ∈ [0,2π), the Laplacian is intrinsic up to the choice of the
origin of θ. This ambiguity can be removed in several ways: by fix-
ing the origin using a reference direction (e.g., principal curvature
direction) as we do here; by taking the Fourier transform magnitude
w.r.t. the θ coordinate as done in [BK10,KBLB12]; or by taking the
maximum over all the angles as done in [MBBV15].

c© 2016 The Author(s)
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Figure 3: Illustration of the intrinsic symmetry ambiguity. Left:
two symmetric points on a shape (white) and the anisotropic heat
kernels for different θ computed at these points (similar colors en-
code similar angles). Right: the values of HKS (top) and anisotropic
HKS (bottom) computed at two symmetric points (solid and dotted
curves). Note that HKS is fully ambiguous (both curves coincide),
while anisotropic HKS allows to distinguish between symmetric
points (one curve is the reflection of the other).

4.1. Anisotropic HKS

As a motivating example, we first construct an anisotropic counter-
part of the HKS. The anisotropic heat kernel is given by

hαθt(x,ξ) = ∑
k≥0

e−tλαθk φαθk(x)φαθk(ξ); (17)

similarly to HKS, we define the anisotropic HKS by considering
the diagonal values hαθt(x,x) of the anisotropic heat kernel (17)
and sampling t and θ at values t1, . . . , tQ and θ1, . . . ,θL, respec-
tively (α is used as a parameter). Examples of anisotropic heat ker-
nels constructed on meshes and point clouds are shown in Figure 1;
anisotropic HKS descriptors are shown in Figure 2.

It is important to notice that since we use the principal curvature
direction as the origin θ= 0 of the angular coordinate, and since the
curvature is an extrinsic property, our descriptor is not ambiguous
under bilateral intrinsic symmetry. In fact, intrinsic symmetry η re-
flects the angular coordinate, fθ ◦η = f−θ (here fθ(x) = hαθt(x,x)).
This phenomenon is illustrated in Figure 3.

4.2. Learnable anisotropic kernels

Anisotropic HKS descriptors show that anisotropic spectral kernels
carry rich information about local shape structures. However, the
low-pass filters representing the heat kernels are not necessarily
best suited for some applications, and one could try to find the op-
timal application-specific kernel by learning. Even more generally,
we propose learning non-linear anisotropic descriptors using deep
neural networks with a tailored architecture. The network is built of
several layers combined one after another; it is called deep if many
layers are used. The output of the network is a vector containing the
descriptor at a point. A simple example of a rather shallow network
is shown in Figure 4.

... ... ...

...
...

ξ

ξ

ξ

ξ
f1,α1,θ1 (x)

fM,α1 ,θ1 (x)

f1,αA,θL (x)

fM,αA ,θL (x)

f out
1 (x)

f out
Q (x)

φαAθLk(x)

φα1θ1k(x)

λαAθLk

λα1θ1k

Filter bank

M filters

Spectral stage Dim. reduction stage

Figure 4: Example of a simple single-layer neural network archi-
tecture implementing the anisotropic descriptors proposed in this
paper. The inputs are spectral decompositions of anisotropic Lapla-
cians with anisotropy α at angle θ1, . . . ,θL w.r.t. the principal curva-
ture direction. In the spectral stage, a learnable spectral bank of M
filters (shared for all the L directions) is used to create ML directed
kernels. ξ denotes the ReLU nonlinearity. The dimensionality re-
duction stage then reduces the descriptor to Q output dimensions.
Deeper architectures may contain additional layers in both stages.

As the input to the network, we provide the eigenvalues and
eigenvectors of the anisotropic Laplacians; we use K eigenvec-
tors and L equally-spaced rotation angles θ1, . . . ,θL. Optionally, we
may also use multiple degrees of anisotropy, α1, . . . ,αA.

Anisotropic Spectral Filter (ASFM) is the first layer, applying
a bank of M filters to produce for each of the LA inputs a kernel of
the form

fi jm(x) =
K

∑
k=1

τm(λαiθ jk)φ
2
αiθ jk(x), (18)

for m = 1, . . . ,M, i = 1, . . . ,A, and j = 1 . . . ,L, where filter trans-
fer functions τm(λ) are parametrized as in formula (12) and are
learned. The filters are shared across all rotations and anisotropies,
resembling the shared connectivity of convolutional networks and
allowing to reduce the number of degrees of freedom in the model,
thus reducing the chance of overfitting. Particular choices of low-
pass and band-pass filters in the ASF layer would produce HKS and
WKS at the output, respectively.

Stack Channels (SC) is applied to input channels ordered by
angle and anisotropy (e.g., output of the ASF layer) and ‘flattens’
them to be used in the dimensionality reduction. From this layer
onward, the model loses any geometrical interpretation and acts as
a non-linear extraction of features from spectral information.

ReLU is a non-parametric layer which preserves only the non-
negative part of the input vector, ξ(t) = max(0, t). This helps in
learning deep models as it does not suffer from saturation problems
typical of sigmoid-type functions, which result in difficult gradient
back-propagation.

Fully connected (FCQ) layer, given a P-dimensional
input f in

1 (x), . . . , f in
P (x) produces a Q-dimensional output

f out
1 (x), . . . , f out

Q (x) as linear combination of the input chan-
nels with a set of learnable parameters w,

f out
q (x) =

P

∑
p=1

wqp f in
p (x), q = 1, . . . ,Q. (19)
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Softmax layer applies the softmax function to the P-dimensional
input,

σ( f in
p ) =

e f in
p

∑
P
p=1 e f in

p
, p = 1, . . . ,P. (20)

It is used together with the negative log-likelihood loss function in
classification tasks, as described in the following section.

The architecture of our ADD networks can be divided into two
stages: spectral filtering and dimensionality reduction. The former
applies one or more ASF layers to produce a non-linear spectral
filtering (as opposed to previous approaches where this stage was
kept purely linear). The latter stage reduces the dimensionality to
obtain compact descriptors which require little storage and that are
fast to compute.

5. Applications

The neural network architecture described in the previous section
allows defining descriptors at each point x of a shape, given by a
parametric map fΘ(x), where Θ denotes the learnable parameters
of the network. The choice of the parameters is done by an opti-
mization process, minimizing a task-specific cost. Here, we con-
sider two tasks: design of invariant descriptors and computation of
shape correspondence.

Invariant descriptors. Given a set of shapes, our goal is to com-
pute a local feature descriptor that is insensitive to the variability of
shapes across the collection. We assume to be provided with exam-
ples of points x, x+ from different shapes that are known to be sim-
ilar (referred to as positives and denoted by T +), as well as pairs
of points x, x− known to be dissimilar (negatives T −). The most
straightforward way to obtain such training sets is from known cor-
respondence between some of the shapes in the collection. Given T
shapes with n known corresponding points, the number of positive
and negative pairs is O(nT 2) and O(n2T 2), respectively. Therefore,
in practice just a few shapes with known correspondence are suffi-
cient to produce training sets containing millions of pairs.

We construct a descriptor that is as similar as possible on the pos-
itive pairs and as dissimilar as possible on the negatives. For this
purpose, we use a siamese network configuration [B∗94, HCL06,
S∗14], composed of two identical copies of the same network
model sharing the same parametrization and fed by pairs of know-
ingly similar or dissimilar samples. We minimize the siamese loss

`siam(Θ) = (1− γ) ∑
(x,x+)∈T +

‖fΘ(x)− fΘ(x
+)‖2 (21)

+ γ ∑
(x,x−)∈T −

(µ−‖fΘ(x)− fΘ(x
−)‖)2

+,

where γ ∈ [0,1] is a parameter trading off between the positive and
negative losses, µ is a margin, and (t)+ = max{0, t}.

Shape correspondence. Finding the correspondence in a collec-
tion of shapes can be posed as a labelling problem, where one tries
to label each vertex of a given query shape X with the index of a
corresponding point on some common reference shape Y [R∗14].
Let us denote by y∗(x) the ground-truth correspondence of x on the

αi j

βi j θ

i

j

k

h

Rθûm

RθûM

ûm

ûM

n̂

êk j

êki

êhi

êh j

Figure 5: Discretization of the anisotropic Laplace-Beltrami opera-
tors on a triangular mesh. The orthogonal basis vectors ûM , ûm, as
well as their rotated counterparts (in red), lie on the tangent plane
of the respective triangle.

reference shape. We assume to be provided with examples of points
from shapes across the collection and their ground-truth correspon-
dence, T = {(x,y∗(x))}.

For a point x on a query shape, we compute a descriptor fΘ(x)
encoding the probability distribution on Y , which acts as a ‘soft cor-
respondence’. The optimal parameters of the descriptor are found
by minimizing the multinomial regression loss

`reg(Θ) =− ∑
(x,y∗(x))∈T

〈δy∗(x), log f Θ(x)〉Y , (22)

where δy∗(x) is a delta-function on Y at point y∗(x).

6. Discretization

Meshes. In the discrete setting, the manifold X is sampled at n
points V = {x1, . . . ,xn}. The points are connected by edges E
and faces F , forming a manifold triangular mesh (V,E,F). To
each triangle i jk ∈ F , we attach an orthonormal reference frame
Ui jk = (ûM , ûm, n̂), where n̂ is the unit normal vector to the tri-
angle and ûM , ûm ∈ R3 are the directions of principal curvature,
computed using the method of [CSM03]. The thermal conductivity
tensor for the triangle i jk operating on tangent vectors is expressed
w.r.t. Ui jk as a 3× 3 matrix D =

(Dα

1

)
, with the 2× 2 block Dα

set according to equation (9).

Now let êab ∈ R3 denote the oriented edge pointing from vertex
a to vertex b, normalized to unit length, and consider the triangle
i jk as in Figure 5. We define the H-weighted inner product between
edges êk j and êki as

〈êk j, êki〉H = (U>i jk êk j)
>D(U>i jk êki) = ê>k j Ui jkDU>i jk︸ ︷︷ ︸

H

êki , (23)

where the shear matrix H encodes the anisotropic scaling, oper-
ated via D, up to an orthogonal basis change. Note that in the case
D = I we also have H = I, such that the H-weighted inner product
simplifies to the standard inner product 〈êk j, êki〉H = cosαi j.

The discretization of the anisotropic Laplacian takes the form
of an n× n sparse matrix L = −S−1W. The mass matrix S is a
diagonal matrix of area elements si =

1
3 ∑ jk:i jk∈F Ai jk, where Ai jk
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Figure 6: Qualitative evaluation of our mADD3 descriptors on meshes. Shown is the normalized Euclidean distance between the descriptor
at a reference point on the shoulder (white point) and the descriptors computed at the rest of the points for different transformations. Cold
and hot colors represent small and large distances, respectively; distances are saturated at the median value. Ideal descriptors would produce
a distance map with a sharp minimum at the corresponding point and no spurious local minima at other locations.

denotes the area of triangle i jk. The stiffness matrix W is composed
of weights

wi j =


1
2

(
〈êk j ,êki〉H

sin αi j
+
〈êh j ,êhi〉H

sin βi j

)
i j ∈ E;

−∑k 6=i wik i = j;
0 else ,

(24)

where the notation is according to Figure 5. A complete derivation
of (24) is omitted due to space reasons; we refer to [ARAC14] for
a way to derive a similar expression using the standard FEM.

The isotropic Laplace-Beltrami operator is obtained by set-
ting D = I, in which case we have 〈êk j ,êki〉H

sin αi j
=

cos αi j
sin αi j

= cotαi j,
thus reducing equation (24) to the classical cotangent formula
[Mac49, Duf59, PP93, MDSB03].

Finally, note that the discretization given above only encodes
anisotropy along the directions of principal curvature ûM , ûm. In
order to allow arbitrary directions used in our anisotropic descrip-
tors, it is sufficient to rotate the basis vectors Ui jk on each triangle
around the respective normal n̂ by the angle θ, equal for all trian-
gles (see Figure 5, red). Denoting by Rθ the corresponding 3× 3
rotation matrix, this is equivalent to modifying the H-weighted in-
ner product with the directed shear matrix Hθ = RθHR>θ . The re-
sulting weights wi j in equation (24) are thus obtained by using the
inner products 〈êk j, êki〉Hθ

= ê>k jHθêki.

Point clouds. In order to construct the anisotropic Laplace-
Beltrami operator on point clouds, we follow a procedure similar to
[CRT04]. For each point x in the cloud, we define its tangent space
by estimating the normal vector at x via total least squares [MN03]
using points within an ε-ball Bε(x). The points in Bε(x) are then
projected onto the tangent plane, where a local mesh construction
is carried out by Delaunay triangulation. From the triangulation,
only the triangle fan containing x is retained and projected back
onto the original coordinates in R3. Finally, the edges in this local
patch receive weights according to equation (24). The directions of
principal curvature are computed as eigenvectors of the covariance
matrix of neighboring normals, which provides an approximation
to the shape operator [BC94].

7. Results

In this section, we show how our anisotropic diffusion descriptors
(ADD) framework can be used to learn task-specific features.

Datasets. We used FAUST [BRLB14] and SCAPE [A∗05]
datasets, containing scanned human shapes in different poses. For
all the datasets, vertex-wise correspondence between shapes was
given. The meshes in SCAPE were resampled to 12.5K vertices;
FAUST shapes contained 6.9K points. All shapes were scaled to
unit geodesic diameter. Point clouds were produced by subsam-
pling the meshes regularly to 4K points using the farthest point
method, in order to break the local connectivity structure of the
mesh.

Settings. Isotropic Laplacians were computed using the cotangent
formula; anisotropic Laplacians were computed according to (24).
We used K = 300 and 900 eigenfunctions for meshes and point
clouds, respectively. L = 16 angles were used for anisotropic ker-
nels. For single anisotropy case, we used α = 50; for multiple
anisotropies case, we used α = 0, 25, and 50. In the shape de-
scriptors experiment, we used the following three architectures, in
increasing complexity order: single layer (SC + FC16 referred to
as ADD1); 2-layer (ASF256 + ReLU + SC + FC16 referred to
as ADD2), and 4-layer (ASF256 + ReLU + ASF256 + ReLU +
SC + FC512 + ReLU + FC16, referred to as ADD3). Architec-
tures with multiple anisotropies are denoted as mADD1–mADD3.
For the correspondence experiment, we used a 5-layer architecture
with multiple anisotropies, ASF512 + ReLU + ASF512 + ReLU +
SC + FC2048 + ReLU + FC2048 + ReLU + FC6890 + Softmax
(mADD4).

Implementation. Neural networks were implemented in
Theano [B∗10]. In all experiments, the ADADELTA [Zei12]
stochastic optimization algorithm was used with initial learning
rate of 1.0 and ρ = 0.95. Convergence was usually reached in
≈ 50 training epochs. For the shape descriptors experiments,
we used mini-batches of 100 pairs of points, whereas for the
correspondence task the batch size was set to the number of
vertices in the shapes. Code to reproduce all the experiments in this
paper, and the full framework will be released upon publication.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



D. Boscaini et al. / Anisotropic Diffusion Descriptors

CMC

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

number of matches

hi
tr

at
e

ROC

0.001 0.01 0.1 1
0

0.2

0.4

0.6

0.8

1

false positive rate

tr
ue

po
si

tiv
e

ra
te

Correspondence quality

0 0.1 0.2 0.3
0

0.2

0.4

0.6

0.8

1

geodesic radius

%
co

rr
ec

tc
or

re
sp

on
de

nc
es

HKS
WKS
OSD
SN
WFT
ADD3
mADD3

CMC

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

number of matches

hi
tr

at
e

ROC

0.001 0.01 0.1 1
0

0.2

0.4

0.6

0.8

1

false positive rate

tr
ue

po
si

tiv
e

ra
te

Correspondence quality

0 0.1 0.2 0.3
0

0.2

0.4

0.6

0.8

1

geodesic radius

%
co

rr
ec

tc
or

re
sp

on
de

nc
es

HKS
WKS
OSD
SN
WFT
ADD3
mADD3

Figure 7: Performance of different descriptors measured using the CMC (left), ROC (center) and Princeton protocol for nearest-neighbor
correspondence (right); higher curves correspond to better performance. Shown are symmetric (solid) and asymmetric (dashed) settings.
Learnable descriptors were trained and tested on disjoint sets of the FAUST (top) and SCAPE (bottom) datasets, respectively. All descriptors
in these plots are 16-dimensional.

Complexity. The pre-computation step includes the construction
of L Laplacians, one per diffusion direction. The computation of
each Laplacian (n×n sparse matrix, where n is the number of ver-
tices) and its eigendecomposition requires O(n2) operations. The
computational complexity of the descriptor (forward propagation
in the neural network at each vertex) is O(cn), where c is deter-
mined by the complexity of the network (number of layers, etc.)
independent of n.

Timing. The following are typical timings for FAUST shapes with
n = 6.9K vertices. Laplacian computation and eigendecomposition
took 1 sec and 4 seconds per angle respectively, on a i7 worksta-
tion with 64GB of RAM. For the three architectures ADD1–ADD3,
training efficiency were 43, 29, and 17 minibatches of size 100 per
second, respectively. The computation of the descriptor at all the
points (forward propagation) took approximately 0.5 sec per shape
using a NVIDIA Titan Black GPU.

Evaluation. Quantitative evaluation was done using three criteria:
cumulative match characteristic (CMC), receiver operator char-
acteristic (ROC), and the Princeton protocol [KLF11]. The CMC
evaluates the probability of a correct correspondence among the k
nearest neighbors in the descriptor space. The ROC measures the
percentage of positives and negatives pairs falling below various
thresholds of their distance in the descriptor space (true positive
and negative rates, respectively). The Princeton protocol counts

the percentage of nearest-neighbor matches that are at most r-
geodesically distant from the ground-truth correspondence. Fur-
thermore, all the above criteria were evaluated in two settings:
symmetric (considering symmetric points as correct matches), and
asymmetric (considering symmetric points as incorrect matches).

7.1. Shape descriptors

In the first experiment, we computed dense intrinsic pose- and
subject-invariant anisotropic descriptors for human shapes using
the proposed approach. The experimental setup followed verbatim
[LB14,MBBV15,B∗15]. For reference, we show the results of HKS
[SOG09], WKS [ASC11], OSD [LB14], ShapeNet [MBBV15] and
WFT [B∗15] using the code and settings provided by the respec-
tive authors. All the descriptors were Q = 16-dimensional as in
[LB14, MBBV15, B∗15].

Training was done using the loss (21) with positive and negative
sets of vertex pairs generated on the fly from known correspon-
dence between training shapes. Symmetric points were considered
as negatives. On the FAUST dataset, we used subjects 1–8 for train-
ing, and subject 9–10 for testing. On SCAPE, we used shapes 10–
70 for training, and the rest for testing.

Figure 6 shows a qualitative evaluation of the anisotropic spec-
tral descriptors constructed with mADD3 architecture on meshes
by visualizing the distance between the descriptor at a selected
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point and the rest of the points on the same shape as well as its
transformations. Our descriptor manifests good localization and
specificity, and is also not ambiguous to symmetry.

Figure 7 shows the evaluation of our descriptors on the FAUST
and SCAPE datasets. Our approach outperforms other descriptors,
including the learnable ShapeNet and WFT. Further, note that when
switching from the harder asymmetric evaluation setting to the
easier symmetric one (dashed and solid curves, respectively), our
descriptor manifests significantly smaller drop compared to other
methods. Figure 8 compares the performance of different architec-
tures, showing that the multiple anisotropy deep model (mADD3)
achieves the best performance.

7.2. Shape correspondence

In the second experiment, we reproduced the settings of Rodolà
et al. [R∗14] on the FAUST dataset, replacing their random forest
with our ADD neural network model. Zeroth FAUST shape con-
taining n = 6890 vertices was used as reference; for each point on
the query shape, the output of mADD4 network representing the
soft correspondence as a 6890-dimensional vector was converted
into a point correspondence by taking the maximum. Training was
done by minimizing the loss (22); training and test sets were as in
the previous experiment.

Figures 9–10 (left) quantify the quality of the correspondence
learned with our method on FAUST meshes and point clouds. For
comparison, we show the performance of blended intrinsic maps
(BIM) [KLF11], functional maps (FM) [O∗12], and random forest
(RF) [R∗14]. Note that blended maps use orientation information
and thus can distinguish bilaterally symmetric points (therefore, the
dashed and solid black curves in Figure 9 coincide). On the other
hand, random forests in [R∗14] were learned on WKS input, which
is ambiguous to symmetry; this explains the significant drop when
passing from the symmetric to the asymmetric evaluation setting.

Figures 9–10 (right) depict the quality of the obtained correspon-
dence. To visualize the colors transferred from the reference shape
to the query shapes, we use the raw point-wise correspondence pro-
duced by our method as an input to the functional maps algorithm.
8. Conclusions

We presented a novel class of shape feature descriptors based on
anisotropic diffusion. The main properties of our descriptors are
that they are learnable to carry out a specific task, allow to cap-
ture directional structures, are not ambiguous to symmetries, and
can be efficiently computed on different shape representations such
as meshes or point clouds. We showed that our descriptors can be
successfully used to address problems such as intrinsic shape cor-
respondence, achieving significantly better performance than pre-
vious methods, including the most recent intrinsic convolutional
neural network models. In a broad sense, our approach follows the
recent line of works on formulating intrinsic versions of successful
machine learning schemes used in image analysis and computer vi-
sion. We hope that our work brings more attention to deep learning
in geometric problems.

Limitations. Note that in this paper we have only used our deep
learning architecture in the supervised setting. The main limitation

of supervised learning stems from the need to provide a sufficiently
large and rich training set, which in our case requires a set of shapes
with known correspondence. In some scenarios, obtaining such cor-
respondences may be difficult, especially if the shapes have no clear
ground-truth correspondence. In practice, however, only a modest
number of labelled shapes are actually required, as the number of
positive and negative pairs grows quadratically with the training set
size.
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