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Abstract—This paper investigates the three-dimensional local-
ization problem for multiple emitters using a realistic airborne
array sensor. In order to achieve improved results systematic and
statistical direction finding errors are considered in a unified
algorithm. The task is solved using a sequential Monte Carlo
(SMC) implementation of the intensity filter (iFilter). In this
paper, we compare two localization approaches without and
with the consideration of systematic bearing errors and verify
them with an experimental data set. The comparison of both
approaches reveals that the bias consideration offers a superior
performance.

Index Terms—Source localization, multiple-target tracking,
intensity filter, bias estimation

I. INTRODUCTION

The localization of multiple sources using passive direction
finding (DF) sensors is a fundamental task encountered in
various fields like wireless communication, radar, and sonar.
Passive DF in contrast to active methods does not transmit
known signals to illuminate the scene and process reflected
signals, i.e. passive DF methods deliver the signal direction
of arrival (DOA) but no range information. Bearings-only lo-
calization (BOL) can be realized through multiple DF sensors
or a single moving DF sensor. In this work, we consider a
single DF sensor mounted beneath an airborne sensor platform
(Fig. 1). Aspects of the BOL problem examined in the litera-
ture include algorithms, accuracy, and target observability. Two
important ways to solve the multiple source BOL problem are
batch algorithms and recursive, filter-based methods [1, and
refs. cited therein].

In the literature, often idealistic DF sensors are supposed
that collect bearings measurements without systematic errors,
but in practice, measurements collected by a realistic DF
sensor include both statistical as well as systematical errors.
Navigation errors in the own position or attitude, an unknown
attitude displacement between DF sensor and navigation sen-
sor, or a misspecified sensor model can lead to systematic
bearing errors. In [2], the Cramér-Rao bound on the source
location estimation error based on biased bearings has been
derived. For example in [3], the localization problem has been
solved using biased range and bearing measurements obtained
by a multi-sensor network. The problem has been solved by a

Fig. 1. Considered localization scenario with multiple emitters (yellow
crosses) a single moving sensor moving collecting bearing measurements
(green lines) at different points in space (blue dots) along the sensor path
(red curve)

Kalman filter using an augmented state vector containing the
source location and the sensor bias.

In our previous work, we considered bearings measurements
obtained by an airborne image sensor or a compact antenna
array sensor [4], [5]. In [4], we used an SMC implementation
of the intensity filter1 (iFilter) to estimate the individual source
states. Assuming an ideal DF sensor, the iFilter has been
applied to bearing measurements originated by a realistic
DF sensor in order to solve the BOL problem. In [7], we
considered a realistic array sensor with systematic errors that
depend on the signal DOA itself. Furthermore, we presented a
batch algorithm that takes the sensor bias into account without
explicitly computing the sensor bias.

In this work, we combine both aspects of our previous
work to overcome the drawback of the batch algorithm w.r.t. a
varying number of emitters and the presence of false targets.
Therefore, we briefly review the iFilter and show how to
consider systematic sensor errors in this approach. In the

1The iFilter was derived through Poisson point processes (PPPs) as a general-
ization of the probability hypothesis density (PHD) filter [6]. PPPs are very
useful theoretical models to determine and to track an unknown number of
targets.



following, this approach is referred to as bias-iFilter. The
proposed method has been verified with real data obtained by
a compact array sensor in flight experiments. The results show
that the bias-iFilter approach outperforms the iFilter approach.

The paper is organized as follows: In Section II, we formu-
late the localization problem including the systematic bearing
error. In Section III, we outline the considered localization
techniques based on the iFilter. In Section IV, we compare
the accuracy of both approaches using a real experimental data
set. Finally, the conclusions are given in Section V.

II. PROBLEM STATEMENT

The following three-dimensional BOL problem is consid-
ered (Fig. 1): A single airborne observer equipped with a DF
sensor moves along an arbitrary but known trajectory r(t). The
sensor observes Q ground-located sources at the positions pq ,
q = 1, ..., Q. During the movement the sensor collects multiple
bearings at different points in space at time tk, k = 1, 2, ....
The relative vector between the sensor at some time tk and
some source location p is given by

4rk(p) = r(tk)− p . (1)

Commonly, the source-to-sensor bearing measurements of the
DF sensor are defined by azimuth α and elevation ε. The earth-
fixed bearings are nonlinearly related to the source location
p. In the absence of noise and interference, the measurement
vector satisfies

fk(p) =
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εk(p)

)
=
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where 4xk, 4yk, and 4zk denote the components of the
relative vector (1). Assuming bearing noise, the bearing mea-
surements that correspond to a source at location p are given
by

zk = fk(p) +wk , (3)

where the bearing measurements of a realistic DF sensor are
considered that are assumed to be normal distributed and
biased, i.e. wk ∼ N (bk,Ck). Therein, bk = (bα,k, bε,k)

T

denotes the unknown sensor bias and Ck = diag(σ2
α,k, σ

2
ε,k)

the bearing error covariance. In practice, the bearing covari-
ance is unknown and needs to be estimated for localization
purposes, e.g. [7, Eq. (10)]. Also the sensor bias depends on
the measurement time tk. In fact for the considered sensor,
the sensor bias is direction dependent and changes slightly
during the movement of the sensor. In this work, we consider
two alternative state vectors x ∈ S, where S denotes the state
space:

x =

{
p , only location
(pT,bT )T , location and sensor bias

. (4)

Since the sources transmit intermittently and the sensor signal
detection may be inaccurate, the sensor collects at time tk a set
of nk bearing measurements. Furthermore, the total number
of sources is unknown and may vary over long observation

periods. The index set of emitting sources at time tk is denoted
by the index set Ik ⊆ {1, ..., Q} and the state set as well as
the measurement set by

Xk = {xq | q ∈ Ik} , (5)
Zk = {zk(pq) | q ∈ Ik} ∪ Zφ,k

= {z1, ..., znk
} , (6)

where Zφ,k denotes a set of bearing measurements that cor-
respond to clutter targets. Analogous to [4], the multi-target
process X1,X2, ...,Xk can be approximated by a Poisson point
process (PPP). With this the measurements Z1,Z2, ...,Zk are
a realization of a PPP and can be also approximated by a PPP.

The localization problem is stated as follows: Estimate all
source locations pq , q = 1, ..., Q, from a growing number of
measurements Zk, k = 1, 2, ....

III. LOCALIZATION APPROACH

The flow graph of our algorithm can be seen in Fig. 2.
The used SMC implementation of the iFilter can be summa-
rized in six steps (blue blocks). The iFilter circumvents the
bearing data association inherent in conventional localization
approaches and determines also the number of sources. The
key idea is to represent the target intensity by particles at each
time instant tk. Furthermore, the intensity of the clutter space
φ is denoted by fk−1|k−1(φ). In practical implementations
this intensity can be represented by a single number, called
the number of φ hypotheses. Details about the iFilter can be
found in [4]. In order to model the filter fully the following
probabilities have to be defined:

ψk(x|φ) transition probability for new targets,
ψk(φ|φ) transition probability in φ,
ψk(φ|x) transition probability for target death,
pk(z|φ) probability for measurement from clutter,

pDk (x) detection probability for x,

pDk (φ) detection probability for φ.

In this work, two versions of the iFilter without and with
the consideration of the sensor bias are compared. The iFilter
is initialized with k = 0. Therefore, the initial state set X0
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Fig. 2. Basic steps of the proposed localization approach including the iFilter
(blue blocks) and the post-processing (red block)



and the initial values of the aforementioned probabilities must
be defined. Finally in a post-processing step, a clustering
approach is applied to the iFilter outputs in order to obtain
the state parameters and parameter uncertainties. New bearing
measurements can be processed within the next iFilter iteration
(k = k + 1) by continuing with Step 1.

1) Predict target intensity: At time tk, the following set
of Nk particles is available to represent the target intensity:
{(xi, wi)}Nk

i=1, where xi denotes the state vector of the i-th
particle (4) and wi the corresponding weight. Each particle
may represent a possible source state. Since the sources are
assumed to be stationary, the particles can be predicted by
adding some process noise (σp, σb) to their state while the
weights are unchanged. The iFilter models the birth process
by itself, so that the particle number has to be increased in
order to represent newly born targets correctly. The additional
number of particles is given by

Nk,new = Nk ψk(x|φ) fk−1|k−1(φ) . (7)

With this, the total number of particles is given by Nk,tot =
Nk+Nk,new. Newly created particles are uniformly distributed
over the state space S. The corresponding weight of the i-th
particle, i = Nk + 1, ..., Nk,tot, is given by

wi = ψk(x|φ) fk−1|k−1(φ)N−1k,tot . (8)

The predicted particle set containing the shifted and newly
created particles is defined as {(xi, wi)}

Nk,tot

i=1 .
2) Predict hypothesis intensity: In order to predict the

number of φ hypotheses, add the number of persistently absent
and newly absent targets, so that the predicted number is then:

fk|k−1(φ) = ψk(φ|φ) fk−1|k−1(φ) +

Nk,tot∑
i=1

ψk(φ|xi)wi . (9)

3) Predict measurement intensity: For each measurement
zj , j = 1, ..., nk, compute the partition functions for the source
location space as well as the ”clutter target” space. The sum
of both is the measurement intensity for zj :

λk|k−1(zj) = pk(zj |φ) pDk (φ) fk|k−1(φ)

+

Nk,tot∑
i=1

pk(zj |xi) pDk (xi)wi , (10)

with

pk(zj |φ) =
fmk

k−1|k−1(φ)

mk!
e−fk−1|k−1(φ) (11)

and where the measurement likelihood function pk(z|x) de-
scribes how likely the measurements z are given the state vec-
tor x. In this work, two different state vectors are considered
containing only the source location or the additional sensor
bias (4). The corresponding likelihood functions are given by

pk(z|x) =

{
e−

1
2M

2(z,fk(p),Ck) , x = p

e−
1
2M

2(z,fk(p)+b,Ck) , x = (pT,bT )T
, (12)

where M(z,m,C) =
√

(z−m)TC−1(z−m) is the Maha-
lanobis distance.

4) Update target intensity: Given nk new measurements the
update of the state intensity is realized through a correction of
the individual particle weights. The particle set with the up-
dated particle intensities is given by {(xi, h(xi,Zk)wi)}

Nk,tot

i=1

with

h(x,Zk) = 1− pDk (x) +
nk∑
j=1

pk(zj |x) pDk (x)
λk|k−1(zj)

.

5) Update hypothesis intensity: Since we use the aug-
mented space S+ we have to adjust also the number of φ
hypotheses:

fk|k(φ) = h(φ,Zk) fk|k−1(φ) , (13)

where h(φ,Zk) is defined analogous to h(x,Zk) using the
corresponding probabilities pk(zj |φ) and pDk (φ).

6) Resampling: Analog to the PHD filter the integral over
this intensity is the estimated number of targets Q̂k. Since the
particle set represents the target intensity of the PPP, the target
number can be estimated by the sum over the intensity, i.e.

Q̂k =

Nk,tot∑
i=1

wi . (14)

The number of particles in the state space may and should vary
over time in order to represent the current situation better,
e.g. more targets need more particles, so that the particle
approximation accuracy is still sufficient. The correct number
of particles Nk+1 resampled for the next time step is:

Nk+1 =
Q̂k

Q̂k + fk|k(φ)
Nk,tot . (15)

The estimation of Nk+1 in each time step prevails the par-
ticle number from growing against infinity. Given Nk+1 a
standard resampling technique for particle filtering can be
used. Rescale the weights by Q̂k to get a new particle set
{(xi, Q̂k/Nk+1)}

Nk+1

i=1 .
7) Clustering: After each time step k we generate a particle

cloud, which represents the PPP over S. To determine the
correct source states from this cloud a clustering algorithm
(e.g. [8]) can be applied to the particles. Alternatively, the
clustering step can be avoided by using the approach in [9].

IV. EXPERIMENTAL RESULTS

In order to verify our approach, we used both filter strategies
on real data gained from flight experiments with a compact
antenna array mounted beneath an aircraft. In a pre-processing
step, we use the conventional beamformer to calculate the
signal bearings. During the movement, the sensor collects
bearings that correspond to Q = 3 stationary sources. The
position and attitude of the sensor is measured by the on-board
navigation sensor (σpos = 0.5 m, σatt = 0.1◦). Comparing
the considered bearing data batch with the ground-truth, the
bearings exhibit systematical errors of approximately bα = 5◦

and bε = 10◦.



In order to solve the BOL problem, we apply the localization
approach presented in Section III. The iFilter2 is initialized
with a set of 15000 particles. The iFilter circumvents the
association problem, but in our specific scenario the signal
sources can be also identified by their frequency. In the post-
processing step, the k-means clustering algorithm has been
used.

Regarding just the bearings of the first source, Fig. 3
compares the particle clouds for the iFilter and the bias-
iFilter for k = 6 and k = 22. The localization result of the
iFilter can be geometrically interpreted as triangulation, i.e. the
bearing lines intersect at the estimated source location. Since
the bearing measurements are biased, also the corresponding
localization results are biased. For k = 6, the particles of
the bias-iFilter show a circle structure. This behavior can be
explained by the observability condition for the BOL problem
based on biased bearings. In [2] it is mentioned that a target
cannot be localized, if the sensor moves along the line of
sight or on a circle through the target location. In our three-
dimensional case, this considerations lead to an uncertainty
along a sphere defined by the sensor path and the source
location. In this way, the sensor bias can be compensated with
a growing number of measurements.

(a) iFilter, k = 6 (b) bias-iFilter, k = 6

(c) iFilter, k = 22 (d) bias-iFilter, k = 22

Fig. 3. Comparison of particle clouds; Sensor path (blue crosses), source lo-
cation (black circle), particles and their weights (colored dots), and estimation
result (black diamond)

2The required propabilities are initialized with ψ0(x|φ) = 0.2, ψ0(φ|φ) =
0.1, ψ0(φ|x) = 0.01, pD0 (x) = 0.9, and pD0 (φ) = 0.1, and the intensity in
φ with f0|0(φ) = 2. The initialized and newly born particles are uniformly
distributed in S = [−1km, 1km] × [−1km, 1km] × [−40m, 40m] ×
[−10◦, 10◦] × [−15◦, 15◦]. To predict the target intensity in Step 2, we
use σp = 2.5 m and σb = 1◦.
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Fig. 4. Comparison of the RMSE of the localization results

In the following, all bearing measurements are used, but
only the results of the first source are depicted, because
the results of the other sources show a similar behavior.
Fig. 4 compares the root mean square error (RMSE) of the
localization results for the iFilter and the bias-iFilter. The
results reveal that the bias compensation inherent in the bias-
iFilter approach significantly improves the localization results.
The bias-iFilter needs longer to converge due to a higher
dimensional state space.

V. CONCLUSIONS

In this paper, we present a solution for the three-dimensional
BOL problem for an unknown sensor bias and source number.
An SMC version of the iFilter is used to solve the problem.
The sensor bias can be compensated by using an augmented
state vector containing the source location and the bias. As
expected this leads to an improved localization performance.
Finally, the proposed localization approach and results has
been applied in flight experiments. We mention that the
implemented algorithm is real-time capable.
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