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Abstract

Background

The enteric pathogen Salmonella is the causative agent of the majority of food-borne bacterial poisonings.
Resent research revealed that colonization of plants by Salmonella is an active infection process. Salmonella
changes the metabolism and adjust the plant host by suppressing the defense mechanisms. In this report we
developed an automatic algorithm to quantify the symptoms caused by Salmonella infection on Arabidopsis.

Results

The algorithm is designed to attribute image pixels into one of the two classes: healthy and unhealthy. The
task is solved in three steps. First, we perform segmentation to divide the image into foreground and
background. In the second step, a support vector machine (SVM) is applied to predict the class of each pixel
belonging to the foreground. And finally, we do refinement by a neighborhood-check in order to omit all
falsely classified pixels from the second step. The developed algorithm was tested on infection with the
non-pathogenic E. coli and the plant pathogen Pseudomonas syringae and used to study the interaction
between plants and Salmonella wild type and T3SS mutants. We proved that T3SS mutants of Salmonella
are unable to suppress the plant defenses. Results obtained through the automatic analyses were further
verified on biochemical and transcriptome levels.
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Conclusion

This report presents an automatic pixel-based classification method for detecting “unhealthy” regions in leaf
images. The proposed method was compared to existing method and showed a higher accuracy. We used
this algorithm to study the impact of the human pathogenic bacterium Salmonella Typhimurium on plants
immune system. The comparison between wild type bacteria and T3SS mutants showed similarity in the
infection process in animals and in plants. Plant epidemiology is only one possible application of the
proposed algorithm, it can be easily extended to other detection tasks, which also rely on color information,
or even extended to other features.

Background

Numerous bacteria, pathogenic to humans and other mammals, are found to thrive also on plants, Salmonella
enterica, Pseudomonas aeruginosa, Burkholderia cepacia, Erwinia spp., Staphylococcus aureus, Escherichia
coli O157:H7, and Listeria monocytogenes are able to infect both animal and plant organisms [1–5]. Among
these, Salmonella, a genus of Gram-negative enteropathogenic bacteria, are the causal agents of both
gastroenteritis and typhoid fever. They are responsible for an estimated one million casualties and about 100
million human infections annually. Not only in developing countries in Africa or South-East Asia, where typhoid
and paratyphoid fever are unfortunately still prevalent, but also in developed communities salmonellosis is still
not vanquished. The most common mode of infection in humans is by ingestion of contaminated food or water.

Plants can be the source of infection

Many reports have linked food poisoning with the consumption of Salmonella-contaminated raw vegetables and
fruits (for review see [2, 6]). A large study conducted in the European Union revealed that in 2007, 0.3% of
products were infected with Salmonella bacteria [7], during the same time in UK, the Netherlands, Germany, and
Ireland 0.1 to 2.3% of pre-cut products were contaminated [7]. In the USA, the proportion of raw food-associated
salmonellosis outbreaks increased from 0.7% in the 1960s to 6% in the 1990s [8], and crossed 25% in recent
years [9]. In order to monitor the molecular subtype pattern of the outbreak strains a national program (PulseNet)
was created in the USA [10]. This program significantly improved the identification of outbreaks and their
sources. Most studies on Salmonella-plant interactions suggested an epiphytic lifestyle of Salmonella on plants.
However, a growing body of evidence points to an active process in which bacteria infect various plants and use
them as viable hosts [11–20]. In this report we developed an automatic algorithm to quantify the symptoms
caused by Salmonella infection on Arabidopsis plants. The algorithm is designed to attribute image pixels into
one of the two classes: healthy and unhealthy. We show that it outperforms other algorithms developed for this
task. It was tested on infection with the non-pathogenic E. coli and the plant pathogen Pseudomonas syringae
and subsequently used to study the interaction between plant host and Salmonella wild type and T3SS mutants.
We proved that T3SS mutants of Salmonella are unable to suppress the plant defense mechanisms. Results
obtained through the automatic analyses were further verified on biochemical and transcriptome levels.

Automatic classification as key concept to objective analysis

During the last few years, image classification has proved increasingly useful in biology, as numerous tasks have
been simplified with the help of automated image classification [21–23]. Plant diseases need to be controlled for
at least two reasons: to maintain the quality of food produced by farmers around the world and in order to reduce
the food-borne illnesses originated from infected plants [24]. Thus, automatic identification of “unhealthy”
regions in leaf images is a useful tool for various biological research projects aiming the control of diseases or
characterization of plant defense mechanisms [25, 26]. There is a wide variety of plant diseases caused by either
environmental factors (nutrition, moisture, temperature, etc.) or by other organisms (fungi, bacteria, viruses).
However, in most cases the common symptom is the change of the leaf color. A good color variation model can
be employed to distinguish “healthy” and “unhealthy” regions in leaf images. A probabilistic algorithm,
employing a Gaussian mixture model (GMM) and a Bayesian classifier to classify disease symptoms in
Arabidopsis plants was presented in [27]. However, because the estimation of a robust GMM is not always
possible from the real data, results from Bayes-like classifiers can be inaccurate. To overcome this limitation we
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propose a different classification strategy. The algorithm described in this report uses color feature space as input
for learning algorithm (Support Vector Machine (SVM)) which classifies the pixels of leaf images.

Biological Background

Type III secretion system is responsible for effectors delivery

Salmonellosis develops after the bacteria enter epithelial cells of the intestine [28]. Studies of the infection
mechanisms in animals have shown that Salmonella actively remodel the host cells physiology and architecture,
and suppress the host immune system by injecting a cocktail of effectors delivered by Type III Secretion Systems
(T3SSs). Salmonella enterica subsp. enterica has two distinct T3SSs, T3SS-1 and T3SS-2, encoded by the
Salmonella Pathogenicity Islands (SPI) SPI-1 and SPI-2, respectively [29, 30]. T3SS-1 secretes at least 16
proteins of which 6 were shown to interact with the host signaling cascades and the cytoskeleton. T3SS-2
secretes at least 19 Salmonella enterica-specific effector proteins that are involved in survival and multiplication
within the host cell [31, 32]. The expression and the secretion of SPI-1 and SPI-2 encoded effectors are tightly
regulated. Recently, a sorting platform for T3SS effectors was reported that determines the appropriate hierarchy
for protein secretion [33]. In this study, the authors identified the cytoplasmic SpaO-OrgA-OrgB complex, which
enables the sequential delivery of translocases before the secretion of the actual effectors. Furthermore, the
authors described the role of specific chaperones in the recognition and loading of effectors into the sorting
SpaO-OrgA-OrgB complex. In conclusion, it was postulated that similar sorting platforms might exist in other
T3SSs as their components are widely conserved. Many recent reports suggest that the mechanisms used by
Salmonella to infect animal and plant hosts might be similar [20, 34].

Effector proteins defeat immune system

In the battle between pathogen and its host, the pathogen needs to suppress the host immune system in order to
establish a successful infection. The early line of immunity relies on the recognition of conserved
pathogen-associated molecular patterns (PAMPs) by host-encoded pattern recognition receptors (PRRs) and
thereby the activation of an array of defense responses called PAMP-triggered immunity (PTI). The best-studied
PAMP in plants is flg22, a conserved 22 amino acid peptide from the bacterial flagellar protein flagellin,
recognized by the PRR FLAGELLIN INSENSITIVE 2 (FLS2) [35]. During infection, pathogens secrete
effectors with the aim to suppress PTI and cause effector-triggered susceptibility (ETS). In a second layer of
defense, intracellular resistance proteins (R-proteins) recognize pathogen effectors and activate effector-triggered
immunity (ETI). The plant pathogen Pseudomonas syringae injects about 40 effectors into plant cells. Among
these, AvrPto, AvrPtoB and HopAI1 attenuate the flg22-induced defense responses [36–38]. Strikingly, HopAI1
is also present in animal/human pathogens such as Shigella spp. (OspF) [39, 40] and Salmonella spp.
(SpvC) [41], where it interacts with the mitogen-activated protein kinases (MAPKs) ERK1/2 and p38. The role
of multiple Salmonella effectors in animal infection has been described (reviewed in [42]), but a functional proof
of Salmonella effector action in plants is still missing. Nonetheless, several lines of evidence point to an active
interaction between these bacteria and plant hosts.

Salmonella suppresses plant defenses

Two very recent studies report the suppression of the plant immune system by Salmonella [34, 43]. The authors
showed that in contrast to wild type living bacteria, dead or chloramphenicol treated bacteria elicited an oxidative
burst and pH changes in tobacco cells. A similar response was provoked by the invA− mutant, which has no
functional SPI-1 T3SS [34]. Those results suggest that Salmonella depends on the secretion of effectors during
plant infection and actively suppresses the immune response. We observed similar phenomena during infection
of Arabidopsis [43]. Salmonella T3SS mutants were compromised in virulence towards the wild type Col-0
plants. Comparison between global transcriptome profiles of Arabidopsis plants infected with wild type
Salmonella or the prgH− (T3SS-1) mutant revealed 649 genes, which are upregulated upon challenge with
prgH− mutant but not with the wild type Salmonella. GO term enrichment analysis (AmiGO version 1,7) [44] of
these 649 prgH−-specific genes showed an overrepresentation of genes related to responses to biotic stress,
relations with other organisms and defense mechanisms [43]. Moreover, challenge with T3SS mutants provoked
stronger symptoms on Arabidopsis plants suggesting that those mutants are not able to suppress plant defenses.
Those symptoms could be, at least to some extent, part of the hypersensitivity response (HR). HR is a common
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defense mechanism against biotrophic and hemibiotrophic pathogens, resulting in localized cell death and
therefore arresting the proliferation of pathogen. However, successful pathogenic bacteria evolved mechanisms
to suppress this resistance mechanism. In a simplified manner one could describe a very fast and strong
occurrence of chlorotic and dead tissues after infection with Salmonella as resistance mechanism. On the other
hand, necrotic and lysed tissues suggest no resistance capabilities. This distinction served as the base for an
automatic analysis of infection symptoms caused by wild type Salmonella and four distinct T3SS mutants as well
as the plant pathogenic Pseudomonas syringae and the nonpathogenic E. coli.

Image-Based Classification

A good color variation model can be employed to distinguish “healthy” and “unhealthy” regions in leaf images.
A probabilistic algorithm, employing a Gaussian mixture model (GMM) and a Bayesian classifier for classifying
disease symptoms in Arabidopsis plants was presented in [27]. However, results from Bayes-like classifiers can
be inaccurate, because the estimation of a robust GMM is not always possible from real data. To overcome these
limitations we propose here a different classification strategy. The algorithm described in this paper uses color
feature space as input to a well-known machine learning algorithm (Support Vector Machine (SVM)) to classify
the pixels of a leaf image. Figure 1 presents an overview of the steps described in this paper. First a segmentation
method, described in section Segmentation, is applied to obtain a binary image with only foreground and
background information. Each pixel belonging to the foreground region is then given as an input to a linear SVM
classifier (described below) to predict the class to which it belongs. After identification of all pixels belonging to
the foreground, the neighborhood information is used to alter the result of pixels classified as “unhealthy”. The
following neighborhood-check method is described in section Neighborhood. Parts of this work have been
previously published in [45].

Figure 1 Overview of the proposed algorithm. Input image is a Arabidopsis leaf with almost monochromatic
background. First, segmentation method is applied to obtain the pixels belonging to the leaf. Second, each pixel
belonging to the leaf is classified using linear SVM classifier. Finally, the output from classifier is further refined
through neighborhood-check method to obtain the output image

Segmentation

In the first step, we needed to separate the pixels belonging to a leaf (foreground) and not belonging to the leaf
(background) in the input image. The input used in this study were leaf images with almost monochromatic
background. Besides reducing the computational cost in the next step, a good segmentation method can also
improve the overall result by eliminating any misclassification outside the leaf boundary. Therefore, we divide
the image into foreground and background so that only the pixels belonging to the foreground are considered for
classification in the next step. The binary segmentation of an image I : ! → [0, 1]3 ⊂ R3

1 with ! ⊆ R2
1 can be

seen as separation of the image plane ! into disjoint regions !obj and !bgd, with ! = !obj ∪ !bgd ∪ ", where "

denotes the contour of the segmentation. So we are looking for a binary image u : ! → {0, 1}. The most
influential region based image segmentation model was introduced by Mumford and Shah in 1989 [46]. Many
models based on this functional and its derivatives have been proposed, e.g. [47, 48]. In this study, we used the
segmentation method proposed in [27]. The method uses a convex energy functional [49] but with the I1I2I3
color space [50] instead of HSV. Following [49] a convex energy functional in the I1I2I3 color space can be
written as:

E(u, µobj, µbgd) =
∫

!

(
f (I123(x), µobj) − f (I123(x), µbgd)

)
u(x)dx

+λ

∫

!

|∇u(x)|dx, (1)
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with

f (I123(x), µ) = w1([I123(x)]I1 − µI1)
2

+ w2([I123(x)]I2 − µI2)
2

+ w3([I123(x)]I3 − µI3)
2 (2)

denoting a weighted squared sum of the individual channels. For the results presented in this paper we used
wI1 = 0.1 and wI2 = wI3 = 0.45. As an additional input we used mean values for the foreground µobj and
background µbgd and a smoothing parameter λ ∈ R. [I123(x)]In denotes the value of pixel x for the color channel
In. The desired segmentation is a binary image u : ! ⊆ R2 → {0, 1}. We minimize (1) for real-valued u using
successive over-relaxation (SOR), as in [49, 51] and binarize the solution to obtain the globally optimal
segmentation.

SVM classification

Having obtained a binary image u : ! ⊆ R2 → {0, 1}, we classified each pixel belonging to !obj into
“unhealthy” or “healthy” regions. For this purpose we use a state-of-the-art machine-learning algorithm, support
vector machine (SVM), that have found a wide acceptance in recent years due to its ability to classify linear and
non-linear data. SVMs have been applied with great success in many challenging classification problems
processing large data sets. The basic concept was introduced in [52]. In our work we will use a modified
maximum margin idea, called Soft Margin, which allows the handling of not perfectly linear separable data. It is
based on learning from examples, which means, it requires a separate set of training and testing data. The
training algorithm builds a model that predicts the class of unknown input data.

We needed a labeled training data, which serves as an input for the learning function. For training we chose
40.000 pixels of leaf images randomly from all available images. Then we hand-labeled every chosen pixel into
one of three classes: healthy, unhealthy and background. Like many other pixel-based classification methods, we
exploit the color variation property of image co-ordinates in order to form a decision model. Since the
components of I1I2I3 color space [50] are uncorrelated, statistically it is the best way to detect color variations.
While I1 contains the illumination information, I2 and I3 mainly contain color information. Hence, we used only
I2 and I3 in order to provide invariance to illumination changes. Thus the training data comprise of 2D color
values, selected from “healthy” and “unhealthy” leaf images and labeled into the two different classes.

Training phase - offline
Suppose we have L number of training vectors belonging to two different classes, (xi, yi) where i = 1, . . . , L and
yi is either 1 “healthy” or -1 “unhealthy”, indicating the class to which xi belongs. SVM is based on the concept
of finding a hyperplane which can be described by a set of points satisfying the equation:

w · x + b = 0, w ∈ Rn, x ∈ Rn, b ∈ R (3)

where w is normal to the hyperplane and b/||w|| is the perpendicular distance from the hyperplane to the origin.
The goal here is to choose w and b so as to maximize the margin between two parallel hyperplanes H1 and H2
(see Figure 2). Thus, our training data can be described by equation:

yi(w · xi + b) − 1 ≥ 0 ∀i (4)

Considering the Soft Margin idea we can reformulate (4) as

yi(w · xi + b) − 1 + ξi ≥ 0 ∀i, (5)

with slack variables ξi, which measure the degree of misclassification of the data xi.

Figure 2 Hyperplane. Hyperplane through two linearly separable classes. Points on the hyperplanes are called
support vectors and form the basis for predicting the class of unlabeled data

The training part (Additional file 1: Figure S1) of SVM algorithm finds a w that leads to the largest b. It can be
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solved by finding the solution of following optimization problem:

min
w,ξ ,b

{
1
2
||w||2 + C

∑

i

ξi

}

such that yi(w · xi + b) − 1 + ξi ≥ 0 ∀i (6)

It is transformed into its dual form by using Lagrangian formalization:

L(w, b, α, ξ , β) = 1
2
||w||2 + C

∑

i

ξi −
L∑

i=1

αi [yi(w · xi + b) − 1 + ξi] −
∑

i

βiξi (7)

where αi, βi are non-negative Lagrange multipliers. According to [53], the final dual optimization problem can
be written as:

maximize LD =
L∑

i=1

αi − 1
2

∑

ij

αiαjyiyjxT
i xi

subject to
∑

i

αiyi = 0 and 0 ≤ αi ≤ C ∀i (8)

Note that the dual form requires only the dot product of each input vector xi to be calculated. Equation (8) is a
convex optimization problem and QP (Quadratic Programming) solver is run on it in order to obtain α, from
which we can get w:

w =
L∑

i=1

αiyixi (9)

The training cases with αi > 0 are called support vectors, or sometimes margin points, they determine the
solution. Any data point which is a support vector will have the following form:

ys(w · xs + b) = 1 (10)

Using any support vector, b can be derived from equations 9 and 10 (see [53, 54] for detailed derivation):

b =
∑

s∈S

(ys −
∑

m∈S

αmymxm.xs) (11)

Where S denotes the set of indices of the support vectors. S is determined by finding the indices i where αi > 0.
Instead of using an arbitrary support vector xs, it is better to take an average of the support vectors in S. Thus, the
training phase of SVM gives w and b which is used later to compute the class of unknown vectors. Since the
training phase is time consuming, it is done offline.

Prediction phase - online
In the prediction phase, all pixels labeled as foreground pixel in the segmentation step are classified into one of
the two classes - “healthy” or “unhealthy”. Each new pixel, x′ is classified by evaluating:

y′ = sign(w · x′ + b) (12)

where w and b are obtained from the training part of the SVM algorithm.

Although, using binary SVM gives good performance in most of the cases, it still relies on a good segmentation
method in step 2, which means that if pixels are labeled as foreground outside the boundary of the leaf then the
SVM should also classify them into one of the two classes. As an example in Figure 3, we can see that due to an
error in the segmentation, there are pixels outside the leaf region marked as “unhealthy”. Segmentation error
occurs when a prominent shadow of the leaf is present in the image, due to which the proposed segmentation
method labels pixels inside the shadow region as foreground. To make the SVM classifier more efficient we can
classify each pixel into one of the three classes: “healthy”, “unhealthy” and background. Inherently, SVMs are
binary classifiers it is however easily possible to do a multi-class classification with SVMs by building a set of
one-verses-one classifiers. In this approach, classification is done by a max-wins voting strategy, in which every
classifier assigns the instance to one of the two classes, then the vote for the assigned class is increased by one
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vote, and finally the class with the most votes determines the instance classification. Figure 3 compares the result
with two-class and three-class SVM.

Figure 3 Multi-class SVM. Top image (a) shows output from the binary SVM classifier, where unhealthy pixels
outside the leaf boundary are noticeable. This is due to prominent shadow near the leaf boundary which is
labeled as foreground pixels in the segmentation step. We can overcome this problem by using a multi-class
SVM (b), where each pixel is classified into three classes: healthy, unhealthy and background

Neighborhood-Check

Output from the classification step shows a high number of isolated pixels labeled as “unhealthy”, which maybe
be perceived by human eye as without any symptoms. This is due to the fact that single pixel is too small for an
human eye to be recognized and usually we see a combination of pixels. Another possibility could be a pixel
within an “healthy” region that have similar color values as the one from infected region which makes the
classifier to mark it as “unhealthy” one. Here, we exploit the fact that usually the infected regions are densely
populated with infected pixels. We can, therefore, use the neighborhood classification information to alter the
result of isolated pixels, classified as “unhealthy”. This step works as follows: For each (xi, yi) with yi = −1
(unhealthy), define the number of pixels which are classified as unhealthy in the neighborhood radius n ∈ Z as ci.
We perform the following:

if ci <
(2n + 1)2 − 1

2
, then set yi = +1 (healthy) (13)

We used n = 2 to obtain the results presented in this report, because using neighborhood radius of n = 1 slightly
improves the result from SVM classifier though not as good as using 2 or 3. Although neighborhood radius of 2
or 3 shows almost the same effect, we choose n = 2 to reduce the computational cost. Figure 4 shows the effect
of using n = 1, 2 and 3. Figure 5 shows another example where the result from step 2 could be improved
remarkably with the help of the neighborhood-check.

Figure 4 Different radius parameter used in this study. Neighborhood radius could be varied to obtain better
result. We can see from the figure that neighborhood radius, n = 2 and n = 3 yields almost the same result. Using
n = 1 improves the result from SVM classifier, (a) but not as good as (b) and (c)

Figure 5 Neighborhood check. Input image is shown in (a), (b) is the output from SVM classifier. It shows high
number of pixels marked as unhealthy while the human eye perceive them as healthy. In an attempt to alter the
result of those isolated pixels, neighborhood-check method is applied. (c) is the result from neighborhood-check
and matches well with the visual perception of human observer

Classification Results

The classification algorithm has been tested extensively on more than 1200 images of infected leaves. The input
images were images of infected leaves with nearly monochromatic background and the output is the classified
image with marked “unhealthy” regions. It also provides an objective measurement for the disease rate. Figure 6
shows some outputs from the classification algorithm described above. The results obtained from this algorithm
were convincing and could be easily used for biological experiments. Figure 7 shows a comparison between the
proposed and a probabilistic method [27]. We extended the probabilistic algorithm with the proposed
neighborhood-check to have a fair comparison. The proposed algorithm, which combines the accuracy of SVM
with a neighborhood-check method, outperforms the probabilistic method. The Bayesian classifier leave some
unhealthy region in leaf unmarked. Moreover, there are some marks near the boundary of the leaf which are
wrongly classified as unhealthy. These problems are overcome by using multi-class SVM. SVMs are more robust
in separating those data. Experiments prove that higher accuracy could be achieved with SVM. Here, we use
linear SVM because it is computationally efficient and avoids the complexities of tuning several parameters,
which is the case of non-linear kernels.

Figure 6 Classification Results. Top row shows input images and the bottom row shows outputs from the
proposed classification algorithm
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Figure 7 Comparison between proposed and probabilistic approach. An example image showing result from
probabilistic [27] and the proposed SVM classification. Difference is clearly noticeable in the right-most leaf in
the image, where leaf portions are left unmarked by Bayesian classifier. Also pixels outside the leaf boundary
(see second from right in (b)) are marked. Higher accuracy can be achieved by using the SVM classifier (c)

In addition, we split 9797 data points from the labeled training set and classified this data to get an objective
performance measure. The GMM approach reached a correct classification rate of 91.5%. The proposed SVM
approach could improve the results, so that a correct classification rate of 95.8% could be achieved.

Results

Photo-based analysis of symptoms caused by different bacteria in Arabidopsis

In order to test the algorithm described above, we performed first infections with two bacteria of known
virulence towards Arabidopsis. We used the nonpathogenic E. coli K12 DH5α strain and the virulent
Pseudomonas syringae pathovar tomato DC3000 strain as controls. Bacteria were cultivated until early
logarithmic phase, washed in 10 mM MgCl2, the infiltration solution was adjusted to OD600 = 0.1 and
syringe-infiltrated into Arabidopsis leaves. Arabidopsis plants were observed during 5 days after infiltration
(DAI), detached leaves were photographed and without any further processing sent to the computing algorithm.
As expected the control infiltration with 10 mM MgCl2 provoked only slight symptoms in Arabidopsis leaves
(Figure 8b). Similarly, infiltration with E. coli provokes visible symptoms only after 4 DAI (Figure 8c). On the
contrary, the virulent Pseudomonas strain causes visible necrotic lesions already at 2 DAI, at 4 DAI symptoms
reach almost the totality of leaf surfaces (Figure 8d). Calculations made on the base of photos, reflect perfectly
the macroscopic observations (Figure 8e).

Figure 8 Symptoms caused by different bacteria. Analysis of symptoms caused by the non-pathogenic E. coil
K12 strain DH5α and the pathogenic Pseudomonas syringae pathovar tomato DC3000. Leaves from 6-week-old
Arabidopsis plants were infiltrated with bacterial solution at OD600 = 0.1. a-d: Macroscopic observations of
symptom development from 0 to 5 day after infiltration (DAI) with (a): water (mock control), (b): 10 mM MgCl2
(buffer control), (c): E. coli, (d): Pseudomonas syringae. (e): Calculated average percentages of leaf surfaces
showing infection symptoms. Five leaves per time point were photographed. Experiment was repeated five times

T3SS mutants cause stronger symptoms than the wild type bacteria

Our recent results suggest that T3SSs play a significant role in virulence towards Arabidopsis [43]. We showed
that mutants compromised in both Salmonella T3SSs proliferate slower in Arabidopsis leaves than the 14028s
wild type bacteria [43]. Salmonella makes use of SPI-1 and SPI-2 T3SSs injecting several effectors with
different functions at different stages of the infection [55, 56]. Here, we wondered whether the reduced virulence
is reflected in symptoms caused by those mutants in Arabidopsis plants and whether those symptoms can be used
for automatic screening/analysis purposes. To this end, two mutants in SPI-1 encoded T3SS (prgH− and invA−)
and two mutants in SPI-2 encoded T3SS (ssaV− and ssaJ−) were infiltrated into Arabidopsis leaves.
Subsequently lesions were evaluated during 5 following days and expressed as percentage of total leaf surface.
Infiltration with SPI-1 T3SS mutants (prgH− and invA−) showed stronger symptoms from the first day onwards,
if compared to infection with the wild type 14028s Salmonella (Figure 9). PrgH and InvA proteins are the parts
of the outer and inner membrane-spanning rings of the Salmonella T3SS-1 apparatus respectively [55, 57–59].
Similarly, SPI-2 T3SS mutants (ssaV− and ssaJ−) provoked also stronger symptoms on Arabidopsis leaves than
the 14028s wild type strain (Figure 10). SsaV and SsaJ proteins are necessary for constructing the core T3SS
apparatus inside and outside of the bacterial membranes [55]. The infiltration experiments suggest the ability of
wild type Salmonella Typhimurium to suppress the plant immune system by lowering the manifestation of
hypersensitivity response (HR) to a level observed after infiltration with E. coli (Figure 11). A comparison
between infection with non-pathogenic E. coli DH5α and highly pathogenic Pseudomonas syringae DC3000
showed significant lesions in Pseudomonas-infiltrated leaves and relatively mild symptoms in E. coli-infiltrated
leaves (Figure 11). Pseudomonas syringae infiltrated Arabidopsis leaves showed necrosis and dark color patches.
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Figure 9 Symptoms caused by T3SS-1 mutants. T3SS-1 mutants cause more pronounced symptoms in
Arabidopsis leaves. Wild type Salmonella or mutants in the SPI-1 encoded T3SS were infiltrated into
Arabidopsis leaves; symptoms were analyzed during 5 DAI. a-d: Macroscopic observations of symptoms
development from 0 to 5 DAI with (a): 10 mM MgCl2 (buffer control), (b): wild type 14028s strain, (c): prgH−

mutant, (d): invA− mutant. (e): Calculated average percentages of leaf surfaces showing infection symptoms.
Five leaves per time point were photographed. Experiment was repeated five times.
∗p ≤ 0.05; ∗ ∗ p ≤ 0.005; ∗ ∗ ∗p ≤ 0.0005 (Student’s t test)

Figure 10 Symptoms caused by T3SS-2 mutants. Infection symptoms caused by the T3SS-2 mutants in
Arabidopsis leaves. Wild type Salmonella or mutants in the SPI-2 encoded T3SS were infiltrated into
Arabidopsis leaves; symptoms were analyzed during 5 DAI. a-d: Macroscopic observations of symptoms
development from 0 to 5 DAI with (a): 10 mM MgCl2 (buffer control), (b): wild type 14028s strain, (c): ssaV−

mutant, (d): ssaJ− mutant. (e): Calculated average percentages of leaf surfaces showing infection symptoms.
Five leaves per time point were photographed. Experiment was repeated five times.
∗p ≤ 0.05; ∗ ∗ p ≤ 0.005; ∗ ∗ ∗p ≤ 0.0005 (Student’s t test)

Figure 11 Symptoms caused by virulent and avirulent bacteria. Comparison of symptoms caused by the
virulent Salmonella wild type 14028s, the non-pathogenic E. coli K12 and the plant pathogen Pseudomonas
syringae. Average symptoms were calculated on the base of photos taken during 5 DAI. Five leaves per time
point were analyzed, experiments were repeated 5 times. ∗p ≤ 0.05; ∗ ∗ p ≤ 0.005; ∗ ∗ ∗p ≤ 0.0005 (Student’s t
test)

T3SS mutants cannot suppress the induction of the pathogenesis-related gene PDF1.2

In order to verify the observed suppression of plant immune responses we analyzed the expression level of the
PDF1.2 gene, which is known to respond to Salmonella challenge [20]. Fourteen-day-old Arabidopsis plants,
grown on MS/2 agar medium, were transferred to liquid MS/2 medium 24 hours before bacterial inoculation.
Wild type S. Typhimurium 14028s and prgH−, invA−, ssaV− and ssaJ− mutants were grown on liquid LB
medium with respective antibiotics, centrifuged and washed in 10 mM MgCl2. MS/2 medium containing the
plants was inoculated with bacteria with final OD600 = 0.1. Whole plant materials were collected at 0, 12, 24
and 48 hours post inoculation. Quantitative reverse transcription PCR (qPCR) was done with PDF1.2 primers
and normalized to the expression of the UBQ4 (At5g25760) housekeeping gene. Figure 11a-b shows the relative
expression of PDF1.2 gene after challenge with T3SS-1 (Figure 12a) and T3SS-2 (Figure 12b) mutants in
comparison to the challenge with the 14028s wild type bacteria. The wild type S. Typhimurium strain 14028s
showed its potential to decrease the expression of PDF1.2 in Arabidopsis after the initial 24 hours induction.
However, all of the mutants used in the study, except invA−, showed their inability to inhibit the plant defense,
which is indicated by the increased expression of PDF1.2 in Arabidopsis. These results are in line with the
hypothesis that Salmonella suppresses the plant defense systems using T3SSs.

Figure 12 Expression pattern of PDF1.2. Expression pattern of PDF1.2 gene in Arabidopsis Col-0 plants
challenged with wild type Salmonella or T3SS mutants. Total RNA was extracted from 2-week-old seedlings
inoculated with bacteria for hours as indicated. Relative expression levels of PDF1.2 were normalized to the
expression of UBQ gene. (a): Transcriptional response to the T3SS-1 mutants prgH− and invA−. (b):
Transcriptional response to the T3SS-2 mutants ssaV− and ssaJ−

Infection with T3SS mutant results in longer activation of MAP kinases

MAP kinases are activated in plants by numerous pathogens, including Salmonella [20, 60]. Activation of MAP
kinases 3 (MPK3) and MPK6 pathways restricts Salmonella proliferation in Arabidopsis [20]. In order to
demonstrate the activation of AtMPK3 and AtMPK6, the phosphorylation status was tested with an antibody
against the phosphorylated form of the mammalian homologue: the extracellular-signal regulated kinases (ERK)
1/2. An inoculation experiment with 14028s wild type and SPI-1 prgH− mutant was performed and activation
checked at different time points after inoculation (Figure 13). S. Typhimurium 14028s as well as the SPI-1
mutant were found to activate the MAP kinases at 15 and 30 minutes after infection (MAI) (43kDa and 42kDa
bands), the signal decreases however at 60 MAI. After infection with the SPI-1 mutant the initial activation at 15
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and 30 MAI, remained until 60 MAI. This suggests the necessity of T3SS in the suppression of the plant MAP
kinase signaling by Salmonella.

Figure 13 Activation of MAPKs. Phosphorylation status of MPK3 and MPK6 after treatment with Salmonella.
Two-week-old seedlings were treated with bacteria for minutes as indicated. Total proteins were extracted and
separated on SDS-PAGE. Phosphorylated form of MAK3/6 were detected using the anti pERK1/2 antibody
(αpERK1/2) upper gel, the loading was done using αMPK6 antibody on parallel membrane loaded with equal
amount of proteins (20 µg). Arrows indicates the 43kDa band representing the phosphorylated form of MPK6

Discussion

Plants have sophisticated mechanisms by which they recognize pathogen-originated signals. In case of pathogen
attack, plants might initiate a rapid and intense activation of defense reactions known as hypersensitive response
(HR). HR occurs within few hours and results in localized cell death. Very often HR is the consequence of
effector-triggered immunity (ETI), which occurs when the plant recognizes the effectors injected by the pathogen
into the plant cells. Rapid cell death or HR prevents the bacteria from spreading systematically. Salmonella uses
diverse effectors to manipulate the cellular signals leading to the host defense response [42]. Salmonella enterica
subsp. enterica used in this study possesses two different T3SS, encoded by Salmonella Pathogenicity Island 1
(SPI-1) and SPI-2. Both T3SSs secret different yet overlapping sets of effector proteins tat function at different
stages of the infection. However, many of the secreted effectors can by translocated via both T3SSs. The
stronger symptoms seen in the leaves treated with the T3SSs mutants if compared to the wild type Salmonella,
indicates the inability of Salmonella mutants to inhibit the molecular mechanisms that finally lead to HR, and in
consequence it suggests the necessity of such effectors (and both functional T3SSs) for the infection of vegetal
hosts. It is probable that both T3SSs are needed for the immune suppression, however the effectors translocated
by the remaining T3SS in a mutant are sufficient to elicit ETI. Giving the importance for human health, the
suppression of the animal immune system by Salmonella is very intensely studied. We know already 44 effectors
which are injected by Salmonella into animal host cells, and for many of them we know the function and the
target proteins [42]. Interestingly, very often bacterial effectors target the MAPK cascades, which are important
regulators of the immune response in animals and plants. SpvC from Salmonella spp. encodes a
phosphothreonine lyase that dephosphorylates the pTXpY double phosphorylated activation loop in the ERK1/2
kinases [61–63]. Another effector from Salmonella spp. the SptP inhibits phosphorylation and membrane
localization of Raf kinase and therefore the activation of the downstream ERK kinases [64]. Although several
Salmonella effectors have homologues in plant pathogenic bacteria, the SpvC is present in the Pseudomonas spp.
as HopAI1, HopAO1 also from Pseudomonas spp. on the other hand, is the homologue of SptP, the function of
Salmonella proteins in the inactivation of the plant immune system remains unknown. It is however very
tempting to speculate that biochemical features of those effectors are conserved between animal and plant hosts,
providing Salmonella (and other pathogenic bacteria) with efficient tools for suppression of the host immune
system. Such suppression was reported in two recent reports. Shirron and Yaron studied infection of tobacco
plants with S. Typhimurium [34]. The authors showed that in contrast to wild type living bacteria, dead bacteria
elicited an oxidative burst and pH changes in tobacco cells. Similar response was provoked by the invA− mutant,
which has no functional SPI-1 T3SS [34]. Those results suggest that Salmonella depends on the secretion of
effectors during infection of tobacco leaves to actively suppress their immune responses. A general transcriptome
analysis performed in our laboratory suggests a similar scenario [43]. Infection with the prgH− mutant, but not
with the 14028s wild type, induces about 640 genes, the majority of which are related to defense responses.
Moreover, we showed that mutants impaired in their T3SSs are less virulent towards Arabidopsis plants then
wild type bacteria [43]. Taken together, recently published and presented results build a growing body of
evidences indicating that Salmonella, similarly to the infection in animals, actively suppresses the plant defense
mechanisms. Whether this bacterium uses the same or different effectors in order to achieve this goal is not yet
clear, it seems however to be acceptable to conclude that Salmonella uses the same T3SSs in plant and animal
infections.

Conclusions

This report presents an automatic pixel-based classification method for detecting “unhealthy” regions in leaf
images. This method has been tested extensively with very promising results. Linear SVM has been used to
classify each pixel. We have also shown how the results from SVM could be remarkably improved by using the
neighborhood-check technique. The proposed method was compared to existing method and showed a higher
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accuracy. We used this algorithm to study the impact of the human pathogenic bacterium Salmonella
Typhimurium on plants immune system. The comparison between wild type bacteria and T3SS mutants showed
similarity in the infection process in animals and in plants. The result obtained with the proposed algorithm and
also transcriptome and biochemical analyses suggest that T3SSs are necessary for a successful infection of
plants. Plant epidemiology is only one possible application of the proposed algorithm, it can be easily extended
to other detection tasks, which also rely on color information, or even extended to other features.

Methods

Plant growth

Arabidopsis thaliana wild type Col-0 (NASC ID: N70000) seeds were germinated on 1
2 MS media for around 2

weeks. The seedlings were then transferred to soil and grown in short day chamber (7 hours of light) at 24 °C for
additional 4 weeks.

Bacterial growth

Salmonella enterica subsp. enterica serovar Typhimurium (ATCC 14028s), Salmonella T3SS mutants (all in the
14028s genetic background) and Escherichia coli K12 strain DH5α were grown on LB agar and liquid media
with required antibiotics. Pseudomonas syringae pathovar tomato DC3000 was grown in King’s B medium
containing required antibiotics. prgH− and ssaV− mutants were obtained from Prof. David Holden, Imperial
College, London. invA− and ssaJ− mutants were constructed in the INRA Tours laboratory by Dr. Isabelle
Virlogeux-Payant.

Leaf infiltration

Around 6-week-old Arabidopsis plants were chosen for infiltration experiment. The cultured bacteria were spun
down, washed with 10 mM MgCl2 solution. Final optical density (OD600) of infiltration solution was 0.1.
Infiltration was done via syringe on the abaxial surface of the leaves.

Analysis of lesions in leaves

For the analysis, images of leaves were captured at 5 consecutive days after infiltration. At least 5 leaves were
photographed per each time point and infiltration variant. This experiment was repeated 5 times. Lesions in
leaves were analyzed with the help of an automated program calculating the changed color in a proportion to the
normal color of the leaves. The diseased portion were calculated in percentage and evaluated, cf. Section 3.
Altogether over 1200 images were evaluated.

Bacteria inoculation

Around 2-week-old Arabidopsis plants were transferred to 1
2 MS liquid media and left undisturbed overnight.

Bacteria were washed in 10 mM MgCl2, and the liquid medium was inoculated with bacteria at OD600 = 0.1.
Whole plants were collected at regular intervals for further analysis.

RNA extraction and reverse transcription

Extraction of total RNA was done with Trizol® (Invitrogen) accordingly to manufacturer instructions. Whole
plants were collected in liquid nitrogen and homogenized. Total RNA was extracted. All RNA samples were
treated with DNase I (Fermentas International Inc.). Complementary DNA (cDNA) was prepared with the help
of reverse transcriptase (qScript, Quanta Biosciences) accordingly to manufacturer protocol. Equal amount of 2
µg RNA from all samples was taken to ensure the best possible gene expression levels analysis.

11



Quantitative PCR

After the preparation of cDNA, quantitative PCR was performed in the Applied Biosystems 7500 FAST real-time
PCR system. SYBR green was used as a fluorescence dye for the PCR reactions. 20 µl total volume reaction was
used and three repetitions were made for each of the sample. qPCR was done with the following primers: UBQ4:
forward primer: GCT TGG AGT CCT GCT TGG ACG, reverse primer: CGC AGT TAA GAG GAC TGT CCG
GC; PDF1.2: forward primer: GTT TGC TTC CAT CAT CAC CC, reverse primer: GGG ACG TAA CAG ATA
CAC TTG.

Western blot analysis

Whole plants were collected in liquid nitrogen, homogenized in a tissue homogenizer and total protein were
extracted in 200 µl of lysis buffer (25 mM TRIS (pH = 7.8), 10 mM MgCl2, 15 mM EGTA, 75 mM NaCl, 1 mM
DTT, 0.5 mM NaVO4, 1 mM NaF, 15 mM β-glycerophosphate (Sigma-Aldrich), 15mM 4-nitrophenyl phosphate
(Sigma), 0.5 mM PMSF, 5 µg/ml leupeptine (Roche), 5 µg/ml aprotinin (Roche), 0.1% Tween 20). After
vigorous vortexing, samples were centrifuged at 14,000 rpm and supernatant, containing the proteins was
collected. Bio-Rad mini format 1-D electrophoresis system was used for sodium dodecyl sulphate
polyacrylamide gel electrophoresis (SDS-PAGE). 12 % resolving gel and 3.2 % stacking gel were used. Equal
amount of proteins (20 µg) was used for each sample. Primary antibodies: α-phospho-ERK 1/2
(Sigma-Aldrich), AtMPK6 (Biolabs). Secondary antibody: Anti-Rabbit IgG HRP-conjgate (Sigma-Aldrich).
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Additional file

Additional_file_1 as PNG
Additional file 1: Figure S1. Training data. Scatter plot of the used training data. Only the color channels I2 and
I3 are depicted. The healthy points are marked as green squares. The blue circles correspond to unhealthy
training pixels. The background pixels are visualized with red crosses.
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