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Abstract

Linear inverse problems in computer vision, including
motion estimation, shape fitting and image reconstruction,
give rise to parameter estimation problems with highly cor-
related errors in variables. Established total least squares
methods estimate the most likely corrections Â and b̂ to
a given data matrix [A, b] perturbed by additive Gaussian
noise, such that there exists a solution y with [A + Â, b +
b̂]y = 0. In practice, regression imposes a more restric-
tive constraint namely the existence of a solution x with
[A + Â]x = [b + b̂]. In addition, more complicated corre-
lations arise canonically from the use of linear filters. We,
therefore, propose a maximum likelihood estimator for re-
gression in the general case of arbitrary positive definite
covariance matrices. We show that Â, b̂ and x can be found
simultaneously by the unconstrained minimization of a mul-
tivariate polynomial which can, in principle, be carried out
by means of a Gröbner basis. Results for plane fitting and
optical flow computation indicate the superiority of the pro-
posed method.

1. Introduction
Linear inverse problems in computer vision, including

motion estimation, shape fitting and image reconstruction,

give rise to parameter estimation problems with highly cor-

related errors in variables. In this section, we introduce the

statistically appropriate model for this context. We discuss

related work in section 2 and introduce a new estimator al-

lowing for arbitrary correlations in the data in section 3.

Comparative results for plane fitting as well as for optical

flow estimation are given in section 4, and conclusions are

offered in section 5.

1.1. Errors-In-Variables Model

Given noisy variables A ∈ R
m×n, b ∈ R

m,m, n ∈
N as well as a symmetric positive definite matrix Σ ∈
R

(mn+m)×(mn+m) modeling the covariance of the entries

of A and b, the linear additive Gaussian errors-in-variables
(EIV) model (A, b,Σ) is specified by the following assump-

tions:

(a) There exist latent variables Al ∈ R
m×n, bl ∈ R

m and

additive errors in variables Ae ∈ R
m×n, be ∈ R

m such

that

A = Al + Ae and b = bl + be . (1)

(b) Let vec([Ae, be]) denote the column-wise vectoriza-

tion of the composite matrix [Ae, be]. Then the er-

rors Ae, be are realizations of a random matrix A′
e and

a random vector b′e whose entries are normally dis-

tributed with zero mean and covariance matrix Σ

vec([A′
e, b

′
e]) ∼ N (0,Σ) , i.e. (2)

P (vec([Ae, be])) =
exp

(
− 1

2 ‖vec([Ae, be])‖2
Σ

)
√

(2π)mn+m det Σ
.

(3)

with ‖·‖Σ : R
mn+m → R

+
0 such that

∀v ∈ R
mn+m : ‖v‖Σ :=

√
vT Σ−1v , (4)

which denotes the Mahalanobis norm for given Σ.

(c) The latent vector bl linearly depends on the columns of

Al, i.e.

∃x ∈ R
n : Alx = bl , (5)

making this system of equations solvable.

Under the assumption of the above EIV model, the max-
imum likelihood estimates Âe, b̂e of A′

e, b
′
e are the most

likely (w.r.t. eq. (3)) errors such that conditions (a) and

(c) are fulfilled. The solution x̂ to the linear system (5) then

follows from (A − Âe)x̂ = b − b̂e which is solvable due

to (a) and (c). For an observed A,b the maximum likeli-

hood estimation (MLE) of Al and bl hence reduces to the

optimization problem

argmax
Ae∈Rm×n,be∈Rm

P (vec([Ae, be])) (6)

subject to ∃x ∈ R
n : (A − Ae)x = b − be . (7)
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Figure 1. Locally constant optical flow estimation from 3 ×
3 × 3 neighborhoods is considered. Left: Covariance ma-

trix Σ ∈ R
81×81 of the vectors vec([∂xg, ∂yg, ∂tg]), with

structure owing to impulse response masks of linear derivative

operators. Middle: Covariance matrix of ETLS equilibration

vec(WL[∂xg, ∂yg, ∂tg]W T
R ). Right: Unity matrix.

Due to the strict monotonicity of the exponential function

in (3), the objective in (6) can be replaced by

argmin
Ae∈Rm×n,be∈Rm

‖vec([Ae, be])‖Σ . (8)

An in-depth discussion of EIV models can be found in [12,

15].

2. Related Work
This section addresses methods that solve related prob-

lems and differ from the estimator proposed in section 3 in

either the objective function or the constraint. Given noisy

variables A ∈ R
m×n, b ∈ R

m, the total least squares (TLS)
estimator [16] is defined as

argmin
Ae∈Rm×n,be∈Rm

‖vec([Ae, be])‖Imn+m
(9)

subject to

∃y ∈ R
n+1 : [A−Ae, b− be]y = 0 and ‖y‖2 = 1 , (10)

where Imn+m denotes the identity matrix of the indicated

size. In fact, the Mahalanobis norm ‖vec([Ae, be])‖Imn+m

equals the Frobenius norm of the matrix [Ae, be]. Thus, TLS

seeks the Frobenius minimal additive correction [Ae, be] to

[A, b] such that the matrix [A − Ae, b − be] becomes rank

deficient. If [A, b] results from perturbance of [Al, bl] by

independent and identically distributed Gaussian noise with

zero mean, then TLS is the MLE of [Ae, be] under the rank

deficiency constraint [16]. The estimator we propose dif-

fers from TLS in two aspects: First, according to (2), we

allow for arbitrary non-singular correlations in the errors.

Second, we impose the constraint (5) instead of (10) stating

that precisely the vector b − be is supposed to be a linear

combination of the columns of A−Ae. This corresponds to

a restriction of the TLS formulation, where rank deficiency

only requires the columns of [A−Ae, b− be] to be linearly

dependent. We thereby directly address linear regression

problems, whereas TLS is in fact a subspace estimator.

Subspace estimation with arbitrary covariance is com-

prehensively discussed in [6, 11]. Under the restrictive

assumption that the columns of the matrix [A, b] are un-

correlated, subspace estimation can be reduced to TLS by

weighting as detailed in [12, 17]. Our approach differs in

that we consider regression rather than subspace estimation

and in that we directly address polynomial minimization.

From the wide range of subspace estimators, we com-

pare directly against equilibrated TLS (ETLS) which was

introduced in [13] and has been applied in computer vision,

e.g. in [1]. ETLS aims at linearly transforming the system

[A, b] such that the errors become approximately uncorre-

lated with equal variance. To this end, orthogonal matrices

WL ∈ R
m×m, WR ∈ R

(n+1)×(n+1) are employed, such

that

[A′, b′] := WL[A, b]WT
R . (11)

Then TLS is performed on [A′, b′] (yielding a solution

y′ ∈ R
n+1), and finally y := WRy′ is understood as a

solution to the initial problem. Mühlich and Mester [13]

derive by the perturbation theory of eigenvectors [8] con-

ditions on WL and WR, from which these matrices can be

computed iteratively for arbitrary covariance. The benefit

of mapping such estimation problems with arbitrary covari-

ance to TLS is that the Eckart-Young Theorem [7] for ma-

trix approximation allows for efficient and numerically sta-

ble TLS estimation by means of the singular value decom-

position (SVD) [16]. However, ETLS is only an approxi-

mation to true MLE in case of highly structured covariance

matrices. In order for ETLS to be the MLE, the covariance

matrix of vec(WL[A, b]WT
R ) has to equal the identity ma-

trix. However,

cov
(
vec(WL[A, b]WT

R )
)

= (WR ⊗ WL)cov(vec([A, b]))(WR ⊗ WL)T (12)

where ⊗ denotes the Kronecker product. Due to the

structure of the matrix (WR ⊗ WL), covariance matrices

cov(vec([A, b])) exist such that WL and WR cannot be cho-

sen to equilibrate them. An example of remaining correla-

tion after ETLS equilibration is shown in figure 1. Nev-

ertheless, the results reported below support ETLS as an

efficient approximation to MLE.

3. Maximum Likelihood Estimator
In order to account for arbitrary covariance in the re-

gression setting defined by the constraint (7), we propose

to consider the objective function (8) and substitute for be

according to (7) yielding

argmin
d∈Rmn+n

p(d) , (13)
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with p : R
mn+n → R

+
0 such that ∀Ae ∈ R

m×n∀x ∈ R
n:

p(vec([Ae, x])) = ‖vec([Ae, b − (A − Ae)x])‖Σ . (14)

The objective function p is a multivariate polynomial in the

unconstrained entries of Ae and x. The largest exponent

of any of the free variables is two while (mixed) terms of

order one through four occur. Depending on A, b, and Σ,

this polynomial may be non-convex. However, there exists

a finite vector d̂ ∈ R
mn+n for which p(d̂) equals the finite

global minimum of this polynomial. This property is inher-

ited from the Mahalanobis norm. In the following, we will

use the abbreviation MR for the proposed maximum likeli-

hood estimator, which stands for Mahalanobis regression.

3.1. Polynomial Minimization

We have reduced the problem of finding maximum likeli-

hood estimates for the corrections [Ae, be] to the minimiza-

tion of a multivariate polynomial p. We now describe a nu-

merical minimizer for p. Furthermore, we will show how

Gröbner bases can be used to reduce the problem of mul-

tivariate polynomial minimization to univariate polynomial

root finding.

3.1.1 Numerical Minimization

The multivariate polynomial to be minimized can easily be

differentiated algebraically. Hence, the first two terms of

the Taylor approximation of p, namely, the gradient and

the Hessian, are readily available. This suggests the use

of a trust region method for optimization [5]. We there-

fore apply the large-scale optimization routine of Matlab

which employs a subspace trust region method based on

the interior-reflective Newton method described in [4]. This

method first estimates a two-dimensional subspace based on

the gradient and the Hessian matrix. The latter is inverted

by means of preconditioned conjugate gradients. Then, the

resulting minimization problem is solved by a Newton step.

A host of alternative minimization techniques exists. Since

the second partial derivatives ∂2

∂x2
j
p are linear in xj , their

roots can be evaluated efficiently. Thus, especially the

cyclic coordinate descent method, which iteratively mini-

mizes the polynomial with respect to each variable in turn,

appears interesting.

3.1.2 Algebraic Minimization

In this section, we propose an algebraic approach to the

minimization of the polynomial. Due to complexity, we

have tested this approach only for small examples not in-

cluded in this paper. We nevertheless point out the im-

portance of this approach, which is due to the following

reasons. First, the iterative numerical minimization of the

multivariate polynomial is computationally expensive and

prone to convergence to local minima if p is non-convex.

Second, depending on the application, p may need to be

minimized multiple times for equal covariance Σ but differ-

ent data A,b such as is the case with optical flow estimation

from patches of an image sequence. Third, Σ may arise

from only a small number of coefficients induced by linear

filters.

These three reasons taken together motivate the use of as

much symbolic computation as possible in order to support

the minimization process. Hence, in order to minimize the

polynomial p over the ring of polynomials R[x1, ..., xn] in

n ∈ N indeterminates, we differentiate the polynomial al-

gebraically with respect to all indeterminates and obtain the

following system of equations

S = {p1(x1, ..., xn) = 0, ..., pn(x1, ..., xn) = 0} . (15)

This system can be solved by means of a Gröbner basis [3].

Let I = 〈p1, ..., pn〉 , n ∈ N denote the ideal generated by

the polynomials p1, ..., pn. A Gröbner basis is a special ba-

sis of I for which root-finding is simpler than for the origi-

nal system of equations. This is due to the elimination prop-

erty of Gröbner bases, from which follows that for j ∈ Nn

a basis polynomial in only j indeterminates exists. This

means that one can successively find all the solutions of the

system of equations by means of root-finding of univariate

polynomials.

The computation of a Gröbner basis can be carried out

using Buchberger’s algorithm [3]. However, since this algo-

rithm has exponential complexity in the worst case, it may

be impractical even for relatively small problems if there

is little structure in the covariance matrix. However, de-

spite this complexity one should consider the computation

of Gröbner bases as a preprocessing step due to the obser-

vations mentioned above.

4. Results
In order to investigate the performance of the proposed

estimator, we have applied the trust region method de-

scribed above for the minimization of the multivariate poly-

nomial (with ETLS initialization), first to the problem of

fitting planes to point clouds with randomly and systemati-

cally correlated Gaussian noise (sections 4.1 4.2), and sec-

ond to optical flow estimation where the covariance matrix

is derived from the derivative filters applied to the image

sequence (section 4.3).

4.1. Random Correlation

The plane fitting problem in 3d-space amounts to solv-

ing an over-determined linear system of equations Ax =
b, A ∈ R

m×2, b ∈ R
m, x ∈ R

2 approximately. In or-

der to obtain test examples, we randomly choose the ma-

trix Al and the parameter vector x and compute the vector
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bl = Alx. To generate correlated additive Gaussian noise,

we first choose a matrix L : R
3m×3m → R with uniformly

distributed entries within the range [0, 1]. Then, to perturb

the latent data [Al, bl], we generate uncorrelated Gaussian

noise D ∈ R
m×3 with given standard deviation σ ∈ R and

compute the noisy variables by

vec([A, b]) = vec([Al, bl]) + L vec(D) (16)

Then, the covariance matrix of the Gaussian distribution of

vec([A, b]) follows from Σ = σ2LLT .

The error for each of these plane fitting problems is com-

puted as the norm of the difference vector between the esti-

mated solution x̂ and the true solution x.

e := ‖x̂ − x‖2 (17)

To minimize the polynomial we employ the algorithm de-

scribed in section 3.1.1. As initialization we use the result

of the ETLS estimator.

To test our algorithm for the plane fitting problem we con-

sider eight different signal to noise ratios (SNR) between

100 and 0.5. For each SNR we solve 100 randomly gener-

ated plane fitting problems (as described above) for m = 8
points. The error is computed according to (17) for each

plane fitting problem instance. To evaluate our method we

investigate the distribution of the errors for each SNR sepa-

rately. In Figure 2 we compare the results of our algorithm

to those obtained by TLS and ETLS. The results indicate

that for every noise level the quality of the proposed MR

method is far superior to the TLS solution and superior to

the ETLS solution.

4.2. Systematic Correlation

We consider the same setting as in 4.1 except for the fact

that we introduce stronger systematic correlation between

the points by setting some entries of the mapping L man-

ually. Figure 3 shows an example for a linear mapping,

which induces systematic correlations of the noise, the cor-

responding covariance matrix and error box plots for the

TLS, ETLS and MR method for a SNR of 10. The MR

method again clearly outperforms the TLS method and is

superior to the ETLS method due to its lower quantiles.

The results indicate the superiority of the MR method for

systematically correlated Gaussian noise.

4.3. Optical Flow Estimation

Let N ∈ N and g ∈ R
N be a vector of all gray values in a

sequence of images such that any j ∈ {1, . . . , N} uniquely

indicates a pixel in the sequence. Moreover, consider linear

shift invariant filters with finite impulse response which ap-

proximate partial derivatives of the signal in the two spatial

as well as in the temporal directions [14]. Then, the approx-

imate derivatives ∂xg, ∂yg, ∂tg ∈ R
m of a spatio-temporal
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Figure 3. Results for a randomly chosen plane fitting problem in

3d-space with partially strongly correlated noise with SNR=10,

left: linear mapping L for noise correlation and resulting covari-

ance matrix C, right: error box plot for TLS, ETLS and MR

patch of size m of the sequence are obtained by matrices

Lx, Ly, Lt ∈ R
m×N , defined by the filter coefficients, ac-

cording to

∂xg = Lxg, ∂yg = Lyg, ∂tg = Ltg . (18)

Suppose now the existence of latent gray values gl ∈ R
N

and errors ge ∈ R
N which are realizations of random vari-

ables distributed according to N (0,Σg), such that g =
gl + ge. The covariance matrix Σg may, for instance, be

obtained from camera calibration measurements. Then, the

brightness change constraint equation (BCCE) for locally

constant displacement [10, 2] imposes the existence of op-

tical flow fx, fy ∈ R which is constant with respect to the

chosen patch, i.e.


(∂xgl)1 (∂ygl)1
...

...

(∂xgl)k (∂ygl)k




︸ ︷︷ ︸
Al

(
fx

fy

)
= −




(∂tgl)1
...

(∂tgl)k




︸ ︷︷ ︸
bl

.

(19)

Note that A, Ae ∈ R
m×2 and b, be ∈ R

m can be defined by

replacing gl by g and ge, respectively, in eq. (19). Statisti-

cally appropriate motion estimation now means solving the

EIV problem (A, b,Σ) with

Σ = cov(vec([A, b]))

=


 LxΣgL

T
x LxΣgL

T
y LxΣgL

T
t

LyΣgL
T
x LyΣgL

T
y LyΣgL

T
t

LtΣgL
T
x LtΣgL

T
y LtΣgL

T
t


 .(20)

A covariance matrix for optical flow estimation from 3 ×
3× 3 neighborhoods is shown in the first graph of Figure 1.

Since the linear filters induce correlated Gaussian noise

with the non-block-diagonal covariance matrix (20) in the

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 1, 2008 at 08:43 from IEEE Xplore.  Restrictions apply.



TLS ETLS MR
0

1

2

3

4

5

6

7
x 10

−3 SNR=100

TLS ETLS MR
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014
SNR=50

TLS ETLS MR
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
SNR=20

TLS ETLS MR
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
SNR=10

TLS ETLS MR
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
SNR=5

TLS ETLS MR
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
SNR=2

TLS ETLS MR
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
SNR=1

TLS ETLS MR
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
SNR=0.5

Figure 2. Error box plots of results for TLS, ETLS and MR for a randomly chosen plane fitting problem in 3d-space with randomly

correlated noise for different SNRs

estimated gray value derivatives, it stands to reason to em-

ploy the MR method proposed here to obtain a maximum

likelihood estimate. To examine the performance of the

proposed estimator we minimize the influence from other

sources of errors. In order to avoid ambiguous solutions

due to the aperture problem [9], to minimize interpola-

tion errors, and to avoid optical flow model violations, we

have generated an artificial image sequence with structure

on multiple scales with constant motion in the direction

[−1,−1] for an intensity range [0, 1] as depicted in Figure

4.

Figure 4. Randomly generated test sequence for optical flow esti-

mation with constant motion [-1,-1]

Derivatives are computed by the isotropy optimized

Scharr filters [14] of spatio-temporal size 3 × 3 × 3. The

size of the patches for which constant motion is assumed is

set to 3 × 3 × 1. The resulting covariance matrix is given

by equation (20). The error of the solution is computed as

the length of the difference vector between ground truth and

calculated optical flow vector as indicated in (17). The se-

quence is perturbed by additive Gaussian noise of standard

deviation 0.0005, and the optical flow is computed for 100
pixels in this sequence. Figure 5 shows the cumulative dis-

tribution functions and histograms of the errors for the TLS,

the ETLS and the MR method. The results suggest that the

ETLS and MR method yield lower optical flow errors than

the TLS method, which is due to the violated assumption

of uncorrelated noise made by TLS. Comparing the perfor-

mance of the ETLS and MR method we come to the conclu-

sion that the MR method yields slightly better results than

ETLS. The reason why the results are only slightly better

lies in the fact that the covariance matrix generated by the

linear derivative filters is singular due to linear dependen-

cies between filter results. Hence, we have used the Moore-

Penrose pseudo inverse to compute the Mahalanobis norm.

Thus, we can conclude that for the application of plane

fitting the proposed MR method yields better results than
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Figure 5. Cumulative distribution functions and histograms for

TLS, ETLS and MR methods for optical flow error

the TLS and ETLS method. In case of optical flow estima-

tion the results are superior to the TLS method, but only

slightly superior to the ETLS method due to the singularity

of the covariance matrices in optical flow estimation.

5. Conclusion and Perspectives

We have proposed a maximum likelihood estimator for
linear EIV models with additive Gaussian noise of zero
mean and arbitrary positive-definite covariance. Previous
approaches differ in that they either consider subspace es-
timation or impose restrictive constraints on the covariance
matrix of the multivariate normal distribution. The estima-
tor we propose requires the minimization of a non-convex
multivariate polynomial which we address by means of two
iterative numerical optimizers, a Newton method and mini-
mization by coordinate descent. We identify Gröbner bases
as a tool to in principle reduce the problem algebraically to
finding roots of a sequence of univariate polynomials. To-
wards application, we have demonstrated that the proposed
estimator clearly outperforms TLS and ETLS in a regres-
sion problem, where planes are fitted to clouds of points
jittered by randomly correlated noise. In addition, we have
shown by the example of optical flow estimation that co-
variance matrices, for which the proposed estimator could
prove beneficial, arise canonically in computer vision from
the use of linear filters. In the case of positive semi-definite
covariance matrices it is insufficient to replace Σ−1 by the
Moore-Penrose pseudo-inverse of Σ, so a detailed analysis
of this setting is subject to future research. Moreover, we
expect the estimator to be particularly useful in regression
residual analysis (e.g. [1]), where not only the solution x to
the regression problem, but also the corrections to the data
are considered.
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