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Abstract—This paper investigates the three-dimensional local-
ization problem for multiple emitters using a realistic airborne
array sensor. Three sensor models are considered: the ideal array
model, an array sensor with a constant bias, and the realistic
array model with bias errors that depend on the signal direction
of arrival itself. The realistic array model relies on antenna
measurement results of the modeled antenna array. For the
considered array sensor the asymptotic estimation accuracy of
the source location is derived. Furthermore, for the considered
three-dimensional case, a least squares estimator is presented
that solves the localization problem without explicitly computing
the sensor bias. Finally, some simulations are performed to
compare the localization accuracy of the considered bearings-
only localization for the regarded array sensors.
Keywords: Bearings-only localization, direction finding,
array signal processing, array calibration.

I. INTRODUCTION

Localization of multiple sources using passive sensor ar-
rays is a fundamental task encountered in various fields like
wireless communication, radar, sonar, seismology, and radio
astronomy. Passive direction finding (DF) in contrast to active
methods does not transmit known signals to illuminate the
region of interest and processes reflected signals. That means
passive DF methods deliver the signal direction of arrival
(DOA) but no range information. Passive localization can
be realized by multiple DF sensors or a single moving DF
sensor. A moving platform is the preferable solution in many
applications. The sensor is typically airborne, e.g. on an
aircraft, a helicopter, or an unmanned aerial vehicle (UAV).
Airborne DF sensors provide in comparison to ground lo-
cated sensors a far-ranging signal acquisition because of the
extended radio horizon. Mostly for localization issues, DF
sensors are installed under the fuselage or in the wings of the
airborne sensor platform. To localize emitters in impassable
danger zones, preferably UAVs are used. Especially for small
UAVs, the technological challenge lies in the integration of
the several subsystems (e.g. energy supply, engine) and the
payload in the smallest possible space. Due to the hard payload
restrictions only compact DF sensors come into consideration.

In this work, an airborne array sensor is considered observ-
ing multiple stationary sources and collecting multiple data
batches. To localize the sources, the traditional localization
approach depicted in Fig. 1 has been applied. Therein, at each
time instance, a DF step has to performed in advance.
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Figure 1. Basic steps of the traditional localization approach

Aspects of the two-dimensional and three-dimensional
bearings-only localization (BOL) problem examined in the
literature include numerous estimation algorithms, estima-
tion accuracy, and target observability [1]. Exemplarily, from
the multitude of methods, two methods can be considered
w.r.t. their estimation accuracy: the maximum likelihood es-
timator (MLE) and the extended Kalman filter (EKF), e.g.,
in modified polar coordinates [2]. As expected, the MLE
offers accuracy benefits and requires a higher computational
burden in comparison to the EKF. The MLE has proved to be
particularly robust, and it has been shown to be asymptotically
unbiased and efficient [3]. In this work, the MLE for the
considered three-dimensional BOL problem will be used.
Given those DOAs, a BOL algorithm can be used that can
be geometrically interpreted as the intersection of the bearing
lines. This technique is also referred to as triangulation.

Generally, the bearing data association problem must be
solved in order to employ BOL techniques. Tracking algo-
rithms are known to lead to track loss whenever the DOAs of
the targets cannot be resolved for a longer period of time. MHT
is generally accepted as the preferred method for solving the
observation-to-track association problem in modern multiple-
source tracking systems [4]. MHT can deal with cases where
the global nearest neighbor (GNN) approach or the joint prob-
abilistic data association (JPDA) fail. However, in situations
where the variances of the measurements are too large, even
MHT is unable to partition the sensor data correctly. In our
previous work, we proposed a direct position determination



(DPD) approach for a moving array sensor to solve the
localization problem without explicitly computing bearings
[5], [6]. In this way, the bearing data association problem
can be circumvented. In [7], we used a probability hypothesis
density (PHD) filter based on bearing measurements that also
avoids the data association problem. However, in this paper,
we assume an ideal bearing data association and focus on the
sensor model and BOL techniques.

Especially for small array sensors, biased bearing estimates
may occur that depend on the signal DOA itself. A common
problem is the usage of an idealistic sensor model, which can-
not be observed in real applications. This approximation leads
to a reduced localization performance. The main contribution
of this paper is the incorporation of a realistic sensor model
to the BOL approach to increase the localization accuracy.

The paper is organized as follows: In Section II, we present
the DOA accuracy for an ideal array sensor, a sensor with
systematic errors, and a realistic array sensor. In Section III,
we formulate the localization problem involving the sensor
models. The CRBs on the estimation accuracy for the con-
sidered sensors are derived in Section IV. In Section V,
we outline the considered localization techniques. Finally, in
Section VI, we compare the accuracy of the considered array
sensors in Monte Carlo simulations. The conclusions are given
in Section VII.

The following notations are used throughout this paper: (·)T
and (·)H denote transpose and Hermitian transpose; In and
0n denote the n×n-dimensional identity and zero matrix; 0n
denotes an n-dimensional zero vector, and E {·} denotes the
expectation operation.

II. DIRECTION FINDING ACCURACY

In this Section, the DF problem using an antenna array is
considered. Therefore, we define first of all the unit vector
towards the signal DOA. For antenna arrays, it is natural to
parameterize the unit vector by the antenna coordinates (also
direction cosine or uv-coordinates) u = (u, v)T , u2 + v2 ≤ 1,
i.e.

e(u) =

 u
v√

1− u2 − v2

 . (1)

With the consideration of systematic bearing errors, angu-
lar coordinates are suitable to describe the DOA. E.g. for
gimballed sensors, the DOA is almost always described by
azimuth α and elevation ε. Also in this case, the DOA of the
incident signal can be expressed in terms of the spherical angle
ψ = (α, ε)T ∈ (−π, π]× [−π2 ,

π
2 ] and the corresponding unit

vector is given by (Fig. 2)

e(ψ) =

sinα cos ε
cosα cos ε

sin ε

 . (2)
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Figure 2. Relative vector given by antenna coordinates and spherical
coordinates of the direction of arrival

A. Array Data Model

It is important to establish a mathematical relationship
between the array data and the source DOAs. The common
array data model assumes that a set of Q narrowband signals
with wavelength λ impinge as plane wave on an array sensor
with M elements. Using complex envelope notation, the k-th
sample, k = 1, ...,K, of the measurement vector zk ∈ CM can
be expressed by the superimposed signals and the additional
noise vector wk ∈ CM as

zk =

Q∑
q=1

a(eq) sk,q + wk , (3)

where sk,q , k = 1, ...,K, q = 1, ..., Q, are the unknown
source signal snapshots, and a(e) is referred to as the array
transfer vector. In the literature, the array transfer vector is also
named steering vector, array manifold vector, DOA vector, or
array response vector. The array transfer vector expresses its
complex response to a unit wavefront arriving from the DOA.
For the considered far-field sources, the array response to a
wavefront from the DOA is given by

a(e) =

 g1(e) ej
2π
λ eT d1

...
gM (e) ej

2π
λ eT dM

 (4)

and depends on the unit vector e, the wavenumber 2π
λ , the

array element locations relative to a reference point commonly
in the center of the array, and gm(e) ∈ C the element pattern
of the m-th array element. The data model in (3) can be written
more compactly as

zk = A(e) sk + wk (5)

with

e = (eT1 , ..., e
T
Q)T ,

A(e) = [a(e1), ...,a(eQ)] ,

sk = (sk,1, ..., sk,Q)T .



B. Preprocessed Array Data
The data covariance matrix (or spatial autocorrelation ma-

trix) plays an important role in array signal processing, be-
cause it contains information about the array transfer vector
and the signals. Since the array sensor collects a finite number
of samples, the data covariance matrix can be estimated over
K samples

R =
1

K

K∑
k=1

zk zHk . (6)

Subspace-based DF techniques divide the data covariance
matrix in a signal and noise subspace in order to estimate
the DOAs. The subspaces are calculated by performing the
following eigendecomposition of the data covariance matrix:

R = Us Λs UH
s + Uw Λw UH

w , (7)

where the column vectors of Us ∈ CM×Q and Uw ∈
CM×M−Q are the eigenvectors spanning the signal and noise
subspace of the covariance R, respectively, with the associated
eigenvalues in decreasing order on the diagonals of Λs ∈
RQ×Q and Λw ∈ RM−Q×M−Q, respectively. To perform the
eigendecomposition in (7), the number of source signals must
be known or estimated, e.g. the number of source signals can
be determined by a detection method [8].

C. Direction Finding
In this work the deterministic data model is considered. In

the deterministic signal model, each sample sk, k = 1, ...,K,
is regarded to be fixed and unknown, i.e. each sample is an
unknown deterministic parameter that needs to be estimated.
Furthermore, the random vectors wk, k = 1, ...,K, are as-
sumed to be zero-mean complex Gaussian [9], and temporally
and spatially uncorrelated, i.e. wk ∼ NC(wk; 0M , σ

2
w IM ),

where σ2
w denotes the receiver noise variance.

In the literature numerous DF algorithms are described [10],
e.g. in practice, the multiple signal classification (MUSIC)
method is a widely-used method to solve the DF problem [11].
Using the subspace data, the normalized bearing function of
the MUSIC method can be calculated by

PMUSIC(ψ) =
aH(ψ) a(ψ)

aH(ψ) Uw UH
w a(ψ)

. (8)

The DOA estimates can be obtained at the maximum locations
of the bearing function. The MUSIC approach leads to a
higher resolution capability in comparison to the conventional
beamformer and tends to be power independent. Commonly,
the array transfer vector in (8) is assumed to be ideal,
i.e. gm(ψ) = 1, m = 1, ...,M .

D. Sensor Models
In practice, however, the array sensor cannot assumed to

be ideal. In this subsection, we present the considered ideal
array sensor, a sensor with systematic bearing errors as well
as a realistic array sensor. Bearing errors may occur due to
a mismatch between the array transfer vector in the array
data model (4) and the DF method (8). The bearing errors
are compared for the three cases.

1) Ideal Array Sensor: For an ideal array sensor, all el-
ement patterns have the same characteristic or are perfectly
known, i.e. the element patterns gm(ψ), m = 1, ...,M , can be
neglected in the array transfer vector. If correlations between
the sources are neglected, the bearing error w.r.t. an individual
source can be assumed as zero-mean Gaussian

wψ ∼ N (02,Cψ) , (9)

where Cψ denotes the bearing covariance. In practice, the
bearing covariance is unknown and needs to be estimated for
localization purposes. For example, the bearing covariance for
an uniform circular array (UCA) with M elements separated
by the inter-element distance d can be approximated by [12],
[13]

Cψ =
1

KM3 SNR

(
λ

d

)2(
1/ cos2 ε 0

0 1/ sin2 ε

)
, (10)

where SNR = s2/σ2
w is the single-element signal-to-noise

ratio (SNR). Obviously, the bearing variances depend on the
source SNR and the source elevation itself.

2) Sensor With Systematic Error: In praxis, several reasons
can lead to systematic bearing errors, e.g. navigation errors
such as errors in the own position or own attitude. A heading
error for example immediately leads to an azimuth error.
If the DF sensor and a navigation sensor are mounted on
a platform, both sensors may be displaced in the attitude.
Also biased bearing results can originate sensor calibration
errors, e.g. electrical cable length differences between the array
elements lead to bearing errors that are independent from the
signal DOA. Therefore, the bearing errors can be assumed as

wψ ∼ N (β,Cψ) (11)

where β = (βα, βε)
T denotes the constant systematic bearing

error w.r.t. the azimuth and elevation angle, respectively.
3) Realistic Array Sensor: The real antenna characteristic

is influenced by element pattern differences and element
coupling effects. These errors can be calibrated by an antenna
measurement, i.e. the variations of the amplitude and phase re-
sponse of each element, gm(ψ), m = 1, ...,M , are determined
from the received signals zk, k = 1, ...,K.

External and blind array calibration techniques are described
in the literature. For example, the array can be calibrated by
an external array measurement in an anechoic chamber, or the
calibration of an airborne array is sensor is described in [14].
Through the array measurements, the element patterns can be
deposited in the data model and can be considered in the used
DF approach.

In practice, however, the sensor errors cannot be com-
pensated perfectly, e.g. due to the influence of the sensor
platform. In this work, we consider a triangular array sensor
with M = 3 elements and d ≈ λ

2 . For this array, we measured
the element characteristics in an anechoic chamber. This kind
of antenna array measurements are advantageous to free-
space measurements, because of less interferences of the plane
wavefront due to ground reflections, scattering, and shadowing



Figure 3. Example of array element phase patterns in antenna coordinates
without (left) and with (right) sensor platform

effects. For each element, the measurements are performed
for several signal DOAs, frequencies and polarizations. To
evaluate the platform influence, also measurements with the
installed array sensor have been carried out. Transforming the
near-field measurement results to the far-field, transforming
the resulting data w.r.t. polarization, and neglecting the signal
phase 2π

λ eTdm, m = 1, ...,M , due to the array geometry,
enables a suitable interpretation of the element patterns.

For the case of co-polarization, Fig. 3 presents the measured
element phase patterns in antenna coordinates. For the antenna
under test, the phase patterns differ from element to element.
Furthermore, the comparison of the patterns without and with
the sensor platform in Fig. 3 shows significant differences.
The variances of the phase error increases approximately by
factor three due to the platform influence. Especially phase
errors are objectionable, because the signal phase contains
essential information about the source DOA. This leads to
biased bearing results

wψ ∼ N (β(ψ),Cψ) , (12)

where the systematic error depends on the signal DOA itself.

III. LOCALIZATION PROBLEM

The following three-dimensional scenario is considered, but
the two-dimensional case can be treated completely analog
to this case. For the sake of simplicity, we assume that the
detection probability is equal to 1 and the false alarm rate
is equal to 0. Let the array sensor collect N data batches
at measurement times tn, n = 1, ..., N , and let assume
that the sensor’s displacement during each measurement is
negligible. The source DOAs can be calculated from the array
data batches e.g. by using the MUSIC method presented
in Section II-C. If the attitude of the sensor changes from
observation to observation, then the bearing angles must be
transformed into earth-fixed coordinates performing a suitable
rotation by the platform heading, pitch, and roll angles. For the
sake of simplicity, we assume a constant sensor attitude. Since
we assume an ideal bearing data association, we consider the
single source case. Thus, we omit the source index q for a
better readability. The observer’s objective is to localize the
targets from the collected array data batches.
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Figure 4. Considered localization scenario with a single moving sensor

The measurement functions for the azimuth and elevation
ψn(p) = (αn, εn)T at measurement time tn, n = 1, ..., N ,
can be expressed as (Fig. 4)

αn(p) = arctan
4xn
4yn

,

εn(p) = arctan
4zn√

4x2n +4y2n
, (13)

where 4xn, 4yn, and 4zn are the components of relative
vector

4rn = p− r(tn) . (14)

If the sensor position r(tn) (and the sensor attitude) are
known, then the measurement function in (13) depends only
on the target locations. With this, the localization problem is
formulated as follows: Estimate the source location p from
the collected bearing measurements

ψ̂n = ψn(p) + wψ,n , (15)

where bearing error wψ,n, n = 1, ..., N , is related to the
considered sensor models introduced in Section II-D.

IV. CRAMÉR-RAO BOUND

For judging an estimation problem, it is important to know
the maximum estimation accuracy that can be attained with the
given measurements. The Cramér-Rao bound (CRB) provides
a lower bound on the estimation accuracy of any unbiased
estimator, and its parameter dependencies reveal characteristic
features of the estimation problem.

A. Preliminaries

Let p̂(z) denote some unbiased estimate of the unknown
target parameters p based on the random measurements z.
The covariance matrix C of the estimation error

4p = p− p̂(z) (16)

satisfies the multi-dimensional Cramér-Rao inequality

C = E
{
4p4pT

}
≥ J−1(p) , (17)

where the inequality is interpreted as stating that the matrix
difference is positive semidefinite and J−1(x) denotes the



CRB which is given by the inverse Fisher information matrix
(FIM):

J(p) = E

{(
∂ lnL(p; z)

∂p

)T (
∂ lnL(p; z)

∂p

)}
. (18)

If the estimator attains the CRB then it is called efficient. The
log-likelihood function is given by

lnL(p; ψ̂1, ..., ψ̂N ) = const− 1

2

N∑
n=1

wT
ψ,n C−1

ψ,n wψ,n . (19)

In this log-likelihood function, ψ̂n are random variables due
to the random variables wψ,n, n = 1, ..., N .

B. Ideal Array Sensor

A few comments on the uniqueness condition are in or-
der. Unambiguous localization results can be guaranteed, if
the DOAs are identifiable for each observation (Q < M ,
d ≤ dmax) [15], and there is not a constant line-of-sight
between target and sensor [16]. For example, if the sensor
moves exactly towards the relative vector, then the bearing
lines can not be intersected. If a unique solution for the BOL
problem exists, then one may be interested in the maximal
estimation accuracy that can be achieved given the bearing
measurements.

Inserting the log-likelihood function in (18) and taking
expectation, the FIM referring to the location results in

J(p) =

N∑
n=1

(
∂ψn(p)

∂p

)T
C−1
ψ,n

(
∂ψn(p)

∂p

)
. (20)

If azimuth and elevation are uncorrelated, the FIM can be
calculated by [3]

J(p) =

N∑
n=1

1

σ2
α,n

(
∂αn(p)

∂p

)T (
∂αn(p)

∂p

)

+

N∑
n=1

1

σ2
ε,n

(
∂εn(p)

∂p

)T (
∂εn(p)

∂p

)
, (21)

where the bearing variances are given by the diagonal elements
of Cψ,n, and with

∂αn(p)

∂p
=

1

4rn
1

cos εn
(cosαn,− sinαn, 0) ,

∂εn(p)

∂p
=

1

4rn
(− sinαn sin εn,− cosαn sin εn, cos εn) ,

where 4rn = |4rn| denotes the distance between sensor and
source. Generally, the CRB depends on the DOA accuracy,
the number of bearing measurements, and the target-observer-
geometry given by the relative vector in (14).

C. Sensor With Systematic Errors
In [17], the CRB on the location of a stationary target has

been derived for the two-dimensional azimuth-only localiza-
tion problem. Following these calculations, the corresponding
CRB for the three-dimensional problem can be obtained by

J−1(p,β) =

(
J(p) Jp,β

JTp,β NI2

)−1

, (22)

where J(p) is the FIM on the source location accuracy in (21)
and

Jp,β =

N∑
n=1

[
∂αn(p)
∂p

∂εn(p)
∂p

]T
. (23)

In the considered localization problem, the systematic sensor
errors are nuisance parameters and only the source locations
are desired parameters. The corresponding CRB on the source
location accuracy can be calculated by applying the matrix
inversion of a block-partitioned matrix to (22)

J−1
β (p) =

(
J(p)− 1

N
Jp,βJTp,β

)−1

, (24)

where the term 1
N Jp,βJTp,β can be interpreted how much

the estimation accuracy degrades caused by the circumstance
that the sensor bias are part of the estimation problem. It is
mentionable that the CRB is independent from the sensor bias
β.

V. LOCALIZATION APPROACHES

A standard solution of the localization problem stated in
Section III consists of three steps (Fig. 1): the DF step (Section
II-C), the bearing data association (tracking) step, and the
BOL step. Before solving the BOL problem, the measurement-
to-track association problem must be solved by partitioning
the measurements into sets of measurements belonging to
the same source. The association problem can be solved for
example by an MHT approach. The outcomes of this are
multiple sets of DOAs that are called measurement tracks,
where each of them corresponds to an individual target. The
DOA track is given by the earth-fixed DOA estimates

ψ̂1, ..., ψ̂N .

A. Standard Bearings-only Localization
To solve the BOL problem, the target location p must be

estimated from the aforementioned DOA track. For an ideal
array sensor, the BOL problem can be solved by maximizing
the log-likelihood function in (19), and the cost function of
the MLE has the following form:

p̂ = arg min
p

{
N∑
n=1

[α̂n − αn(p)]2

σ2
α,n

+

N∑
n=1

[ε̂n − εn(p)]2

σ2
ε,n

}
,

(25)
where the expected DOAs αn(p) and εn(p) are given by
the elements of measurement function (13) and the bearing
variances are given by the diagonal elements of (10). For a
proper choice of p the cost function (25) displays a global
minimum. Therein, uncertain measurements make a small
contribution to the optimization.



B. BOL With Systematic Bearing Errors (Bias-BOL)

Now the BOL problem using a DF sensor that delivers
biased DOAs is solved, where the target locations are of
interest and the bias values are nuisance parameters. Taking
the bias errors into account, the least squares estimator in (25)
can be modified to

p̂, β̂ = arg min
p,β

{
N∑
n=1

[α̂n − αn(p)− βα]2

σ2
α,n

+

N∑
n=1

[ε̂n − εn(p)− βε]2

σ2
ε,n

}
. (26)

In [18], a BOL approach has been proposed to improve the
localization accuracy. The key idea is to process the bearing
measurements that are related to their average value instead of
processing the bearings themselves (Fig. 5). In this way, the
bias parameters are not estimated explicitly. The cost function
reads [18, Eq. C]

p̂ = arg min
p

{
N∑
n=1

[(α̂n − ᾱ)− (αn(p)− ᾱ(p))]2

σ2
α,n

+

N∑
n=1

[(ε̂n − ε̄)− (εn(p)− ε̄(p))]2

σ2
ε,n

}
, (27)

where the averaged bearing measurements and the averaged
expected bearing measurements are given by

ᾱ =
1

N

N∑
n=1

α̂n ,

ᾱ(p) =
1

N

N∑
n=1

αn(p) ,

ε̄ =
1

N

N∑
n=1

ε̂n ,

ε̄(p) =
1

N

N∑
n=1

εn(p) .

source location
p

observer path
r(t1) r(tN )

ᾱ

α̂1

α̂1 − ᾱ

ᾱN

α̂N − ᾱ

Figure 5. Principle of the BOL approach based on biased bearing measure-
ments

VI. SIMULATION RESULTS

Simulations for the considered array sensors are carried out.
The single-element single-source SNR is modeled by

SNRn,q = SNR0,q/4rn,q ,

and we assume that SNR0,q = 5 dB, q = 1, ..., Q. In the
considered scenario, we use a UCA composed of M elements
separated by the inter-element space d = λ

2 . The sensor field-
of-view is limited to the lower half sphere and suitable to
localize ground-located emitters. At each measurement point
the sensor collects an array data batch to calculate the source
DOAs. Therefore, we use the MUSIC method presented in
Section II-C. In the case of multiple sources, the bearing
data association problem must be solved e.g. by an MHT
approach. Anyway, since the signal frequency is identical, this
quantity cannot be used as context information. All bearing
measurements are subdivided in two DOA tracks each related
to an individual source. In our simulations, we assume an ideal
bearing data association.

In the ground station (fusion center), the sensor-fixed DOAs
are transformed to earth-fixed coordinates, and the emitter
locations are computed by applying the standard BOL ap-
proach (25) and the Bias-BOL approach (27) to the DOA
measurements. In our simulations, we use the simplex method
of Nelder and Mead [19] to find the minima of the cost
functions and we initialize every search with the true value.

A. Ideal Array Sensor

In this subsection, we illustrate the BOL principle. Within
a simulation, an ideal UCA with M = 6 elements has been
assumed collecting N = 20 data batches with K = 100
samples per batch. Moreover, Q = 2 sources are considered.
Fig. 6 shows the experimental scenario setup with the sensor
path (white line) and the measurement points (red dots). The
emitters are located at the big red dots.

For both DOA tracks, the azimuth bearings are pictured as
two-dimensional bearing lines, while the estimated elevation
angles that are necessary to estimate the emitter height are not
depicted in Fig. 6(a,d). The source locations can be determined
from the formed DOA tracks.

Fig. 6(b,e) present the normalized BOL cost functions
that correspond to the bearings depicted in Fig. 6(a,d). The
magenta colored locations represent a low value of the cost
function and the cyan colored locations a high value. The cost
functions display a well-pronounced global minimum close to
the true target location. Furthermore, the cost functions exhibit
no further local minima.

Monte Carlo simulations with 250 runs have been carried
out to study the localization performance. The BOL approach
in (25) is used to solve the localization problem. The estima-
tion results of the Monte Carlo trials are plotted as white dots
in Fig. 6(c,f). The projection on the xy-plane of corresponding
concentration and Cramér-Rao bound ellipses are depicted as
white and red ellipses, respectively. The ellipses are typically
oriented towards the sensor. For the ideal sensor the ellipses
have a good consistency w.r.t. extension and orientation. It can
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Figure 6. Simulation results for the BOL approach

be shown, that the employed BOL approach is asymptotically
efficient with a growing number of measurements or increasing
SNR.

B. Comparison of the Array Sensors

In this subsection, the localization performance of the array
sensors introduced in II-D is compared. We consider a single
source and and an UCA with M = 3 elements.

For an ideal array sensor the root mean square error
(RMSE) for both approaches is depicted in Fig. 7(a). It is
mentioned that in this case also the Bias-BOL approach can
be applied to estimate the unknown sensor bias βα = βε = 0◦.
The standard BOL as well as the Bias-BOL approach attain
the corresponding CRB for growing number of measurements.
This proofs that both BOL approaches are asymptotically
efficient. Furthermore as expected, in this case the standard
BOL approach offers a superior performance compared to the
Bias-BOL approach.

For a sensor with systematic bearing errors βα = 5◦ and
βε = 10◦, the corresponding RMSE is pictured in Fig. 7(b).
Both approaches exhibit a decreased localization accuracy. As
a consequence that the standard BOL approach does not ac-
count for the systematic bearing estimates, also the localization
results are biased. For this reason, the standard BOL does not

approach the CRB while the Bias-BOL approach attains the
corresponding CRB.

In Fig. 7(c), the RMSE for realistic array sensor is pre-
sented. In this case, both standard BOL as well as Bias-BOL
do not reach the CRB for a fixed bias, because the systematic
bearing errors vary from measurement to measurement. This
degrades the performance of the BOL approaches. Neverthe-
less, the bias variation can be approximated by a mean bias
error that can be estimated by the Bias-BOL approach. This
leads to a superior performance in comparison to the standard
BOL approach.

VII. CONCLUSIONS

In this paper, we derived the DF accuracy for an realistic
array sensor based on the antenna measurements of a real
array sensor. For the three-dimensional localization problem,
we briefly reviewed the standard BOL approach and outlined
a BOL approach that accounts for biased bearings without
explicitly computing the systematic sensor errors. For the
considered array sensor, the corresponding CRBs have been
derived. In simulations, we compared the localization accuracy
of the considered sensors. It has turned out that the standard
BOL approach is the best choice for an ideal array sensor. For
a sensor that delivers biased bearing results, the Bias-BOL ap-



proach considerably outperforms the standard BOL approach.
Furthermore, this approach is asymptotically efficient for a
growing number of measurements and has been also used for
a realistic array sensor.
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Figure 7. RMSE of the standard BOL approach (blue lines, crosses) and
Bias-BOL approach (red lines, circles) compared with the CRB of an ideal
sensor (black solid line) and a sensor with systematic errors (black dashed
lines)

In fact, we have used this localization technique in real flight
experiments with the real array sensor and obtained similar
results. the presented Bias-BOL approach is not restricted to
array sensors and can be also applied to any DF sensor that
offers a similar behavior.
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