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Abstract

The Henon-Heiles Hamiltonian was introduced in 1964 [Mertdn, C. Heiles, Astron. J. 69 (1964) 73] as a mathematical
model to describe the chaotic motion of stars in a galaxy. By canonically transforming the classical Hamiltonian to a Birkhoff—
Gustavson normal form, Delos and Swimm obtained a discrete quantum mechanical energy spectrum. The aim of the present
work is to first quantize the classical Hamiltonian and to then diagonalize it using different variants of flow equations, a
method of continuous unitary transformations introduced by Wegner in 1994 [Ann. Physik (Leipzig) 3 (1994) 77]. The
results of the diagonalization via flow equations are comparable to those obtained by the classical transformation. In the
case of commensurate frequencies the transformation turns out to be less lengthy. In addition, the dynamics of the quantum
mechanical system are analyzed on the basis of the transformed obser@:1989. Elsevier Science B.V. All rights reserved.
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PACS:03.65—~w; 05.45.+b

1. Introduction

The Henon—Heiles Hamiltonian describes two one-dimensional harmonic oscillators with a cubic interaction (cf.
[1]). It is one of the simplest Hamiltonians to display soft chaos in classical mechanics: by increasing the total
energy a transition from an integrable to an ergodic system is induced. Originally conceived to model the chaotic
motion of stars in a galaxy it later became an important milestone in the development of the theory of chaos [3],
partly because of the conceptual simplicity of the model.

In order to investigate this continuous loss of integrability with growing total energy Gustavson [4] transformed
the classical Hamiltonian by a series of canonical transformations to a Birkhoff-Gustavson normal form [5], which
allowed him to construct an additional constant of motion. Thus he was able to analytically reproduceéPoincar
surfaces of section as obtained by numerical integration.
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The present work is based upon two publications [6,7] in which Delos and Swimm used the classical Birkhoff
transformation [5] as applied by Gustavson to analyze how the classically chaotic behavior of the system is trans-
formed into quantum mechanics. The Birkhoff—Gustavson normal form is a power series in oscillator Hamiltonians
and thus allows a direct determination of a quantum mechanical eigenvalue spectrum from the classical Hamilto-
nian. For a fixed set of parameters Delos and Swimm analytically calculated the spectrum éhthre-Heiles
Hamiltonian which reproduced the eigenvalues obtained by numerical diagonalization of finite matrices.

The main problem of the quantum mechanic@ndn—Heiles Hamiltonian is the fact that it is not bounded
from below. It contains a cubic potential. The classical motion discussed by Gustavson and by Delos and Swimm
corresponds to initial conditions near the local minimum of the potential and to an energy that is below the saddle
point value of the potential. By these conditions the classical motion is always restricted to a finite region. In
the corresponding quantum problem, the particle will always tunnel through the barrier. Therefore the eigenvalue
spectrum calculated by Delos and Swimm is not the real eigenvalue spectrum of the Hamiltonian. It describes
effective states that can be used to describe the dynamics near the minimum of the potential and for times that are
small compared to the escape time.

The aim of the present paper is to first quantize the classical Hamiltonian and to then diagonalize it using the
method of flow equations, which was introduced by Wegner [2] in 1994. It is clear that concerning the tunneling
problem, the flow equations have the same limitation as the quantization of the Birkhoff-Gustavson normal form
by Delos and Swimm. The bound states and the eigenvalues obtained using flow equations allow only an effective
description for small times. One advantage of the flow equations is that a correct and simple treatment of the system
is possible even if the two frequencies of the harmonic oscillators are commensurate. This is not the case if Birkhoff—
Gustavson normal form is quantized. Furthermore, the quantum mechanical treatment allows a description of the
dynamics.

The structure of the paper is as follows. The next section offers a general introduction to the flow equation method.
In Sections 3 and 4 their application in two variants to tlembh—Heiles model is treated. Section 5 contains some
results of the diagonalization: in a table the energy eigenvalues obtained in the flow equation approach are compared
with those obtained by numerical matrix diagonalization for a fixed coupling constant. A graph shows the dependence
of the calculated eigenvalues upon the coupling strength. In Segaase of commensurate frequencies is treated
and a similar table of eigenvalues is obtained. Section 7 offers a method to investigate the dynamics of the quantum
mechanical system, transition amplitudes between the eigenstates of the uncoupled system are determined. The
effect of growing coupling strength upon the transition amplitudes is shown. Section 8 contains a summary of the
results of the present work, gives a comparison to the work of Delos and Swimm and a discussion of the limitations
of the Birkhoff-Gustavson transformation.

2. Flow equations

The method of flow equations consists in a continuous unitary transformation of a given Hamilton operator
which can be written in differential form

dH()

T [n(), HD]. (2.1)

There are several possibilities to choose the antihermitian gengrstahatH(co) becomes diagonal. Wegner [2]
proposed

n() =[Ha(), HDO] = [Ha(), H- (D], (2.2)

whereH,; and H, are the diagonal and the off-diagonal portions of the Hamilton operator, respectively. A detailed
argument for the usefulness of this choice of the generator can be found in [2]. But the consistency can be easily
verified, since in the limit — oo as H(/) becomes more diagonadl) will vanish and so will dH(/)/d!.
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Fig. 1. Henon—Heiles potential Eq. (3.1) € —0.1,n = 0.1, w = 1.3,v = 0.7).

The flow equation method has been applied to various models (see e.g. [8-12]). The general behavior is such that
terms that appear in (2.2) will result in new terms in the transformed Hamilton operator by (2.1). If this iterative
process does not result in a closed set of differential equations it can be forced into such by defining an order for
the appearing terms — e.g. the number of creation operators in them — and neglecting all terms of higher order. This
approach will be calledut-off

A second approach to handle the system of differential equations (2.1) and (2.2) for a given Hamilton operator
H = H,(0) + 1 H,(0) is to define the transformed Hamilton operator as a power series in the coupling canstant

H() = Zkka(l). (2.3)

k=0

The coefficientsH (/) can be determined iteratively and this method shall be cétedtion. Both of these pro-
cedures — the cut-off and the iteration — will become more transparent as they are applied émdme-tHeiles
Hamiltonian in the next two sections.

3. The cut-off procedure
The Henon—Heiles Hamiltonian can be expressed as a function of two spatial coordinatety, and the two
momentap1 and p; (see Fig 1):
H = 3w(pi +q7) + 3v(p5 + 43) + Aq2(q5 + ngb). (3.1)
Quantizing this classical Hamiltonian using the operators
=Larip. o =2
a .= —— y a' = —
N V2
will give the Hamilton operator

(q—ip) (3.2)

H=waa+vbb+rbT +b) ((aT ra?+n0b! + b)2> , (3.3)

where the coupling constahthas been rescaled and the constant term dropped.
This Hamilton operator is to be transformed into the quantum mechanical equivalent of a Birkhoff normal form,
a power series in oscillator Hamiltonians

H— Z ﬂkm(aTa)k(bTb)’" = Z wkmaTkakambm. (3.4)
k,m=0 k,m=0
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The generalized frequenciesg,, are obtained from the transformed Hamilton oper&@ in the limit/ — oco. A
consistent ansatz H(/) = H;(l) + H,(I) where

Hy(l) = wh)a a + v)b b + 22[wool) + wao(l)a2a? + woa()b 262 + war(Da abTh]
and
H() =@2+ T +5)x10) + @2 = 0T = b)xo) + @)@+ b)x3) + T + 63 xa0)
120+ T2 xs(1) + BT + b)xsD)]. (3.5)
Thel-dependent coefficients are determined from (2.1) and (2.2) which combine to

S — Wk ), )+ U, 1) ). (36)

Neglecting all terms of third order i or higher we obtain the following set of differential equations by coefficient
matching:

w60 = —4x§v — 8x%w — 8x1x2v — 16x1xow — 36x§v — ngv — 4xgv — 8x§w,

w = —Sx%v - 16x§w — 16x7x2v — 32x1x0w — ZX%U — dx3xgV — 8x%v — 16x%w,
T —lﬁxiw — 16x1x00 — 108x‘21v — 4x§v — 8xsxgv — lﬁxgw,

why = —4x2v — 16r1xw — 2x30 — 4x3v,

w); = —32¢2w — 32x1x2v — 8x3xsv — 32¢3w),

wpy = —54xqv — 6x2v,

= —x1v2 — 4x1u)2 — 4dxovw,

1

xy = —4xqvw — X202 — dxow?,

x5 = —x3v°,

Xy = —9x40°,

X = —xs5v2,

X = —xgv°. (3.7
The equations foks, ... , xg are all of similar type, the equations fa; are uncoupled. The system can therefore
be reduced to five equations. It could not be solved analytically. But the asymptotic behavior fot imte
following:

Assume thatv(l) = w(oco) = we andv(l) ~ v(co) = v. Then the off-diagonal elements show an exponential
decay (except in the case of commensurate frequenaigsL vo, = 0):

x1(0) = co E>X|D(—(2woo + v0)? l) ,
x2(0) = co eX|O(—(2woo + V)2 l) ,

xa() = do exp(—vgo : z) . (3.8)

The diagonalized Hamilton operator was determined by numerical integration of (3.7) using a Runge—Kutta
procedure. For various sets of fixed parameters the approximation was improved by extending the calculation to
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all terms up to fourth order iin. The resulting set of differential equations for coefficients. . . , x48, w, v and
the coefficientsw;; corresponding to the diagonal operat()azgia") (bT«/'bf) were also determined by numerical
integration. An eigenvalue spectrum obtained from the transformed Hamiltonian in the4imito was calculated
for different values of the coupling constantResults of these calculations are presented in Section 5.

4. The iterative procedure

Afarmore elegantway to solve the flow equation (2.1) for tkebh—Heiles Hamiltonianis an iterative calculation
of the H, (1) defined in (2.3). It avoids the numerical integration applied in the previous section and allows a better
insight into the transformation mechanism, specifically the behavior in the case of commensurate frequencies.
The Hamiltonian (3.3) is given in the form

H(0) = Ho(0) + AH1(0) with Ho(0) = wa'a + vbTh. (4.1)

The transformed Hamiltonian is defined as a power serigg213). In deviation from the original choice (2.2), the
generator is now defined as

n() = [Ho, H)] = ) A*m(),  where n; = [Ho, Hy]. (4.2)
k=1

This choice ofy is in accordance with the classical Birkhoff transformation as applied by Gustavson [4]. It makes
the iterative calculation simpler, since commutation wiiywill reproduce a given operator teratka’ b 1M b
[[Ho, aTka’bT'"b"] : Ho] — —eppmna kT, (4.3)

whereegmn = [(k — r)w + (m — n)v]?. Inserting the power series (2.3) for the transformed Hamiltonian into the
flow equation (2.1) and comparing the coefficients of the poweksgives the differential equations

dH, (1
WO — o, H Hol + Y [Ho Hi Hi] ¥n =012, . (4.4)
prors

It follows that Hy = const. andH, (/), k = 1, 2, ... can be iteratively calculated: inserting the general ansatz

Ho) =Y Stomn®) b (4.5)

k,r,m,n

into (4.4) results in differential equations of the form

d .

aakrmn (D) = —€krmn Strmn (D) + Qprmn (D) (NO SUMMAation, (46)
wheree,.,, > 0 was defined above. The functiag.,, (1) can be shown to be a sum of terms of the form

cl" exp(—yl) (c=const,y>0,n=0,1,2,...). 4.7)

The solution to (4.6) is

1
Skrmn (1) = €XP(—€krmn - Z)A A’ ctkmn (1) exmfkrmnl/)~ (4.8)

Ignoring for a moment the inhomogeneity...,, (/) we find the following behavior: all terms will decay exponentially
except for two cases in whiah,,,,, may vanish:

(i) The given operator term*a’b 1" p" is diagonal k = r andm = n).



128 D. Cremers, A. Mielke / Physica D 126 (1999) 123-135

Table 1
Comparison between flow equation calculations and numerical data in a case ofincommensurate frequenti8sy= 0.7, . = —0.1,n =
0.1)

n ni no Cut-off Iterat.4 Iterat.8 Numerical = Efree A (%)
1 0 0 1995567 0995521 0995525 0995519 100 0133899
2 0 1 1687242 1687013 1687010 1686994 170 0123020
3 1 0 2278543 278179 278170 278132 230 0173770
4 0 2 2375702 2375106 2375064 2375036 240 0112162
5 1 1 2959696 2958536 2058439 2958353 300 0206497
6 0 3 3060918 3059734 3059592 3059551 310 0101362
7 2 0 3549267 3548183 3548119 3547947 360 0330432
8 1 2 3637534 3635141 3634827 3634664 370 0249480
9 0 4 3742857 3740832 3740491 3740435 30 0094015
10 2 1 4219694 4216860 4216555 4216180 430 0447387
11 1 3 4312030 4307926 4307197 4306912 440 0306162
12 0 5 4421492 4418334 4417653 4417578 450 0090995
80 1 14 11502109 11437765 11386826 11348431 1210 5108646
81 8 1 11496693 11460618 11465128 11412886 1210 7.603105
82 7 3 11535246 11478808 11477820 11415802 1220 7.908462
83 6 5 11591118 11517846 11506570 11432484 1230 8540015
84 5 7 11664419 11578700 11552905 11470273 1240 8887770
85 0 16 11659609 11614802 11583460 11532429 1220 7.644281

(i) The frequenciesw andv are commensurate.
It can be seen that the inhomogeneigy,,,, (/) will not change this general behavior. Thus the transformation can
be successfully performed in the case of incommensurate frequencies and only diagonal terms will remain in the

limit [ — oo. In the case of commensurate frequencies off-diagonal opemJEbnébTmb" may only remain for
€krmn = 0.

Since the number of terms i (/) grows rapidly withk the described procedure with all its algebraic manipula-
tions was performed by a computer program in the language C. Thiglgiay . , Hg were determined. The results
of these calculations will be presented in the following section.

5. Results of the diagonalization

The two procedures described in the last two sections were applied t@timnHHeiles Hamiltonian (3.1) in a
case of incommensurate frequencies with the values1.3,v = 0.7,A = —0.1,n = 0.1. The iteration procedure
to eighth order results in the following diagonal form fa& —0.1):

H =2.20910- 10 74154 4+ 1.19855. 1044 a%»Th + 2.17973 1064 44
+1.54236. 1075413435122 1 4.12440. 108472 a3 T — 8.65783 1075413 3
1+6.09731- 1078412 425133 — 4.99568. 1076412425252 — 0.00030: 124255 — 0.00634: 1242
—2.46444- 1074t abTp* — 6.97206. 10781 abT3p3 — 0.00022:Tap 22 — 0.01121 b p
4128264 a + 3.44234. 107155 — 2.84772. 1077514 p* — 1.59258. 1051313
—0.0017% 1252 + 0.6914% 15 + 0.99552 (5.1)

Table 1 shows the eigenvalue spectra derived from the transformed Hamiltonian for the cut-off procedure carried
out to fourth order and for the iteration procedure to fourth and to eighth ordefime numerical calculations were
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Fig. 2. The eigenvalues for the quantum numbers of the lowest 12 eigenstates-a.1 as a function of the coupling strengttin the cut-off
procedure to third order (above) and the iteration procedure to eighth order (below). The numerical integration breaks down for large coupling
(above).

performed by diagonalizing a 96®00-matrix using FORTRAN-routines presented in [13]. The exrgives the
relation of the deviation from the numerical value with respect to the total shift due to the coupling

Elterg — Enum

A= ‘ (5.2)

Enum — Efree

It was calculated for the values of the iteration procedure to eighth order.

The calculated spectrum reproduces the numerical data well. For the fixed value 6f1 the iteration pro-
cedure gives better results than the cut-off procedure. Iteration to higher orders does not necessarily improve the
approximation of the numerical data: the ground state energy is more accurate for the iteration to fourth order than
for the iteration to eighth order. Therefore there is no monotonous convergence of the determined eigenvalues to the
exact ones with increasing order of iteration. Whether the eigenvalues determined in the flow equation procedure
are always above the exact ones could not be shown analytically.

One can determine how the energy eigenvalues for a given pair of quantum numbers changes as the coupling
strengthi is increased. The result is shown in Fig. 2 for 12 eigenvalues in the cut-off procedure to third order and
the iteration procedure to eighth order. With growing couplirige potential well in Fig. 1 becomes shallower and
the eigenstates move closer together. The eigenvalues decrease as the coupling is increased. Moreover, one finds
that states with higher energy’jat= —0.1 will drop faster than the lower states as the coupling is increased. This
is due to the fact that the eigenstates to higher eigenvalues are more spread out in space such that the effect of the
A qg-term in the potential (3.1) upon them is larger.

Comparison with numerical data seems to indicate that for larger coupling valudiseofut-off procedure gives
more accurate results than the iteration procedure. However, a precise quantitative analysis is not possible in the
A-range in which the eigenvalues from the two-flow equation procedures differ: for growing valuesiefhas to
restrict the numerical diagonalization to smaller matrices in order to avoid the effect of the continuum causing the
appearance of intermittent states (seen in Fig. 3).
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Fig. 3. Numerical diagonalization of a 92000-matrix. For 256.-values in the interval{40.5,~0.1] the first 29 eigenvalues above 0.7 were
determined. With growing perturbation the effect of the continuum becomes dominant.

Table 2
Comparison between several flow equation calculations and numerical data in a case of commensurate fregquentieésv(= 1.0, 2 =
-0.1,n=01)

n ni  np Cut-off Iterat.4 Iterat. 6 Improved Numerical Efree A (%)
1 0 0 0997021 0996989 0996990 0996990 0996987 1 84
2 1 0 1983815 1983444 1983415 1983415 1983420 2 0030
3 0 1 1991400 1991187 1991180 1991180 1991170 2 0111
4 2 0 2962272 2961007 2960816 2956997 2957081 3 0195
5 1 1 2968458 2967112 2966985 2966985 2066957 3 84
6 0 2 2985028 2984515 2984469 2988288 2988269 3 0162
7 3 0 3932391 3929514 3928861 3917954 3918277 4 B95
8 2 1 3937177 3933515 3933009 3926540 3026527 4 018
9 1 2 3952348 3949675 3949312 3960219 3960177 4 0105

10 0 3 3977903 3976969 3976841 3083311 3083255 4 331

11 4 0 4894173 4888802 4887144 4865409 4865039 5 ®74

12 3 1 4897560 4890232 4888878 4870960 4871053 5 72

13 2 2 4911331 4904683 4903555 4914437 4916403 5 2352

14 1 3 4935486 4931130 4930349 4948267 4948041 5 0435

15 0 4 4970025 4968546 4968277 4979130 4978266 5 073

16 4 1 5849605 5837100 5834141 5796496 5795370 6 650

17 5 0 5847617 5838708 5835184 5799784 5799166 6 B08

6. A case of commensurate frequencies

The two-flow equation procedures (Sections 3 and 4) were applied to the Hamiltonian (3.1) in a case of com-
mensurate frequencies) (= 1.0,v = 1.0,A = —0.1,n = 0.1). As shown in Section 4, off-diagonal terms will
not entirely disappear from the transformed Hamiltonian due to the commensurability. According to (4.3) and (4.6)
remaining off-diagonal operator terms are of the farbha’b b with €trmn = (k —r) + (m —n) = 0. They
couple statesni, np) for whichnq + np =const. Neglecting these off-diagonal terms, we obtained fairly accurate
eigenvalues. To account for the off-diagonal terms small tridiagonal matrices were numerically diagonalized within
the originally degenerate subspace. This improves the precision of the calculated eigenvalues. The cut-off procedure
does not have this problem. Since the oscillator frequencesd w in (3.3) are/ dependent (see (3.7)), initially
commensurate frequencies become incommensurate for/filhe results for the cut-off procedure to fourth order,
iteration procedures to fourth and sixth order and the improved values of the sixth-order iteration are listed in Table 2.
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A gives the error of the improved values with respect to the total shift due to the coupling

Eimpr. — Enum

A= ‘ (6.1)

Enum — Efree

7. Dynamics of the quantum mechanical system

In the framework of classical mechanics one can put a particle in the potential well (Fig. 1) and calculate the
trajectory for a given set of starting values. To model this classical approach in the framework of quantum mechanics
one can ask: How does a state originally located within the potential well evolve with time? The eigenstates of the
uncoupled oscillator are located within the potential well. Their time evolution is given by the Hamilton operator
H of the coupled system. The absolute value of the matrix element

(B| exp(iH!) | a) (7.1)

indicates how much of a particle is in stat@) after timer if the particle was located in stater) at time 0 where
| @) and| B) represent two of the eigenstates of the uncoupled oscillator.

To calculate such matrix elements the eigenstates of the uncoupled oscillator are expressed in terms of the
eigenstates of the full Hamiltonian of the coupled system. For this purpose one can set up flow equations for the
transformation of states which results in a fairly large set of differential equations. Since the transformation of the
Hamiltonian was already calculated there is an easier way to calculate the transformation of states which will be
explained in the framework of the iteration procedure introduced in Section 4.

In analogy with the transformation of the Hamiltonian one determines the transformed annihilation operator
a(l) = UT(l) a U(l) from the flow equations

da(l)
= [n(), a(D], (7.2)
dl
and the generator already known from the calculation &f(/). One obtains the annihilation operator as a power
series in the coupling constantsimilar to the one obtained for the transformed Hamiltonian (2.3) and (4.5). By
definition the transformed ground state of the uncoupled oscill&ipis given by

al=00) |0)=0, b(l=00)]0)=0 and (0]0)=1. (7.3)
These equations can be solved f@ as a function of the eigenstates, m) ., of the full Hamiltonian
e . .
10)= Y DA |n,m)e. (7.4)
n,m,i=0

One can then construct any exited stad¢ = aTk(oo) bTm(oo) | 0). In the following the abbreviations:= a(c0)
andb := b(oc0) will be used.

For several final statdsg) matrix elements of the type (7.1) are determined as a function time. Because of the
coupling of time and energy in the exponential function an expansion of the exponent in powersod thus in
powers oft — does not give the right long-term behavior. Therefore the exponential functions are not expanded. The
resulting matrix elements are of the form

(B expliHn) | o) =Y arlr B4, (7.5)
k

with coefficientsz;, and exponentsy. Ej represents a difference of energy eigenvalues which are determined in the
iterative process to the sixth powerxfThus if the coefficients of the expansionirare all of order 1 the phases
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Fig. 4. Transition amplitudeg(r) = (O | aUat | 0), (0] abUat | 0), (0| ab?Ual | 0) and(OaSUaT | 0) (in order of size) wheré& := exp(iHr),
a = a(oo) andb = b(c0).
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Fig. 5. (1 — Zﬁ | (BU | a) \2) with initial state| «) = af | 0) and the six final statgsg) mentioned abovel( := exp(i Hr)).

Et can be determined up to 1% accuracy in the range

0/‘\—21 =10 (7.6)

This gives only a rough estimate since Siegel [14,15] proved that the Birkhoff normal form will generally not
converge. This can easily be deduced from the fact that #r@h-Heiles potential is not integrable whereas any
polynomial in Birkhoff normal form will always be integrable. One expects an asymptotic convergence of the
expansion im such that the coefficients of higher powers\afill generally grow. Thus the time range in which

the calculated matrix elements are valid is smaller than the one given above.

For the initial staté «) = at | 0y amplitudes for the transition to the six final state®y = at | 0), atpt | 0),
aTb12 1 0),a73 | 0),a™31 | 0) andas13 | 0) were determined &t = —0.1. Fig. 4 shows the first four of them
as a function of time. Amplitudes for transitions to final states with an even numbétFMerators can be shown
to vanish.

The sum of their absolute values was subtracteohfio- in Fig. 5 — to showthat these are indeed the relevant
transitions. The amount of negative value in this figure gives an indication of the numerical error.

The parametex is a measure of the strength of coupling between the two harmonic oscillators (3.1). One expects
that a growing coupling value facilitates transitions between different states. Fig. 6 shows the square of the transition
amplitude(0 | a exp(i Hr) at | 0) as a function of time for various valuesxfMoreover, one finds that the dominant
oscillation frequency decreases with growing coupling.

I < tmax ~
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Fig. 6. Evolution of the first exited statef(r) |2 for the coupling values = —0.1, —0.15, —0.2 and—0.25 (in the order of growing amplitude),
where f(r) = (0| aexpiiHn a' | 0).

In the framework of quantum mechanics one expects a particle located within the potential well of Fig. 1 to tunnel
through the potential barrier with a certain probability. This probability depends upon the energy of the particle
and upon the size and geometry of the barrier. Thus the tunneling should become apparent if one investigates the
dynamics of higher exited states or if one decreases the size of the potential well by increasing the éoupling
Estimates of the tunneling frequency show that the effect of tunneling is negligible for—0.1. However, for
A = —0.25 tunneling should become apparent. In Fig. 6 one finds a modulation in the amplitude of oscillation
for A = —0.25. But this may also be a numerical artifact because in this range of coupling strength the numerical
precision decreases. Since the Birkhoff approach consists in approximating a power series by a finite polynomial,
any transition amplitude will always be a finite sum of harmonic oscillations. Therefore any calculated time evolution
will necessarily be periodic in time.

Physical observables can be calculated in essentially the same way as was shown for the transition amplitudes
(7.1). Using the relations

qg= %Z(a-r—}-a), D= %(aT—a). (7.7)

for spatial and momentum coordinates one can easily calculate expectation values of ttig foento | U 1Lc}zU |
a), which show a similar oscillatory behavior as that in Fig 4.

8. Summary and outlook

In this paper we calculated effective eigenvalues of the quantum mecham@aahHHeiles Hamiltonian using
flow equatios — a method of continuous unitary transformation proposed by Wegner [2]. We used two different
procedures to solve the flow equations — an iterative procedure and a cut-off procedure. The cut-off procedure has
been used before in several applications of the flow equations. It seems to be most appropriate if a (perturbative)
renormalization of the Hamiltonian has to be done. This is not necessary in the present case. The cut-off procedure
has the disadvantage that in most cases it is difficult to solve the resulting differential equations explicitly. Often one
can extract the asymptotic behavior and based thereon an approximate solution. But if one wants to have precise
numerical results, one has to solve the differential equations numerically. The main advantage of the iterative
procedure is that the differential equations can be solved explicitly and that it can be carried out to much higher
orders.
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We used both methods to calculate the eigenvalue spectrum oféhenHHeiles Hamiltonian. In a case of
incommensurate frequencies the eigenvalues coincide well with those obtained by numerical diagonalization of a
finite matrix. In the treated case the precision of results is comparable to that obtained by Delos and Swimm [7] who
used consecutive canonical transformations to approximate the classical Hamilton function by a Birkhoff normal
form. For small coupling value the iteration procedure gives more accurate results whereas for larger coupling values
the cut-off procedure seems to be better. However, for very large coupling the potential well decreases in size and
the discrete spectrum disappears. This is found in a series of numerical matrix diagonalizations at various coupling
values.

The case of commensurate frequencies can be treated in essentially the same way, matrix diagonalization shows
good agreement with numerical results. In the commensurate case the diagonalization procedure is much less lengthy
than that presented by Delos and Swimm. A quantitative comparison to their results is not possible since the normal
form cited in [7] does not correspond to the given parameter set. Also the presented eigenvalue spectrum does not
match with either the parameter set given or the normal form cited.

On the basis of the transformation of eigenstates we analyzed the quantum mechanical dynamicérfthe H
Heiles system. We determined the time evolution of a set of states located within the potential well. We found
oscillations between different states with amplitudes depending on the coupling strength. A certain completeness
is found by adding up absolute values of several transition amplitudes.

It is interesting to see that continuous unitary transformations can be used to obtain precise results for a system
like the quantum mechanicalddon—Heiles model. The method was originally designed to calculate eigenvalues
of a given Hamiltonian, at least approximatively and close to the ground state [2]. In many applications of the
method, the goal was to obtain an effective Hamiltonian that describes well the low energy behavior of the system
(see e.g. [8-11]). The effective Hamiltonian calculated in the present approach is in a quantum mechanical Birkhoff
normal form, i.e. a polynomial in the oscillator Hamiltoniang + ¢2). It does not describe thg?-shape of the
Henon-Heiles potential for large absolute valueg.ofhe energies we calculated using this method are energies
of approximately stationary states. As a consequence one cannot describe the tunneling through the barrier. This
limitation is not imposed by the flow equation method. Even numerical diagonalizations will not allow a correct
description of the tunneling. But for sufficiently large escape times the results describe the short time behavior of
the system quite well.

The transformation to a Birkhoff normal form yields an asymptotic series because the clagsicaHHeiles
system shows a transition to a chaotic regime. In principle the flow equations can be successfully applied to a quantum
mechanical Hamiltonian that has a chaotic classical counterpart (see also [12]). A first focus of interest for such a
system are statistical properties of the spectrum [3]. Flow equations can be used to calculate precise eigenenergies.
The way normal ordering is introduced determines the interval of energy where precision is high. Typically one has
to restrict the number of couplings in the Hamiltonian using some truncation scheme. The neglected terms are in
a normal ordered form. If one chooses the ground state as the basis for the normal ordering, the resulting effective
Hamiltonian describes the ground state and low lying excitations quite well. In the present approach the normal
ordering was introduced with respect to the ground state of the uncoupled system. Therefore we were able to obtain
precise results for energies close to the minimum of the potential. One could also choose a normal ordering with
respect to some high energy state in order to calculate eigenenergies close to this energy scale. While this approach
is not sensible in the case of th&hbn—Heiles system, because the potential well has only a limited depth, it can
be useful for other physical systems.
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