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ABSTRACT:

In this paper, we present a graph based approach for performing the system calibration of a sensor suite containing a fixed mounted
camera and an inertial navigation system. The aim of the presented work is to obtain accurate direct georeferencing of camera images
collected with small unmanned aerial systems. Prerequisite for using the pose measurements from the inertial navigation system as
exterior orientation for the camera is the knowledge of the static offsets between these devices. Furthermore, the intrinsic parameters
of the camera obtained in a laboratory tend to deviate slightly from the values during flights. This induces an in-flight calibration of the
intrinsic camera parameters in addition to the mounting offsets between the two devices. The optimization of these values can be done
by introducing them as parameters into a bundle adjustment process. We show how to solve this by exploiting a graph optimization
framework, which is designed for the least square optimization of general error functions.

1 INTRODUCTION

There is ongoing research regarding the photogrammetric usage
of small unmanned aerial systems (UAS) with payload capabil-
ities of a few kilograms. These platforms are usually equipped
with a GPS corrected inertial navigation system (INS) and a cam-
era (Eisenbeiss, 2008). The exterior orientations of the aerial im-
ages are determinable by the usage of a bundle adjustment (BA)
software. Prerequisites are a sufficient number of ground control
points (GCP) and high image overlaps between adjacent flight
strips. The observations of the GCPs have to be identified in the
images as input for the BA. This makes clear that the BA is a time
consuming post processing step, which has to be performed after
the measurement flight is completed.

In contrast to this development, time-critical surveillance and res-
cue tasks have a high demand for a more flexible flight plan-
ning and the direct determination of object positions (Schikora
et al., 2010). Despite the great development in visual navigation
(Engel et al., 2012), the usage of a high-precision INS leads to
the most accurate pose information in outdoor scenarios at re-
altime. The utilization of the measured positions and attitudes
for the exterior camera orientations eliminates the need for the
time consuming post processing in form of a BA to obtain the
camera poses. Required is the knowledge of the static coordinate
system transformation between the rigid mounted sensors. More
precisely the position offset (lever-arm) and the angle misalign-
ments (boresight) have to be estimated (Figure 1). This is known
as INS-camera calibration. The most accurate calibration proce-
dures estimate these parameters with an extended Kalman filter
(Weiss and Achtelik, 2012) or integrate them as unknowns in a
BA (Pinto and Forlani, 2002).

Presently, no freely available BA package is able to perform an
INS-camera calibration and the adaptation of the BA implemen-
tations is an error prone and time consuming task. In contrast to
this, the general graph optimization framework (g2o) is directly
designed for the least square optimization of general error func-
tions (Kuemmerle and Grisetti, 2011). The problem has to be
embedded in a graph by representing the parameters to be opti-
mized as vertices and the observations between them as edges.
Further requirements are the definition of error functions for the

Figure 1: The calibration of the static coordinate system offsets
between a camera and an INS enables the direct georeferencing
of images collected with small UAS.

observations and good initial values for the state variables. The
numerical solution of the problem can be computed with an im-
plementation of the Levenberg-Marquardt algorithm.

In this paper, we present a graph based BA approach for the INS-
camera calibration. The paper starts with an overview on related
research areas. It follows a description of the system setup which
is focused on in this work. After the general definition of the
problem, it is restated into a graph structure and the design of the
error functions is described. Finally the approach is analyzed in
numerical studies and the achieved results are discussed.

2 RELATED WORK

A related process of the INS-camera calibration is the so called
hand-eye calibration. Given a camera mounted on a robot arm,
the rigid-body transformation between the coordinate systems of
these devices is estimated. As a result, measurements from the
acquired images can be transformed in the robot arm coordinate
system. This is necessary to interact with objects recognized
and located in the images. The calibration is done by estimating
the rigid body transformation from corresponding poses. A di-
rect solution can be computed by firstly optimizing the rotational
part and solving the equations for the translation afterwards (Tsai
and Lenz, 1989). In contrast, it was shown that the nonlinear



optimization for rotation and translation at the same time leads
to more robust results in case of noise and measurement errors
(Horaud and Dornaika, 1995). The motion of the robot arm is
typically obtained from encoders, whereas nearly all approaches
determine the camera movement by observing a calibration pat-
tern. In contrast to that, the camera poses can be determined by
a structure-from-motion approach. As a drawback, the camera
movement can only be estimated up to a similarity transforma-
tion. This leads to an unknown scale, which as well has to be
estimated during the calibration process. The obtained results are
not as accurate as the calibrations from methods using camera
calibration patterns (Andreff et al., 2001). However the approach
has the advantage of being feasible without any additional equip-
ment and therefore allows a recalibration during operation.

The algorithms developed for the hand-eye calibration had a big
influence on another related problem: The calibration between
an inertial measurement unit (IMU) and a camera. These de-
vices can be combined to a vision-aided inertial navigation sys-
tem. Measurements of the IMU in form of rotational velocities
and linear accelerations can be integrated to determine the posi-
tions, velocities and attitudes of the device. During this process
small estimation errors are summed up over time, which should
be corrected by an aided sensor. Typically this is achieved by
exploiting GPS measurements, which is not possible in space,
underwater or indoor applications. An alternative is the usage
of a camera in addition to the IMU. Prerequisite for exploiting
camera based corrections is the knowledge of the transformation
between the two devices. These offsets can be computed with
modified hand-eye calibration algorithms (Lobo and Dias, 2007).
The fact that consecutive measurements from shaft encoders are
uncorrelated in contrast to data from an IMU results in different
noise characteristics. Considering these time correlations leads
to a higher accuracy of the estimations (Mirzaei and Roumelio-
tis, 2008). The authors utilize an extended Kalman filter (EKF)
for estimating the pose transformation, which facilitates the com-
putation of the covariance for the estimated parameters as an in-
dicator of the achieved accuracy. In (Weiss and Achtelik, 2012)
the authors describe an approach for navigating an UAS based on
measurements from an IMU and a camera. By not using a cali-
bration pattern, they realize the online estimation of the mounting
parameters between these sensors with an EKF formulation.

To calibrate the transformation between a GPS-aided INS and a
camera, the algorithms for the IMU-camera calibration can be
used. This is based on the fact that an IMU is a fundamental
component of an INS. The only prerequisite for applying an IMU-
camera calibration is that the raw measurements of the IMU are
accessible. However this is not the predominantly used method
to perform a system calibration between an INS and a camera.
The commercially available INS provide an integrated filtering
process, exploiting the GPS measurements to correct the IMU
estimations. In conjunction with GPS correction signals from
ground control stations an absolute accuracy in a range of few
centimeters for the position and a few hundredths of a degree
for the attitude is achievable. Thus the INS provides a reliable
stand alone source describing its own movement. This leads to
estimation of the rigid-body transformation between the INS and
the camera with methods similar to the hand-eye calibration. In
a first step the camera movement is calculated with a structure
from motion (SFM) approach and refined in a BA procedure.
The observations of ground control points are used to scale the
3D-model to real world coordinates. In a second step, the trans-
formation between the two devices is estimated by relating these
absolute camera poses to time synchronized measurements from
the INS. This widely used approach is known as two step pro-
cedure (Cramer et al., 2000). The advantage is that each bundle

adjustment package can be used without modifications. On the
other hand, the integration of the mounting parameters as vari-
ables to optimize in the BA is possible. This approach is known
as single-step calibration and induces a simpler calibration of the
mounting offsets due to more flexible flight courses (Pinto and
Forlani, 2002). The simultaneous optimization of the rigid-body
transformation between the devices and the intrinsic camera pa-
rameters should consider correlations between these values. An
analysis of the flight pattern influence on the calibration parame-
ters is discussed in (Kersting et al., 2011). The authors also state
that at least one GCP is needed for the estimation of the vertical
lever-arm and that the addition of multiple GCP does not improve
the estimation results identifiable. The integrated sensor orienta-
tion has been examined and discussed widely within the OEEPE
test (Heipke et al., 2002). They conclude that direct georeferenc-
ing, even though it does not achieve the accuracies of the classical
bundle adjustment, is a serious alternative for many applications.

The investigations for the INS-camera calibration performed in
the last decades are targeted at manned aircrafts equipped with
high-precision INS and aerial cameras at high altitude. In con-
trast to this our goal is the direct georeferencing with small UAS.
In this work, we investigate how the calibration process can be
performed with an open source toolkit for general graph opti-
mization to bypass the need for a commercial BA package.

3 SYSTEM SETUP

The objective of this research is the estimation of the rigid body
transformation between a camera and a high-precision INS. The
latter is based on fiber optic gyroscopes, which have a stability
up to some hundredths of a degree per hour. In combination with
real time kinematic enhanced GPS measurements very accurate
pose information are generated. An absolute accuracy of ±2cm
in the position and 0.01◦ for the attitude angles are achieved in
our system setup. This pose information shall be exploited for
the determination of the exterior orientation of an optical cam-
era. Precondition for this are a rigid mounting and a hardware
synchronization between the two devices. If these conditions are
satisfied, the mounting offsets (Figure 2) can be estimated by pro-
cessing data from a measurement flight.
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Figure 2: The rigid mounting of a camera and a INS induces
static offsets between the underlying coordinate systems denoted
by C and I. More precisely position offsets xL, yL and zL as well
as angle misalignments, here visualized in form of Euler angles
yaw = ψB, pitch = θB and roll = φB, arise. These have to be
determined in an INS-camera calibration.

Nearly every outdoor application utilizing a camera mounted on
an aerial platform induces that the camera focus has been set to
infinity. Furthermore, wide angle lenses are frequently the right
choice for a given task. The minimal distance for a focused im-
age and the big opening angle lead to an impractical size for the



calibration pattern and make standard camera calibration proce-
dures laborious. An easier estimation of these parameters can
be achieved by performing an in-flight calibration, which uses a
structure from motion (SFM) approach on the images acquired
during a flight. Another advantage of this is that the intrinsic
camera parameters are estimated during real conditions, which
tends to differ slightly in comparison to a laboratory calibration
due to climate and temperature changes (Jacobsen, 2001).

The INS measures the attitude as Euler angles, namely yaw, pitch
and roll, with regard to local navigation systems. The latter are lo-
cal east, north, up (ENU) coordinate systems, each with the origin
in the current device position described through a GPS measure-
ment in form of latitude, longitude and altitude (Figure 3). This
implies tiny differences between the orientations of these coordi-
nate systems and thus also in the measured attitude for succes-
sive timestamps. Our INS-camera calibration will be performed
in an area of only a few hundred square meters, which allows
to neglect these differences. Furthermore, we perform the INS-
camera calibration in an ENU coordinate system with the origin
at a ground control point in the middle of the observed area. This
prevents the need for earth curvature corrections which occur in
mapping frames like the universal transverse mercator (UTM) co-
ordinate system. To obtain the transformation from the position
information of the INS given in latitude, longitude and altitude to
ENU coordinates the earth-centered, earth-fixed coordinate sys-
tem (Figure 3) is used as an intermediate step.

North2

Figure 3: Both, the navigation systems of the INS and the world
reference frame are based on east, north, up (ENU) coordinate
systems (green). They are local Cartesian coordinate systems
with the origin tangential to the earth ellipsoid. Further we use
the global earth-centered, earth fixed (ECEF) coordinate system
(blue), to convert between ENU-coordinates and GPS measure-
ments taken in latitude (ϕ) and longitude (λ) as polar coordinates
(orange).

4 DEFINITIONS

We define the world reference frame W as ENU coordinate sys-
tem with the origin being approximately in the middle of our cal-
ibration area. The rigid body motion gCiW describes the camera
pose at the middle exposure time ti, i = 1, 2, ..., n with regard
to the world frame W. Likewise specifies gIiW the corresponding
configuration of the INS as rigid body motion.

In general, a rigid body motion g ∈ SE(3) describes how the
points of a rigid object change over time. Instead of consider-
ing the continuous path of the movement, we bring into focus
the mapping between the initial and the final configuration of the
rigid body motion. This movement can be described by a rota-
tion matrix R ∈ SO(3) and a translation vector t ∈ R3. Conse-

quently the rigid body displacement G of a 3D point p ∈ R3 can
be performed by

G : SE(3)× R3 → R3, G(g,p) = Rp + t. (1)

The representation of the rotational part in form of the overde-
termined rotation matrix R is not suitable for the optimization
performed in this work. A minimal representation is required.
Being aware of the singularities which can occur by using Eu-
ler angles, we represent a rigid body motion by twist coordinates
ξ = (v,ω)> ∈ R6. Thereby, v ∈ R3 describes the translational
and the skew-symmetric matrix ω̂ ∈ so(3) the rotational part
of the full motion. The rotation angle in radians is encoded as
||ω||2. An element ξ̂ ∈ se(3) can be written in its homogeneous
representation as

ξ̂ =

(
ω̂ v
0 0

)
(2)

Given ξ̂ ∈ se(3), we get a rigid body motion by the matrix expo-
nential, which is defined as the always converging power series:

exp : se(3)→ SE(3), exp(ξ̂) =

∞∑
k=0

ξ̂k

k!
. (3)

This leads to an alternative formulation of Equation (1) using
twist coordinates to determine the transformation of a 3D point
p ∈ R3 according to the rigid body motion g as follows:

G : SE(3)× R3 → R3, G(g,p) = exp(ξ̂)p. (4)

For more details on the used representation of rigid body motions
we refer to (Ma et al., 2003).

Further we define the set of intrinsic camera calibration parame-
ters

k = {fx, fy, ox, oy, k1, k2}, (5)

whereby (fx, fy) describe the focal length, (ox, oy) the princi-
pal point and (k1, k2) the radial distortion of the camera. The
projection π performs the mapping from a transformed 3D point
G(g,p) = (x, y, z)> to pixel coordinates as

π(k, G(g,p)) =

(
dfxx

z
− ox,

dfyy

z
− oy

)>
, (6)

with the radial distortion factor d being defined by

d = 1 + k1

(
x2 + y2

z2

)
+ k2

(
x2 + y2

z2

)2

. (7)

5 PROBLEM FORMULATION

In order to describe the rigid body motion gCiW of the camera
using the measured rigid body motion gIiW of the INS (Figure 4),
the devices have to be rigidly mounted. This induces that the
offsets between them are static and especially comprises that the
rigid body motions describing the movements from the INS to the
camera at various exposure times are equal

∀k, l ∈ {1, 2, ..., n} : gCk Ik

!
= gCl Il , (8)

with {1, 2, ..., n} being the middle exposure times of the images.
Therefore we can simplify the notation by omitting the indices
for the rigid body motion gCI describing the mounting offsets.
The composition with the measured INS movement leads to the
camera motion

gCiW = gCIgIiW. (9)
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Figure 4: Both, the poses of the INS frame I and of the camera
frame C can be described by rigid body motions with regard to the
world frame W. The estimation of the static rigid body motion gCI

between the devices (dotted arrow), enables by composition with
the INS measurements gIiW the description of the camera poses
gCiW.

This results in the problem considered in this work, the estimation
of the rigid body motion gCI out of synchronized data from mea-
surement flights. As a first step a SFM approach, which delivers
an initial sparse 3D structure of the observed area and the cor-
responding pixel observations, has to be performed (Hartley and
Zisserman, 2004). The refinement of this is usually done in a BA
process, where the initial estimation of the 3D points and cam-
era poses are optimized. Given a number of n images associated
with the camera poses Ci and m 3D points pj with correspond-
ing pixel observations xij . The classical BA approach minimizes
the reprojection error of the 3D points as follows:

min
k,gCiW,pj

n∑
i

m∑
j

(π(k, G(gCiW,pj))− xij)
2. (10)

The estimations for the intrinsic camera parameters k tend to dif-
fer slightly from a laboratory calibration, due to the climate and
environmental conditions. Thus it is an advantage to optimize k
by using images from a measurement flight in the classical BA
procedure. Nevertheless, errors can be introduced to the intrinsic
parameters, which are compensated by the independent camera
positions. Therefore the joint calibration of the intrinsic camera
parameters in conjunction with the mounting offsets gCI promises
more accurate results. The latter are introduced by adding a term
which measures how well the parameters of the camera poses
gCiW in composition with the mounting offsets gCI satisfy the INS
measurements. This is realized by comparing a synthetic mea-
surement generated out of the actual camera pose and mounting
offsets with the measured INS pose by using the inverse and the
composition of rigid body motions. Adding this constraint in the
form of an additional sum to Equation (10), we specify our ob-
jective function:

min
k,gCiW,pj ,gCI

n∑
i

m∑
j

(π(k, G(gCiW,pj))− xij)
2+

n∑
i

(g−1
CI gCiW)−1gIiW.

(11)

6 GRAPH OPTIMIZATION

The non linear least square problem defined in Equation (11) can
be optimized by using g2o, the general graph optimization frame-

work (Kuemmerle and Grisetti, 2011). The problem has to be
embedded in a graph by introducing the variables to optimize as
nodes and the observations between them as edges. In the follow-
ing we will present the restatement of our objective function into
the graph-based formulation.

The calibration parameters represented as the intrinsic camera pa-
rameters k and the mounting offsets gCI are added as nodes to the
graph. Furthermore we add each 3D point pj and each cam-
era pose gCiW as a node to the graph. The connection between
these nodes is given by inserting our observations as edges into
the graph. A pixel measurement connects three different nodes,
namely: a camera, a 3D-point and the intrinsic calibration param-
eters. This constraint can be realized with a hyperedge, which
is able to connect an arbitrary number of nodes. The edge of a
INS measurement connects the corresponding rigid body motion
of the camera with the mounting offsets. A visualization of the
graph is given in Figure 5.

Ii
gCI

gIiW gCiW
xij

k

pj

Figure 5: The objective function of the stated problem can be
illustrated by a hyper-graph. The measurements (boxes) are pre-
sented as links between the nodes concerning each multiple sets
of variables (circles). For improved overview multiple state vari-
ables and measurements of the same type are visualized in a
stacked view unrelated to their number of occurrence.

Further, we have to define error functions, which measure how
well our measurements are described by the state variables they
are connecting. Our first constraint measures the error occurring
by the reprojection of a 3D point into the image, in the same form
as in Equation (10). The error function for this constraint can be
expressed as:

ekij(k, gCiW,pj ,xij) = π(k, G(gCiW,pj))− xij . (12)

The resulting error vector has dimension two and is 0 if the pixel
observation is perfectly described by the state variables. Our sec-
ond error function states how well the INS measurements can be
described by the composition of the camera poses gCiW and the
mounting offsets gCI as follows:

egi (gCI, gCiW, gIiW) = (g−1
CI gCiW)−1gIiW, (13)

Using the twist representation for the rigid body motions, we re-
ceive a 6-dimensional error vector, which is 0 if the parameters
perfectly satisfy the measurement.

Without limiting the generality, we refer to the whole state vector
[k, gCiW,pj , gCI] as y and formulate our optimization problem as
follows:

min
y

n∑
i

m∑
j

ekij(y)>I ekij(y) +

n∑
i

egi (y)>I egi (y), (14)

The g2o framework uses the Levenberg-Marquardt (LM) algo-
rithm to compute a numerical solution of Equation (14) and there-
fore needs a good initial guess y̆ of the state vector. Iteratively,
the first order Taylor expansion around the current guess y̆ is used
to approximate Equation (14) and optimize the local increments



∆y by solving the resulting sparse linear system. The center for
the next iteration is obtained by adding the optimized increments
to the initial guess. This is done by using the motion composition
for the state variables represented by rigid body motions and a
simple addition for the 3D points and intrinsic camera parame-
ters. For a detailed description of the LM algorithm we refer the
reader to (Lourakis and Argyros, 2009).

7 EVALUATION

In this section, we present results from numerical studies to vali-
date the proposed approach. The main purpose of this is to ana-
lyze the influence of various flight configuration and settings on
the calibration parameters by comparing the estimations with the
known ground truth.

In the simulations we set the mounting parameters consisting of
the lever-arm components xL, yL and zL as well as the angle mis-
alignments in form of the Euler angles yaw = ψB, pitch = θB

and roll = φB (Figure 2) according to the ground truth defined in
Table 1. The initialization with θB = 180◦ is a result of the defini-
tion of the INS frame as ENU coordinate system, while the down-
ward directed camera is modeled with the z-coordinate pointing
in viewing direction. The intrinsic camera parameters stated in
Table 1 describe the modeled camera with an image size of 3296
by 2472 pixels using a wide angle lens. The simulated flight
courses consist of INS poses sampled along straight lines accord-
ing to the camera exposure times, determined by the velocity of
the UAS and the cameras frames per second. For a more realistic
flight path, the ideal poses are modified by a small random factor
and the resulting poses are considered as ground truth. One GCP
is defined in the middle of the observed area. A fixed number of
additional 3D points are sampled in the observed area. The pixel
observations are determined by projecting the 3D points into the
images according to Equation (6) using both, the generated cam-
era poses and the ground truth of the intrinsic camera parameters
defined in Table 1. A realistic number of observations is produced
by defining a probability of detection of 50% instead of using all
projections of the 3D-points which are in the field of view of a
camera. Concerning noise, we simulate the image observations
with an accuracy of 0.5 pixels. Further we add white Gaussian
noise to the INS poses using a standard deviation of σL = 0.02
for the position components and σB = 0.01 for the Euler angles.

The principle of the flight configuration stated as optimal in (Ker-
sting et al., 2011) was used to define our first simulated flight
course. At a flying height of 20 m we defined two lines with a

Unit Initialization Ground truth Difference

xL [m] 0.13 0.132 +0.002
yL [m] 0.1 0.096 −0.004
zL [m] 0.1 0.104 +0.004
ψB [◦] 0.0 2.344 +2.344
θB [◦] 180.0 183.291 +3.291
φB [◦] 0.0 −1.937 −1.937
fx [pel] 1650.0 1663.31 +13.31
fy [pel] 1650.0 1662.84 +12.84
ox [pel] 1648.0 1651.52 +3.52
oy [pel] 1236.0 1234.67 −1.33
k1 [pel2] 0.0004 0.00076 +0.00036
k2 [pel4] 0.008 0.00908 +0.00108

Table 1: This table states the initialization values for the opti-
mization process and the ground truth values used in our experi-
ments.

distance of 20 m (Figure 6a). We sampled our INS poses along
these lines twice, once in each direction. This results in an image
side overlap of 50% for poses on the adjacent lines. The same
maneuver was simulated at a flying height of 30 m resulting in a
side overlap of about 66%. Two different altitudes in combination
with a GCP were used to decouple the high correlation between
the lever-arm and the focal length as well as the principal point.
The definition of 20 m strip length in conjunction with a speed
of 36 km/h and 5 images per second leads to a total number of
80 images with more than 93% image overlap in flying direc-
tion. This course was used in Simulation 1, 2 and 3 by sampling
1000, 3000 and 6000 points. The results in Table 2 show that in-
creasing the point number leads to more accurate results for the
calibration parameters as assumed. Remarkable is that the angle
misalignment is nearly the same for Simulation 2 and 3, which
shows that increasing this value further will have little influence
on these parameters. The error in the lever arm component zL

is for all three Simulations about four times bigger than in the
other directions, which is also reflected in the estimation of the
correlated focal length and principal point.

(a) Sim. 1,2,3,4,7 (b) Sim. 5 (c) Sim. 6

Figure 6: The three flight configurations investigated in this study
are visualized in a top view. Each line is sampled in both direc-
tions, resulting in an image overlap of approximately 100%.

The first three simulations show that the accuracy of the lever-arm
optimization is worse than usual measurements out of construc-
tions drawing or terrestrial measurement. Due to this observation,
we fix the lever-arm components in the following experiments.
For Simulation 4, the same flight and parameter configuration as
in Simulation 2 was used. The optimization leads to better results
in all estimated parameters (Table 3). The fixed lever-arm also
removes the requirement of two flight altitudes. We investigated
the influence of the flight course by performing simulations of
the patterns visualized in (Figure 6), whereby for each simula-
tion a total number of 3000 points was sampled in the observed

RMSE
Sim. 1 Sim. 2 Sim. 3

xL 0.00824 0.00849 0.008
yL 0.00728 0.00582 0.00588
zL 0.03169 0.02167 0.01443
ψB 0.01237 0.01072 0.01052
θB 0.0003 0.0009 0.00039
φB 0.01925 0.01719 0.01762
fx 2.39323 1.57664 1.0141
fy 2.35976 1.57361 1.01957
ox 0.18362 0.12286 0.07928
oy 0.24893 0.1674 0.11551
k1 4.1539e−5 2.3002e−5 1.7486e−5

k2 5.1066e−5 3.4519e−5 2.2469e−5

Table 2: This table shows the RMSE of the calibration parameters
achieved by performing 100 Monte Carlo trials for the first flight
course with an increasing number of 3D-points.



area. By performing the quadratic course in Simulation 5 and the
star pattern in Simulation 6 only at an altitude of 20 m, we get
the same number of cameras as in all other simulations. In com-
parison with Simulation 4, the errors of Simulation 5 are slightly
smaller for the intrinsic camera parameters, but higher for the roll
angle. The star pattern performed in Simulation 6 leads to a big-
ger error in the yaw angle (Table 3). Overall the influence of
the investigated flight courses on the accuracies of the estimated
calibration parameters is small. Another observation was made
by performing the flight course depicted in Figure 6a at altitudes
of 200 m and 300 m in Simulation 7, which is ten times higher
than in Simulation 4. As expected, the errors in the angle mis-
alignment are smaller due to there bigger influence on the object
points at higher altitudes (Table 3).

RMSE
Sim. 4 Sim. 5 Sim. 6 Sim. 7

ψB 0.0111 0.01065 0.02525 0.00357
θB 0.00037 0.00123 0.00182 0.00009
φB 0.00986 0.01128 0.01028 0.00475
fx 1.10761 0.78936 1.02642 0.15332
fy 1.11969 0.78776 1.02301 0.23633
ox 0.0895 0.05326 0.05658 0.1043
oy 0.1314 0.07603 0.10738 0.13719
k1 2.2965e−5 2.8315e−5 3.7536e−5 2.5814e−5

k2 2.5092e−5 1.8952e−5 2.3544e−5 1.0906e−5

Table 3: This table shows the RMSE of the calibration parameters
achieved by performing 100 Monte Carlo trials for the optimiza-
tion with an fixed lever-arm for various flight maneuvers.

8 CONCLUSION AND FUTURE WORK

In this paper we presented a graph-based approach for the INS-
camera calibration. The high correlation between the lever-arm of
the mounting offsets and the intrinsic camera parameters should
be decoupled by performing the flight maneuvers at two different
altitudes. Even though, the produced results showed that the ac-
curacy of the lever-arm optimization is worse than usual measure-
ments out of construction drawings or terrestrial measurements.
Our simulations confirmed the recommendation to perform only
the optimization of the intrinsic camera parameters and the mis-
alignment angles between the devices in the system calibration
(Kresse et al., 2006). Moreover, this eliminates the constraints of
using two different altitudes. In conjunction with the small in-
fluence of the flight patterns a recalibration during each operation
seems possible. Regarding the usage of small UAS, which in gen-
eral are used at low altitude, we conclude that the calibration of
the angle misalignment should be performed as high as possible
to achieve the most accurate results.

Future work will investigate the proposed procedure in more de-
tail. Based on the gathered insight, we will perform real flight
experiments and evaluate the approach further.
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