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Abstract—This paper develops a novel approach for multi-
target tracking, called box-particle probability hypothesis density
filter (box-PHD filter). The approach is able to track multiple tar-
gets and estimates the unknown number of targets. Furthermore,
it is capable to deal with three sources of uncertainty: stochastic,
set-theoretic and data association uncertainty. The box-PHD filter
reduces the number of particles significantly, which improves
the runtime considerably. The small particle number makes this
approach attractive for distributed computing. A box-particle
is a random sample that occupies a small and controllable
rectangular region of non-zero volume. Manipulation of boxes
utilizes methods from the field of interval analysis. The theoretical
derivation of the box-PHD filter is presented followed by a
comparative analysis with a standard sequential Monte Carlo
(SMC) version of the PHD filter. To measure the performance
objectively three measures are used: inclusion, volume and the
optimum subpattern assignment metric. Our studies suggest that
the box-PHD filter reaches similar accuracy results, like a SMC-
PHD filter but with much considerably less computational costs.
Furthermore, we can show that in the presence of strongly biased
measurement the box-PHD filter even outperforms the classical
SMC-PHD filter.

Index Terms—Multi-Target Tracking, Box-Particle Filters,
Random Finite Sets, PHD Filter, Interval Measurements

I. INTRODUCTION

Multi-target tracking is a common problem with many
applications. In most of these the expected target number
is not known a priori, so that it has to be estimated from
the measured data. In general, multi-target tracking involves
the joint estimation of states and the number of targets
from a sequence of observations in the presence of detection
uncertainty, association uncertainty and clutter [1]. Classical
approaches such as the Joint Probabilistic Data Association
filter (JPDAF) [2] and multi-hypothesis tracking (MHT) [3]
need in general the knowledge of the expected number of
targets. The finite set statistics (FISST) approach proposed by
Mahler [4] is a systematic treatment for multi-target tracking
with an unknown and variable number of objects. To reduce
the complexity Mahler proposed an approximation of the
original Bayes multi-target filter, the Probability Hypothesis
Density filter (PHD). In [5], [6] it was shown that the PHD

filter outperforms the classical approaches such as the Kalman
Filter, standard particle filters and the Multiple Hypothesis
Tracking. Many implementations of the PHD filter have been
proposed, either using sequential Monte Carlo (SMC) methods
[7]–[10], or with Gaussian mixtures [11].

The traditional measurement noise expresses uncertainty
due to randomness, often referred to as statistical uncertainty.
In many practical applications, however, the standard measure-
ment model is not adequate. Complex distributed surveillance
systems, for example, are often operating under unknown
synchronization biases and/or unknown system delays. The
resulting measurements are affected by bounded errors of typ-
ically unknown distribution and biases, and can be expressed
rather by intervals than by point values. An interval measure-
ment expresses a type of uncertainty which is referred as the
set-theoretic uncertainty [12], vagueness [13] or imprecision
[14]. The concept of box-particle filtering in the context of
tracking was introduced in [15]. In [16] it was shown that box-
particles can be seen as supports of uniform probability density
functions (PDF), leading to Bayesian understanding of box-
particle filters. In [17] a single target box-particle Bernoulli
filter with box measurements is presented.

The main contribution of this work is a derivation of box-
particle methods in the context of multi-target tracking with
an unknown number of targets, clutter and false alarms. We
present here a box-particle version of the PHD filter. In
addition, a comparison of the Box-PHD filter with a standard
SMC- PHD Filter is performed. The optimum subpattern as-
signment (OSPA) metric [18] is used for performance measure,
together with the criteria for measuring the inclusion of the
true state and the volume of the posterior PDF [17].

The remaining part of this article is structured as follows.
A brief introduction to FISST is given in Section II. The
necessary interval methodology is explained in Section III.
Section IV contains a general description of the PHD filter.
The following Section V describes the steps needed to get
from point particles to box-particles. The Box-PHD filter is
described in Section VI. A numerical study is presented in
Section VII. Conclusions are drawn in the final Section VIII.



II. FINITE SET STATISTICS

In a single-object system, the state and measurement at time
k are represented as two random vectors of possibly different
dimensions. These vectors evolve in time, but maintain their
initial dimension. However, this is not the case in a multi-
object system. Here the multi-object state and multi-object
measurement are two collections of individual objects and
measurements. The number of these may change over time and
lead to another dimensions of the multi-object state and multi-
object measurement. Furthermore, there exist no ordering
for the elements of the multi-object state and measurement.
Using the theory proposed in [19], the multi-object state and
measurement are naturally represented as finite subsets Xk

and Zk defined as follows:
Let N(k) be a random number of objects, which are located

at xk,1, ...,xk,N(k) in the single-object state space ES , e.g. Rd

then,

Xk =
{
xk,1, ...,xk,N(k)

}
∈ F(ES) (1)

is the multi-object state, where F(ES) denotes the collection
of all finite subsets of the space ES . Analogous to this, we
define the multi-object measurement

Zk =
{
zk,1, ..., zk,M(k)

}
∈ F(EO), (2)

assuming that at the time step k we have M(k) measure-
ments zk,1, ..., zk,M(k) in the single-object space EO, which
correspond to real targets and clutter. The sets Xk and Zk are
also called random finite sets. In analogy to the expectation
for a random vector, a first-order moment of the posterior
distribution for a random set is of interest here, which is the so
called probability hypothesis density.The integral value of the
PHD over a given region in state space leads to the expected
number of objects within this region. Denote fk|k(xk) as the
PHD associated with the multi-object posterior p(Xk|Zk) at a
time step k, with Zk denoting the accumulated measurement
from the time steps 1 to k. The PHD filter consists of two
steps: prediction and update. The prediction can be realized
through the following equation:

fk|k−1(xk) = b(xk)+
∫

[ps(xk−1)p(xk|xk−1) + b(xk|xk−1)]

fk−1|k−1(xk−1)dxk−1,
(3)

where b(xk) denotes the intensity function of spontaneous
birth of new objects, b(xk|xk−1) describes the intensity func-
tion of the random finite set of objects spawned from the
previous state xk−1. ps(xk−1) is the probability that the object
still exists at the time step k given its previous state xk−1,
and p(xk|xk−1) is the transition probability density of the
individual objects. The update equation can be written as

fk|k(xk) ∼= F (Zk|xk)fk|k−1(xk), (4)

F (Zk|xk) = 1− pD(xk)

+
∑
z∈Zk

pD(xk)p(z|xx)
λc(z) +

∫
pD(xk)p(z|xk)fk|k−1(xk)dxk

,

(5)

with pD(xk) denoting the probability of the detection of the
state xk. Furthermore, p(z|xk) is the measurement likelihood,
c(z) the probability distribution for every clutter point and λ
is the average number of clutter points per scan.

III. INTERVAL ANALYSIS

This section gives a short introduction to the field of
interval analysis, which will be used in this article. For more
informations see [20]. The original idea of interval analysis
was to deal with intervals instead of real numbers for exact
computation in the presence of rounding errors. However, this
field has strongly increased its potential applications. We will
use the main concepts to represent particles not as delta-peaks
but as boxes in the state space. An interval [x] = [x, x] ∈ IR
is a closed and connected subset of the real numbers R,
with x ∈ R representing its lower bound and x ∈ R its
upper bound. In multiple dimensions d this interval becomes
a box [x] ∈ IRd defined as a cartesian product of d intervals:
[x] = [x1]×...×[xd]. Here the operator |[.]| will be used as the
size of a box [x]. The function mid([x]) returns the center of
a box. Elementary arithmetic operations, basic functions and
operations between sets have been naturally extended to the
interval analysis context.

For general functions the concept of inclusion functions has
been developed. An inclusion function of a given function g
is defined such that the image of a box [x] is a box [g]([x])
containing g([x]). Of course, the goal is to use only inclusion
functions, which are minimal in the sense that the size of the
box [g]([x]) is minimal but still covers the whole image of a
box [x]. An important class in the context of tracking are the
natural inclusion functions.

Theorem 1. Assume g : Rd → R, (x1, ..., xd) 7→ g(x1, ..., xd)
is a function expressed as a finite composition of the operators
+,−, ∗, / and elementary functions (sin, cos, exp, ...). A
natural inclusion function is obtained by replacing each
real variable and each operator or function by its interval
counterpart.

In general, natural inclusion functions are not minimal,
but many functions can be modified in order to satisfy the
conditions in the following theorem and then their natural
inclusion functions are minimal. Proofs and examples can be
found in [20].

Definition 1. An inclusion function [g] for g is convergent if,
for any sequence of boxes [x](k),

lim
k→∞

|[x](k)| = 0⇒ lim
k→∞

[g]([x](k)) = 0. (6)

Theorem 2. If g involves only continuous operators and
continuous elementary functions then [g] is convergent. If,



furthermore, each of the variables x1, ..., x2 occurs at most
once in the formal expression of g, then [g] is minimal.

The next needed concept is contraction, which will be used
in the definition of likelihood functions and the update step of
the proposed filters. A Constraint Satisfaction Problem (CSP),
often denoted by H, can be written as:

H = (g(x) = 0, x ∈ [x]) . (7)

A common interpretation of (7) is: find the optimal box
enclosure of the set of vectors x belonging to a given prior
domain [x] satisfying a set of m contraints g = (g1, ...., gm)T ,
with gi a real valued function. The solution consists of all x,
that satisfy g(x) = 0 or written as a set: S = {x ∈ [x] |
g(x) = 0}. A contraction of H means replacing [x] by a
smaller box [x]′ under the constraint S ⊆ [x]′ ⊆ [x]. There are
several methods to build a contractor for H, e.g. by the Gauss
elimination, Gauss-Seidel algorithm and linear programming.
In this work, however, we will use Constraint Propagation
(CP), or sometimes referred as forward-backward propagation,
for its good suitability in the context of tracking problems. An
example of a CP algorithm is given in [21].

IV. THE SMC–PHD FILTER

Inspired by the works of Vo et al. [9] and Ristic et al. [10] on
efficient sequential Monte Carlo methods for the PHD filter
we present here, to make this article self-contained, briefly
an improved SMC-PHD filter. The main improvements are
a measurement steered particle placement for target birth.
In addition, a target state and covariance matrix estimation
without the need of clustering is introduced. The state of an
individual object will be represented by xk ∈ Rnx . and each
measurement as zk ∈ Rnz . For the sake of simplicity, we
assume that the object motion model of each target is linear
with a constant velocity. With this, the object state prediction
can be written as: xk = Φ(k, k − 1)xk−1 + sk, with sk a
zero mean Gaussian white process noise and Φ(k, k − 1) the
transition matrix from time step k − 1 to k.

The SMC-PHD filter can be summarized in 6 steps, which
will be presented in the following. Here the particle set
represents the target intensity fk|k(x) of the PHD filter, which
corresponds to the multi-target state. Recall that the integral
over this intensity (or sum, if using particles) is the estimated
expected number of targets and it is not necessary equal to
one. Given from the previous time step we have the particle
set:

{(xi, wi)}Nk
i=1, (8)

with xi ∈ Rnx , wi the corresponding weight and Nk denoting
the number of particles, estimated at time step tk−1. The
implementation details using a particle representation are
presented in the following.

1) Predict target intensity
The resampled particle set gained from the previous
step is denoted by {xi, wi}Nk

i=1. These particles represent
the intensity over the state space. Another interpretation
is, that every particle represents a possible target state

(called microstates in the language of thermodynamics),
so that the prediction of the whole set can be modeled
by applying a transition model to every particle and
adding some noise to it. The weights are unchanged.
In practical implementations this has the same effect as
predicting the intensity distribution over the state space
with a closed formula.
In order to avoid a high number of additional particles
Nk,new the authors in [10] propose to sample new born
particles according to the measurements Zk−1 from the
previous time step. Let mk−1 denote the number of
measurements in time step tk−1, then for each of these
we sample

N j
k,new = dNk,new/mk−1e, j = 1, ...,mk−1 (9)

many particles x̃i drawn from the distribution
N ([zk−1

j ),Σ), centered around an old measurement
zk−1

j with the measurement covariance matrix Σ. The
weights of the new born particles are set to

wi =
pb

Nk,new
, i = 1, ..., Nk,new, (10)

with pb the probability of birth. We define
{x̃i, wi}

Nk+Nk,new

i=1 as the predicted particle set
containing the new born and persistent particles.

2) Compute Correction Term
For all new measurements zj , with j = 1, ...,mk

compute:

λk|k−1(zj) = λc(zj) +
Nk+Nk,new∑

i=1

pk(zj | x̃i)pD
k (x̃i)wi

(11)
3) Estimate target states

To avoid a clustering step we use the methodology
presented in [10]. First, compute the following weights
for all new measurements zj , j = 1, ...,mk and all per-
sistent particles, i.e. not the new born, xi, i = 1, ..., Nk.

wj,i =
pk(zj | x̃i)pD

k (x̃i)
λk|k−1(zj)

· wi (12)

Then compute the following sum

Wj =
Nk∑
i=1

wj,i, (13)

which can be seen as a probability of existence for target
j, similarly to the multi-target multi-Bernoulli filter. For
further analysis, only those j for which Wj is above a
specified threshold τ are considered, i.e.

J = {j|Wj > τ, j = 1, ...,mk} (14)

For all j ∈ J the estimated point states are then:

ŷj =
Nk∑
i=1

x̃i · wj,i. (15)



Note that only targets that have been detected at time
step tk can be reported as present. This follows the lack
of “memory” of a PHD filter. The full characteristics
are discussed in [22]. In practice τ is usually set as
τ = 0.75.

4) Estimate covariance matrices
For each estimated state ŷj compute its covariance
matrix:

Pj =
Nk∑
i=1

wj,i

[
(x̃i−ŷj)(x̃i−ŷj)T

]
, (16)

The matrix Pj is not an error covariance matrix in the
sense of single target Bayes filtering, but it characterizes
the particle distribution of state ŷj .

5) Update
Given mk new measurements the update of the state
intensity is realized through a correction of the individ-
ual particle weights. For every particle (xi, wi), with
i = 1, .., Nk +Nk,new set:

ŵi =

(1− pD
k (x̃i)) +

mk∑
j=1

pk(zj | x̃i)pD
k (x̃i)

λk|k−1(zj)

 · wi

(17)
6) Resampling

Compute first the estimated expected number of targets

ηk =
Nk+Nk,new∑

i=1

ŵi. (18)

Let Nk+1 be the number of resampled particles, then
any standard resampling technique for particle filtering
can be used. Rescale the weights by ηk to get a new
particle set {xi, ηk/Nk+1}

Nk+1
i=1 .

V. FROM PARTICLES TO BOXES

A popular class of methods for implementation of Bayes-
like filters are particle filters [23]. Applying these methods
to the PHD filter leads to a particle approximation of the
intensity fk|k(x) with a set of Nk weighted random samples
{(xi, wi)}Nk

i=1. The approximation can be written as:

fk|k(x) ≈
Nk∑
i=1

wiδxi
(x), (19)

with δxi
(x) the Dirac delta function concentrated at xi. The

sum (19) converges to fk|k(x), with Nk → ∞ [24]. The
number of particles used is a key issue to the overall filter
performance. In general, the higher the number of particles,
the better the approximation and with it the performance.
However, a high number leads often to a computationally
demanding scenario. In [15] the authors presented a natural
way to deal with the decrease of Nk by using boxes instead
of point particles and combining particle filter techniques
with interval analysis methods. Moreover, in [16] the authors

propose to interpret box-particles as supports of uniform PDFs,
so that (19) changes to:

fk|k(x) ≈
Nk∑
i=1

wiU[xi](x), (20)

with U[xi](x) denoting the uniform PDF over the box [xi].
Bayes–like filters require the knowledge of the measurement

likelihood function p(z|x). This is also true for the PHD filter.
A likelihood returns values in the interval [0, 1]. The returned
value depends on the probability that this measurement z was
produced by the state x. In the context of this article we
assume also box measurements [z]. We do not need to model
the statistical sensor error with some error density (that in
practice is mostly unknown) and we do not need to model
systematical errors directly. With this assumption the only
information needed from a sensor is its error range. In [16]
the measurement likelihood for box measurements is derived
and given as

p([z] | [x]) :=
|[hCP]([x], [z])|

|[x]|
. (21)

The function [hCP]([x], [z]) returns a contracted version of
[x] under the constraints given by the measurement function
h(x) = z. An example of this contraction step can be found
in [21].

VI. THE BOX–PHD FILTER

Similarly to the scheme of the SMC-PHD filter this section
presents the box-particle implementation.

The box-PHD filter can be summarized in 7 steps, which
will be presented in the following. Here the box-particle set
represents the target intensity of the PHD. Again, the integral
over this intensity (or sum, if using particles) is the estimated
expected number of targets and it is not necessary equal to
one. Given from the previous time step we have the particle
set:

{([xi], wi)}Nk
i=1, (22)

with [xi] ∈ IRnx , wi the corresponding weight and Nk

denoting the number of particles, estimated at time step tk−1.
The implementation details using a box-particle representa-

tion are presented below. Step 1 corresponds to the prediction
phase, steps 2-5 to the correction phase and steps 6 and 7 to
the resampling phase of a sequential Monte Carlo algorithm.

1) Predict target intensity
The resampled particle set gained from the previous
step is denoted by {[xi], wi}Nk

i=1. These particles are
propagated using a evolution or motion model and
inclusion functions. In order to avoid a high number
of additional particles Nk,new, we will sample new
born particles according to the measurements from the
previous time step Zk−1. Let mk−1 denote the number
of measurements in time step tk−1, then for each of
these we sample

N j
k,new = dNk,new/mk−1e, j = 1, ...,mk−1 (23)



many particles x̃i drawn from the distribution
N ([zk−1

j ]),Σ), centered around an old measurement
[zk−1

j ] with the measurement covariance matrix Σ. The
weights of the new born particles are set to

wi =
pb

Nk,new
, i = Nk + 1, ..., Nk,new, (24)

with pb the probability of birth. We define
{[x̃i], wi}

Nk+Nk,new

i=1 as the predicted particle set
containing the new born and persistent particles.

2) Compute Correction Term
For all new measurements [zj ], with j = 1, ...,mk

compute:

λk|k−1([zj ]) = λc([zj ])+
Nk+Nk,new∑

i=1

pk([zj ] | [x̃i])pD
k ([x̃i])wi

(25)
3) Estimate target states

To avoid a clustering step we use the methodology
presented in [10]. First, compute the following weights
for all new measurements [zj ], j = 1, ...,mk and all per-
sistent particles, i.e. not the new born, [xi], i = 1, ..., Nk.

wj,i =
pk([zj ] | [x̃i])pD

k ([x̃i])
λk|k−1([zj ])

· wi (26)

Then compute the following sum

Wj =
Nk∑
i=1

wj,i, (27)

which can be seen as a probability of existence for target
j, similarly to the multi-target multi-Bernoulli filter. For
further analysis only those j are considered for which
Wj is above a specified threshold τ , i.e.

J = {j|Wj > τ, j = 1, ...,mk} (28)

For all j ∈ J the estimated point states are then:

ŷj =
1
Wj

Nk∑
i=1

mid([x̃i]) · wj,i. (29)

For all j ∈ J the estimated box states are then:

[ŷj ] =
1
Wj

Nk∑
i=1

[x̃i] · wj,i. (30)

In Equations (29) and (30) we added, in contrast to [10],
the normalization term 1

Wj
to receive more accurate state

estimates when Wj is not practically one.
4) Estimate covariance matrices

Using the interpretation of box-particles as a mixture of
uniform PDFs, the covariance matrix for each state is
computed as

Pj =
Nk∑
i=1

wj,i

Wj

[
(mid([x̃i])−ŷj)(mid([x̃i])−ŷj)T+ΣUi

]
,

(31)

with ΣUi
a diagonal matrix of the form

ΣUi
=

|([xi])1|2/12 0
. . .

0 |([xi])nx
|2/12

 (32)

containing the standard derivations for the individual
uniform distributions. In Equation (31) we added, in
contrast to [10], the normalization term 1

Wj
to receive

more accurate covariance matrix estimates when Wj

is not practically one. The matrix Pj is not an error
covariance matrix in the sense of single target Bayes
filtering, but it characterizes the particle distribution of
state ŷj .

5) Update
Given mk new measurements the update of the state
intensity is realized through a correction of the individ-
ual particle weights. For every particle ([xi], wi), with
i = 1, .., Nk +Nk,new set:

ŵi =

(1− pD
k ([x̃i])) +

mk∑
j=1

pk([zj ] | [x̃i])pD
k ([x̃i])

λk|k−1([zj ])

·wi

(33)
6) Contract particles

In [16], interpreting box-particles as a mixture of uni-
form PDFs, it was proven that contraction steps are
needed in the measurement update step. Hence, we
contract every box-particle [xi], i = 1, ..., Nk + Nk,new

with its corresponding measurement. The corresponding
measurement is defined through:

[z] = arg max
wj,i

{[zj ], wj,i > 0}. (34)

If no [z] is found, this particle is not contracted, else the
particle i is set to

([x̂i], ŵi), with (35)
[x̂i] = [hCP]([x̃i], [z]). (36)

7) Resampling
Compute first the estimated expected number of targets

ηk =
Nk+Nk,new∑

i=1

ŵi. (37)

Let Nk+1 be the number of resampled particles. As
explained in [16], instead of replicating box-particles
which have been selected more than once in the resam-
pling step, we divide them into smaller box-particles
as many times as they were selected. Several strate-
gies of subdivision can be used (e.g. according to the
largest box face). In this paper we randomly pick a
dimension to be divided for the selected box-particle.
Next, rescale the weights by ηk to get a new particle set
{[xi], ηk/Nk+1}

Nk+1
i=1 .



VII. NUMERICAL STUDIES

This section gives numerical studies for the proposed Box-
particle PHD filter algorithm. For comparison with traditional
particle filter techniques we use a point particle sequential
Monte Carlo PHD filter (SMC-PHD). As performance measure
the optimum subpattern assignment (OSPA) metric [18] is
used for performance measure, together with the criteria for
measuring the inclusion of the true state and the volume of the
posterior PDF. The later two were introduced in [17], [21].

A. Testing Scenario

Fig. 1. Linear scenario used for performance evaluation. Six targets move
inertially. The individual starting points of each target correspond to the
denoted target ID number.

We analyze the behavior of both filters in a demanding
linear scenario. Herein six inertial moved targets are placed
in an area A = [−500, 500]m × [−500, 500]m. The unit is
assumed to be meters. The state space is S ⊂ R4, where the
first two components correspond to the x and y coordinates
and the third and fourth their velocities. The measurement
space consists of [x] and [y] measurements, so Z ⊂ IR2.
New measurements occur for the sake of simplicity every
second. The measurement noise is white Gaussian noise with
a standard deviation σx = σy = 15m. The probability of
detection is set equal for all states to pD

k ([x]) = 0.95. Target
placement and direction of movement is visualized in Figure
1. Targets 1 – 3 are present for all time steps. Target 4 is
presented between time step 15 and 90. Target 5 and 6 are
present between time step 30 and 75. The whole scenario has
a length of 100 time steps (seconds). The number of clutter
measurements nc is estimated following a Poisson distribution
with the mean value |A| · ρA:

p(nc) =
1
nc!

(|A| · ρA)nc exp(−|A| · ρA), (38)

with |A| denoting the volume of a observed area and ρA a
parameter describing the clutter rate. For this scenario we used
ρA = 4 ·10−6. Clutter measurements are generated by an i.i.d.
process.

To initialize the particle cloud at time step tk = 0, N0 ∈ N+

particles are distributed uniformly across the state space S, e.g.
N0 = 1000. The weights are set to wi = 1/N0.

Assuming a constant velocity model in two dimensions the
prediction of the persistent particles can be modeled by:

[x̃i] =


1 0 ∆t 0
0 1 0 ∆t

0 0 1 0
0 0 0 1

 [xi] + [ν], (39)

with ∆t = tk−tk−1 and ν a 3σ interval of some white process
noise, defined by a covariance matrix Σ. Hidden in equation
(39) are inclusion functions for the individual dimension of
the state space. A close look reveals that every variable only
appears once (for each dimension) and that all operations are
continuous, so these natural inclusion functions are minimal
and the propagated boxes have minimal size. This fact holds
for constant velocity models with arbitrary dimensions.

B. Performance Measures

For the OSPA metric we use directly the state estimates if
using the SMC-PHD filter. To apply the OSPA metric to the
Box-PHD filter we use the point state estimates ŷj gained in
Equation (29) of the proposed algorithm. Alternatively, one
can use the center points of the box states mid([ŷj ]), which
have the same values as ŷj . The inclusion value ρ measurers
if the state vector is contained in the support of the posterior
PDF, or in the case of the PHD filter the posterior intensity.
Given the ground truth for all targets y∗l , with l a index over
the true number of targets, the inclusion for the SMC-PHD
filter can computed by evaluating:

ρSMC
l =

{
1 ∃j : (ŷj − y∗l )P−1

j (ŷj − y∗l )T < κ

0 otherwise.
(40)

The condition in (40) checks if the ground truth is contained
in the error ellipse defined by covariance matrix Pj . The term
κ defines the size of the error ellipse, e.g., use κ = 11.8 for a
3σ–ellipse in two dimensions [25]. The inclusion for the Box-
PHD filter is much simpler to compute: Check if the ground
truth y∗l is contained in one of the state boxes [ŷj ]. If this is
true the inclusion value is one, otherwise zero. Then ρl for the
box-PHD filter is given by:

ρbox
l =

{
1 for y∗l ∈ [ŷj ] and
0 otherwise.

(41)

The volume criteria measures the spread of the particle distri-
bution for a given state. To have a fair comparison between
both filters we compute the volume for the SMC-PHD filter
as:

νSMC
j =

√
6 ·
√

Pj(1, 1) + 6 ·
√

Pj(2, 2). (42)

The volume in Equation (42) is the square route of the widths
of a box containing the 3σ–ellipse of state j. Note that we
only consider here the position information, since the entries
of Pj have different units. For the Box-PHD filter the volume



is computed as the square root of the widths of the box states,
giving:

νSMC
j =

√
|[ŷi](1)|+ |[ŷi](2)| (43)

C. Experiments

1) Accuracy Test: In the first experiment we investigate
the accuracy achieved with the Box-PHD filter in comparison
with the SMC-PHD filter. To do so we will use the linear
scenario described earlier. A visualization of the Box-PHD
filter for the linear scenario can be seen in Figure 2. Figure
3 visualizes the mean OSPA values achieved with both filters
on the given scenario. We can observe that the OSPA values
are in general very low. This means that the SMC-PHD filter
and the Box-PHD filter behave very good in this scenario.
However, we can also observe that the Box-PHD filter has
a little higher values than the SMC-PHD filter. The authors
of [17] already noticed that point estimates gained from box-
particles can have a slight bias. Therefore they introduced two
new measurements criteria inclusion and volume. The mean
results for 1000 Monte Carlo trials and all targets are shown
in Figures 4 and 5, respectively. It can be easily seen that the
inclusion and volume values react to target appearance and
target disappearance. In general we can say that the Box-PHD
filter has a higher volume then the SMC-PHD filter. This can
be seen as a drawback of the box-particle technique. However,
a closer look on the inclusion values reveals that the higher
volume leads to better values for the inclusion criteria. So
we can state that the SMC-PHD filter converges to fast and
therefore it can happen sometimes that the true target state
is not in the support of any covariance matrix Pj . From an
engineering point of view both filters reach similar results in
this scenario. This fact can also be seen in Figure 6. Here, the
estimated mean number of states is depicted. The curves of
both filters are practically identical. Nevertheless, the number
of particles needed for the Box-PHD filter is much smaller in
comparison with the SMC-PHD filter, which yields in a better
runtime.The mean speedup factor for the Box-PHD filter is
10.9. The number of particles used in this scenario where 1875
for the SMC-PHD filter and only 63 for the Box-PHD filter.
This reduces the average computation time for one update step
from 10.35 msec to 0.95 msec.

2) Strong Bias: In the next experiment we investigate the
behavior of both filter when the sensor measurements have
a strong bias, i.e., the bias is bigger then the white process
noise of the sensor. Again we used the linear scenario, but
we added to every measurement a bias of 30 for the x
measurement and a bias of 10 for the y measurement. The
volume of both filters does not change.The inclusion criteria
on the other hand changes dramatically for the SMC-PHD
filter the value drops to values around 0.5, c.f. Figure 7. This
means that approximately 50% of the time the true target
state is not within the posterior intensity of the filter. This
indicates filter divergence, which is considered a catastrophic
event in target tracking. The Box-PHD filter, on the other hand,
reaches values similar to the first experiment without bias.
These result lead to the conclusion that the box-particle filter

Fig. 2. Visualization of proposed Box-PHD filter. The green solid lines are
the true target trajectories. The blue solid boxes correspond to a projection of
the estimated box states into 2D. The box-particles are visualized as dashed
black boxes, while red dotted boxes are the measurements.

Fig. 3. Mean OSPA values for 1000 Monte Carlo trials on linear scenario
for both filters.

can outperform a traditional point particle filter in scenarios
with strongly biased measurements.

VIII. CONCLUSION

In this paper we presented a novel technique for non-
linear multi-target tracking with a box-particle based filter,
called the Box-PHD filter. The theoretical backbone of this
is the random finite set theory, which can be used to derive
the general intensity filter equations. For the implementation,
however, methods from interval analysis are used additionally

Fig. 4. Mean inclusion values for 1000 Monte Carlo trials and all targets
on linear scenario without biased measurements for both filters.



Fig. 5. Mean volume values for 1000 Monte Carlo trials and all targets on
linear scenario without biased measurements for both filters.

Fig. 6. Mean estimated number of states for 1000 Monte Carlo trials on
linear scenario.

to get a box-particle representation of the PHD filter. This
representation allows a decrement of the number of particles
needed. In our experiments we could reduce the number of
particles by a factor of approximately thirty and reduce the
computation time by a factor of approximately eleven. On
the other hand, the accuracy of the filter was not reduced.
Especially in the presence of strong bias we could show that
the Box-PHD filter can outperform the SMC-PHD filter.
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