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Abstract

In this paper, we introduce the concept of proximity pri-
ors into semantic segmentation in order to discourage the
presence of certain object classes (such as ’sheep’ and
’wolf’) ’in the vicinity’ of each other. ’Vicinity’ encom-
passes spatial distance as well as specific spatial directions
simultaneously, e.g. ’plates’ are found directly above ’ta-
bles’, but do not fly over them. In this sense, our approach
generalizes the co-occurrence prior by Ladicky et al. [3],
which does not incorporate spatial information at all, and
the non-metric label distance prior by Strekalovskiy et
al. [11], which only takes directly neighboring pixels into
account and often hallucinates ghost regions. We formu-
late a convex energy minimization problem with an exact
relaxation, which can be globally optimized. Results on
the MSRC benchmark show that the proposed approach re-
duces the number of mislabeled objects compared to previ-
ous co-occurrence approaches.

1. Introduction
Image segmentation is an essential component in im-

age content analysis and one of the most investigated prob-
lems in computer vision. The goal is to partition the im-
age plane into ’meaningful’ non-overlapping regions. Espe-
cially for complex real-world images, however, the defini-
tion of meaningful depends on the application or the user’s
intention. Typically, the desired segmentation consists of
one region for each separate object or structure of the scene.
Due to strongly varying texture and color models within
and between different object classes, the segmentation task
is very complex and requires additional prior information.
For example animals such as horses, cows and sheep have
similar color models and similarly textured fur. Since many
segmentation algorithms only consider local color or texture
information to assign each pixel to an object class, they of-
ten generate incorrect segmentations, where e.g. part of the
sheep is assigned the label ’cow’ as shown in Figure 1b).
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a) Original images

b) Global co-occurrence prior by Ladicky et al. [3]

c) Local non-metric prior by Strekalovskiy et al. [11]

d) Proposed proximity priors

Figure 1: Proximity priors discourage the simultaneous
occurrence of label pairs within specific directions and dis-
tances. Hence, they extend both global [3] co-occurrence
priors, which altogether disregard spatial information, and
local [11] co-occurrence priors, which only consider di-
rectly adjacent pixels as close and often create ghost regions
(see Figure 4).

For humans the task of recognizing objects strongly re-
lies on their context and inter-relations with other objects.
Therefore, we introduce high-level proximity priors. The
key idea is to encourage or discourage the simultaneous ap-
pearance of objects within a specified range (distance and
direction). Respective penalties for the proximity of various
label pairs (encourage ’vases’ directly above the ’table’ but
not further above or below the ’table’) can be learned sta-
tistically from a set of segmented images. Figure 1 shows
three examples where previous co-occurrence priors fail but



proximity priors correctly propagate co-occurrence infor-
mation yielding the correct segmentation result.

The specific challenge we face in this paper is to find an
efficient and convex optimization approach for multi-label
segmentation with proximity priors. Improved results based
on proximity priors in comparison to related co-occurrence
based approaches are shown in Figures 1, 4, 5.

1.1. Related Work

There have been several previous approaches on the inte-
gration of co-occurrence priors into semantic segmentation.
The most closely related approaches are the global co-
occurrence prior by Ladicky et al. [3] and the non-metric
distance prior by Strekalovskiy et al. [11], which can be un-
derstood as a local co-occurrence prior.

Ladicky et al. [3] globally penalize label sets which oc-
cur together in the same image. Yet, this prior is entirely in-
different about where in the image respective labels emerge.
Moreover, the penalty proposed in [3] is independent of the
size of the labeled regions. As a consequence, if more pix-
els vote for a certain label then they may easily overrule
penalties imposed by the co-occurrence term – leading to
the segmentations in Figure 1b) with large adjacent regions
despite large co-occurrence cost for ’sheep’ and ’cow’.

In contrast, Strekalovskiy et al. [11] introduced a local
co-occurrence prior, which operates only on directly neigh-
boring pixels. The authors formulate a variational approach,
which allows for the introduction of non-metric label dis-
tances in order to handle learned arbitrary co-occurrence
penalties, which often violate the triangle inequality. While
labels ’wolf’ and ’grass’, for example, are common within
an image and labels ’sheep’ and ’grass’ as well, sheep are
rarely found next to wolves. The drawback of this approach
is that the algorithm can avoid costly label transitions sim-
ply by introducing infinitesimal ’ghost labels’ – see Fig-
ure 4. Furthermore, due to the strong locality the prior al-
lows for regions to appear close to each other despite high
co-occurrence penalties (see the labels ’sheep’ and ’cow’ in
Figure 1c).

Considering more complex spatial label relationships
will avoid ghost labels due to stronger penalization and will
allow to propagate the co-occurrence penalty to more dis-
tant pixels of the second sheep. Therefore, we generalize
these priors to a prior for arbitrary relative spatial relations.
Figure 1d) shows examples where proximity priors success-
fully propagated the co-occurrence penalty to neighboring
objects.

In the context of learning, relative spatial label distances
have been successfully applied in [1, 2, 9].

1.2. Contributions

In this paper, we propose proximity priors for variational
semantic segmentation and recognition. Specifically, we

make the following contributions:

• We integrate learned spatial relationships between differ-
ent objects into a variational multi-label segmentation ap-
proach.

• We generalize global co-occurrence priors [3] and local
co-occurrence priors [11] to co-occurrence priors with ar-
bitrary spatial relationships.

• We give a convex relaxation which can be solved with fast
primal-dual algorithms [8] in parallel on graphics hard-
ware (GPUs).

• We avoid the emergence of artificial ’ghost labels’.

• We do not rely on prior superpixel partitions but directly
work on the pixel level.

2. Variational Multi-Label Segmentation

Let I : Ω → Rd denote the input image defined
on the image domain Ω ⊂ R2. The general multi-label
image segmentation problem with n ≥ 1 labels con-
sists of the partitioning of the image domain Ω into n re-
gions {Ω1, . . . ,Ωn}. This task can be solved by com-
puting binary labeling functions ui : Ω → {0, 1} in the
space of functions of bounded variation (BV ) such that
Ωi =

{
x
∣∣ ui (x) = 1

}
. We compute a segmentation of the

image by minimizing the following energy [13] (see [6] for
a detailed survey and code)

E(Ω1, ..,Ωn) =
λ

2

n∑
i=1

Perg (Ωi) +

n∑
i=1

∫
Ωi

fi (x) dx. (1)

For comparability, we use the same appearance model fi as
in [3, 11]. Perg (Ωi) denotes the perimeter of each set Ωi,
which is minimized in order to favor segments of shorter
boundary. These boundaries are measured with either an
edge-dependent or an Euclidean metric defined by the non-
negative function g : Ω→ R+. For example,

g (x) = exp

(
−|∇I (x) |2

2σ2

)
, σ2 =

1

|Ω|

∫
Ω

|∇I (x) |2dx

favors the coincidence of object and image edges.
To rewrite the perimeter of the regions in terms of the

indicator functions we make use of the total variation:

Perg(Ωi) =

∫
Ω

g(x)|Dui| = sup
ξi:|ξi(x)|≤g(x)

−
∫

Ω

ui div ξi dx.

Since the binary functions ui are not differentiable
Dui denotes their distributional derivative. Furthermore,
ξi ∈ C1

c

(
Ω;R2

)
are the dual variables and C1

c denotes the
space of smooth functions with compact support. We can



a) Original Image b) - d) Indicator function extended by different sets S.

Figure 2: Impact of S. Different sets S in (3) convey different proximity priors. b) Symmetric sets S only consider object
distances, but are indifferent to directional relations. c) If S is chosen as a vertical line centered at the bottom, the indicator
function of the region ’sign’ is extended to the bottom of the object, e.g. penalizing ’book’ appearing closely below ’sign’.
d) Horizontal lines penalize labels to the left and right.

rewrite the energy in (1) in terms of the indicator functions
ui : Ω→ {0, 1} [6, 13]:

E(u1, .., un) = sup
ξ∈K

n∑
i=1

∫
Ω

(fi − div ξi)ui dx, (2)

where K =

{
ξ ∈ C1

c

(
Ω;R2×n) ∣∣∣ |ξi(x)| ≤ λg(x)

2

}
.

2.1. The Novel Proximity Prior

To introduce the proximity prior into the optimization
problem in (2), we define the proximity matrix A ∈ Rn×n≥0 .
Each entry A(i, j), i 6= j indicates the penalty for the
occurrence of label j in the proximity of label i, which we
denote by i ∼ j. For i = j we set A(i, i) := 0. The penal-
ties can be computed from co-occurrence probabilities of
training segmentations, e.g. by A(i, j) = − logP (i ∼ j).
An example for a learned proximity matrix A is illustrated
in Figure 3.

To compute the proximity of two labels, we first intro-
duce the notion of an extended indicator function ui denoted
by di : Ω→ {0, 1}, which ’enlarges’ the indicator function

Figure 3: Proximity matrix. Learned penalty matrix for
the MSRC benchmark (objects are color coded correspond-
ing to benchmark convention in first row and column). The
lighter the color the more likely is the occurrence of the cor-
responding labels within the relative spatial context, and the
lower is the corresponding penalty.

in a specific direction and distance (see Figure 2):

di (x) = sup
y∈Ω

ui(y) + s(x− y) = sup
z∈S

ui(x+ z), (3)

where s(x) =

{
0, x ∈ S,
−∞, otherwise.

The set S ⊆ Ω determines the type of geometric spatial
relationship we want to penalize, i.e. distance and direction,
for example ’less than 20 pixels above’. Symmetric sets of
specific sizes consider the proximity of two labels without
preference of a specific direction. If S is for example a line
we can penalize the proximity of specific labels in specific
directions, e.g. the occurrence of a book below a sign (com-
pare Figure 2c). The larger S the more pixels are considered
adjacent to x. Runtime can be minimized here by choosing
sparse sets S.

To detect if two regions i and j are close to each other,
we compute the overlap of the extended indicator function
di and the indicator function uj . For each two regions i
and j we can now penalize their proximity by means of the
following energy term:

Eprox(u) =
∑

1≤i<j≤n

A(i, j)

∫
Ω

di (x)uj (x) dx. (4)

2.2. A Convex Relaxation

In the following we will propose a convex relaxation of
the segmentation problem (2) combined with the proposed
proximity prior in (4). To obtain a convex optimization
problem, we require convex functions over convex domains.

Relaxation of the Binary Functions ui The general
multi-labeling problem is not convex due to the binary re-
gion indicator functions ui : Ω → {0, 1}. To obtain a con-
vex problem where each pixel is assigned to exactly one
label, optimization is carried out over the convex set

U =

{
u ∈ BV (Ω; [0, 1]n)

∣∣∣ n∑
j=1

uj (x) = 1 ∀ x ∈ Ω

}
.



min
u∈U
d∈D
α∈A

max
ξ∈K
β∈B
q∈Q

n∑
i=1

{∫
Ω

(fi − div ξi)ui dx+
∑
z∈S

∫
Ω

βiz (x)
(
di (x)− ui (x+ z)

)
dx (5)

+

n∑
j=i+1

∫
Ω

q1
ij(1− di) + q2

ijdi + q3
ij(1− uj) + q4

ijuj

+ α1
ij

(
q1
ij + q3

ij

)
+ α2

ij

(
q1
ij + q4

ij

)
+ α3

ij

(
q2
ij + q3

ij

)
+ α4

ij

(
q2
ij + q4

ij −A(i, j)
)
dx
}
.

Relaxation of the Dilation Constraints The dilation
constraints in (3) are relaxed to

di (x) ≥ ui (x+ z) ∀ x ∈ Ω, z ∈ S. (6)

By simultaneously minimizing over the functions di we can
assure that at the optimum di fulfills the constraints in (3)
exactly. The inequality (6) can easily be included in the
segmentation energy by introducing a set of Lagrange mul-
tipliers βiz and adding the following energy term:

min
d∈D

max
β∈B

n∑
i=1

∑
z∈S

∫
Ω

βiz (x)
(
di (x)− ui (x+ z)

)
dx, (7)

B =
{
βiz
∣∣ βiz : Ω→ [−∞, 0] ∀ z ∈ S, i = 1, .., n

}
,

D = BV (Ω; [0, 1]n) .

Relaxation of the Product in (4) The product of the di-
lation di and the indicator function uj is not convex. A
convex, tight relaxation of such energy terms was given by
Strekalovskiy et al. [10]. To this end, we introduce addi-
tional dual variables qij and Lagrange multipliers αij :

Q =
{
qij
∣∣ qij : Ω→ R4, 1 ≤ i < j ≤ n

}
, (8)

A =
{
αij

∣∣ αij : Ω→ [−∞, 0]
4
, 1 ≤ i < j ≤ n

}
.

Resulting Optimization Problem After carrying out
these relaxations we finally obtain the convex energy mini-
mization problem in (5).
The projections onto the respective convex sets of ξ, d, β
and α are done by simple clipping while that of the primal
variable u is a projection onto the simplex in Rn [5].

3. Implementation
In order to find the globally optimal solution to this re-

laxed convex optimization problem, we employ the primal-
dual algorithm published in [8]. Optimization is done by
alternating a gradient descent with respect to the functions
u, d and α and a gradient ascent for the dual variables ξ, β
and q interlaced with an over-relaxation step on the primal
variables. The step sizes are chosen optimally according
to [7]. We stopped the iterations when the average update

of the indicator function u(x) per pixel was less than 10−5.
By allowing the primal variables ui to take on intermediate
values between 0 and 1 we may end up with non-binary so-
lutions. In order to obtain a binary solution to the original
optimization problem, we assign each pixel x to the label L
with maximum value after optimizing the relaxed problem:

L (x) = arg max
i

{ui (x)} , x ∈ Ω. (9)

We observed that the computed relaxed solutions u are bi-
nary almost everywhere.

Due to the inherent parallel structure of the optimiza-
tion algorithm [8] the approach can be easily parallelized
and implemented on graphics hardware. We used a paral-
lel CUDA implementation on an NVIDIA GTX 680 GPU.
To reduce the runtime of the approach we randomly sub-
sampled only very few entries in S and neglected the others
yielding equivalent results in around 180 seconds on aver-
age (note that we do not work on super pixels). We can
conclude that already very sparse sets S containing around
ten entries yield results very similar to the full set S .

4. Experiments and Results
We have defined proximity priors within a variational

multi-label approach in order to integrate spatial relations
between object labels. One of the major advantages of the
proposed algorithm is that we can utilize sets S of different
sizes and shapes which allow us to take into account larger
neighborhoods of pixels in specific directions and to prevent
’ghost labels’. In the following we will show results on the
MSRC database and compare our segmentations to state-of-
the-art approaches for semantic labeling and co-occurrence
priors.

4.1. Preventing Ghost Labels

’Ghost labels’ denote thin artificial regions which are
easily introduced if label distances are learned from train-
ing data, see for example [11].
If the distance function does not obey the triangle inequal-
ity ’ghost labels’ can appear. They reduce costs of direct
label transitions by taking a ’detour’ over a third, unrelated
but less expensive label. Examples are given in Figure 4b)
with a closeup in Figure 4c). The segmentation result ob-
tained by [11] e.g. contains very thin ’boat’ regions at the
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Gould et al. [1] CRF + rel. loc. 76.5 64.38 72 95 81 66 71 93 74 70 70 69 72 68 55 23 82 40 77 60 50 50 14
Ladicky et al. [3] co-oc. 80 67.76 77 96 80 69 82 98 69 82 79 75 75 81 85 35 76 17 89 25 61 50 22
Lucchi et al. [4], DPG local 75 68.62 54 88 83 79 82 95 87 70 85 81 97 69 72 27 88 46 60 74 27 49 28
Lucchi et al. [4], DPG loc.+glob. 80 74.62 65 87 87 84 75 93 94 78 83 72 93 86 70 50 93 80 86 78 28 58 27
Vezhnevets et al. [12], weak sup. 67 66.52 12 83 70 81 93 84 91 55 97 87 92 82 69 51 61 59 66 53 44 9 58
Vezhnevets et al. [12], full sup. 72 71.71 21 93 77 86 93 96 92 61 79 89 89 89 68 50 74 54 76 68 47 49 55
Strekalovskiy et al. [11] 84.85 77.52 70 97 92 89 85 96 81 83 90 82 92 83 66 45 92 63 86 80 51 73 32
Proposed Proxmity Priors 84.97 78.19 69 97 92 87 87 97 87 82 91 83 94 84 62 44 93 67 86 83 57 74 26
Ladicky et al. [3] co-oc. + hier. 87 76.76 82 95 88 73 88 100 83 92 88 87 88 96 96 27 85 37 93 49 80 65 20

Table 1: MSRC benchmark scores. We compare the segmentation accuracy to state-of-the-art segmentation algorithms with
co-occurrence priors on the MSRC benchmark. The approach by Ladicky et al. in the last row is added for completeness but
is not comparable since it includes hierarchical label priors and uses potentials of the highest order |Ω| instead of order two
as in our approach.

edge of the ’grass’ label, because the transition between the
labels ’water’ and ’boat’ and ’boat’ and ’grass’ is in sum
less costly than the direct transition between ’water’ and
’grass’.

a) Original images

b) Local non-metric prior by Strekalovskiy et al. [11].

c) Zoom of b) showing ghost labels

d) Proposed proximity priors

Figure 4: Proximity priors prevent ghost labels. If the
transition of two labels is cheaper via a third label artificial
labels will be introduced as shown in b) and as closeup in c).
The proposed proximity priors consider regions with more
than one-pixel distance still as adjacent and thus avoid ghost
labels.

Proximity priors prevent such ghost labels by considering
more than a single pixel wide margin as close to the object,
see for example Figure 4d).

4.2. MSRC Segmentation Benchmark

To evaluate the proposed segmentation algorithm we
apply it to the task of object segmentation and recognition
on the MSRC benchmark. This benchmark comprises
591 images which contain 21 different labels such as
’cow’, ’book’, ’building’ or ’grass’. For the benchmark
experiments we chose a symmetric set S of size 9 × 9 and
set λ = 0.3.
The penalty matrix A defined in Section 2.1 is learned
from training data based on the relative frequencies of label
occurrences within the local range defined by S. For a
symmetric set S of size 9× 9 we obtain the penalty matrix
in Figure 3.

To evaluate the segmentation accuracy of the proposed
method, in Table 1 we compare the benchmark scores of
our method to the approaches by Gould et al. [1] with rel-
ative location priors, Ladicky et al. [3] with co-occurrence
prior (with and without hierarchical prior), Lucchi et al. [4]
for the data pairwise global and local models, Vezhn-
evets et al. [12] for the weakly and fully supervised ap-
proach and to Strekalovskiy et al. [11] with the non-metric
distance functions for multi-label problems. The scores
denote the average accuracy on the benchmark given as

True Positives · 100
True Positives + False Negatives per pixel and per class. The results
indicate that we outperform the other co-occurrence based
methods in average class and pixel accuracy.
Note that the high score of the approach by Strekalovskiy et
al. [11] does not reflect the ghost label problem since these
regions contain only very few pixels. However, the intro-
duction of entirely unrelated objects, albeit small ones, is



a) Original images

b) Global co-occurrence prior by Ladicky et al. [3].

c) Local non-metric prior by Strekalovskiy et al. [11].

d) Proposed proximity prior.

Figure 5: Improved results on the MSRC benchmark. Proximity Priors capture richer semantic information on spatial ob-
ject inter-relations such as distances, direction and relative location than previous approaches such as global co-occurrence [3]
or local co-occurrence [11].

often problematic for applications.

The benchmark results in general suggest rather small
improvements for the integration of geometric spatial pri-
ors. This is somewhat surprising since the images show
strong improvements and the prior corresponds to typical
human thinking. As already mentioned by Lucchi et al. [4]
who stated similar findings this is probably due to the rather
crude ground truth of the benchmark with large unlabeled
regions especially at object boundaries. These regions are
not counted in the score, but nevertheless leave a lot of room
for misclassification or improvements. Therefore, we think
that the benchmark score should not be overstressed here.

Qualitative comparisons with the two best scoring of the
above mentioned methods by Ladicky et al. [3] with hierar-
chical prior and by Strekalovskiy et al. [11] on the MSRC
database are given in Figures 1 and 5. The results show
that the proposed method reduces the number of mislabeled
objects. For example, our approach is the only one which
correctly detects the boat in Figure 1 without assigning part
of it to the label ’bird’. Another example is the head of the
sheep in the first column of Figure 1 which is correctly la-
beled without any ’cow’ pixels. The result of the cat in the
first column of Figure 5 shows that we can avoid problems
which appear due to prior superpixel segmentations.

4.3. Direction Dependent Proximity

Some object pairs only appear in specific spatial con-
stellations, for example cars do not appear above water or
books on top of buildings. Such relations can be encoded by
applying directional sets S, e.g. horizontal or vertical lines
(compare Figure 2). The corresponding penalties can either
be defined or learned from training data.

For the portrait of the woman in Figure 5 we used a learn-
ing based approach for a horizontal set S such as the one
shown in Figure 2d). We derive the penalties A from the
relative frequencies of objects appearing up to 40 pixels left
and right of the label ’face’ in the training images. For the
bench and cat images (rightmost in Figure 5) we used a ver-
tical set S centered at the bottom/top (compare Figure 2c)
together with a distance of 20 to penalize the label ’bird’
below ’chair’ and the label ’water’ above ’street’.

5. Conclusion
We introduced proximity priors for semantic segmenta-

tion and recognition within a variational multi-label frame-
work. Instead of introducing co-occurrence probabilities of
label combinations, proximity priors define likelihoods for
specific geometric spatial relationships of label pairs, i.e.
their direction and distance. In this way, proximity priors



generalize both global co-occurrence priors [3], which take
into account all labels irrespective of their spatial location,
and local co-occurrence priors [11] which are only imposed
on directly adjacent pixels.

The label cost penalty is proportional to the size of the
labeled regions and also effects object labels at larger spatial
distances. In addition, the proposed approach does not re-
quire the computation of superpixels and prevents the emer-
gence of one pixel wide ’ghost labels’.
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