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Abstract. In this work we present a novel method for detecting multi-
ple objects of interest in one image, when the only available information
about these objects are their shape and color. To solve this task we
use a global optimal variational approach based on total variation. The
presented energy functional can be minimized locally due its convex for-
mulation. To improve the runtime of our algorithm we show how this
approach can be scheduled in parallel.Our algorithm works fully auto-
matically and does not need any user interaction. In experiments we show
the capabilities in non-artificial images, e.g. aerial or bureau images.

1 Introduction

To detect multiple objects of interest we use the concept of image segmenta-
tion. We will segment the image plane into two regions: foreground (objects of
interest) and background. In this context we will use the minimization of an
energy functional in continuous space introduced in [1] and [2]. The usage of
shape information for image segmentation is normally done using the level-set
representations (cf. [3] [4] [5] [6]). In this representation a shape is defined as the
boundary given by the zero level set of an embedding function φ : IRd → IR:

C =
{
x ∈ IRd

∣∣∣φ(x) = 0
}
. (1)

The shape priors in this context are then defined on a space of embedding func-
tions using the space of signed distance functions. Although this formulation has
its benefits (independency of parametrization and easy handling of topological
changes) there exist two well-known drawbacks: Firstly, the space of signed dis-
tance functions is not a linear space, and secondly, the resulting cost or energy
functionals are generally not convex.

Recently, an alternative to the continuous level set representation has been
proposed, where the segmentation of images is formulated on the basis of convex
functional minimization using the concept of Total Variation(TV) (c.f [7], [8]). In
[9] the formulation of a globally optimal color-based image segmentation using
the TV norm was shown. In this paper we extend this work by combining it with
shape information.
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2 Shape Information

In this section we briefly describe the shape prior model, introduced in [10], which
will be used in the following because of its convex and continuous formulation.

For the representation of shapes we use the shape space Q:

Definition 1. A shape in IRd is a function

q : IRd → [0, 1] , (2)

which assigns to any pixel x ∈ IRd a probability q(x) that x is part of the object.
The space of all shapes will be denoted Q. In our case we will only consider
planar shapes, so we set d = 2.

The benefit of this model lies in the independency of any parametrization. So the
problem of shape alignment does not require the estimation of point correspon-
dences. Furthermore the values of q can be easily interpreted in a probabilistic
sense. Cremers et al. have shown in their paper [10] that the shape space Q is
convex. This characteristic of Q leads to the conclusion that any convex combi-
nation of elements of the set

χ = {q1, q2, ..., qN} (3)

is a valid shape. With this we can define statistic quantities such as mean,
covariance matrices and eigenmodes of a training set χ.

Let χ = {q1, q2, ..., qN} be a set of N training shapes; then the mean value
μ : IR2 → [0, 1] of this set is defined through

μ(x) =
1
N

N∑
i=1

qi(x). (4)

This is a function that assignes to each pixel x ∈ IR2 the average of all proba-
bilities. Using principal component analysis (PCA) we compute the eigenmodes
of the shape set χ. We use only a subspace of χ spanned by the first n ≤ N
eigenmodes {ψ1, ψ2, ..., ψn}. The size n follows from the cumulative energy con-
tent for each eigenmode. In experiments we used a threshold value of about 0.8.
Figure 1 shows the normalized cumulative energy for our training set database.
Now a subspace χn is given by:

χn =

{
qα = μ+

n∑
i=1

αiψi

∣∣∣∣∣ qα(x) ∈ [0, 1] , αi ∈ IR

}
. (5)

In [10] it was shown that χn is convex. Now we can generate an shape from
this space as

qα = μ+ αT Ψ (6)

With this we can describe every shape only storing the vector α ∈ IRn. Ψ is a
matrix containing the eigenmodes ψ1, ψ2, ..., ψn. Figure 2 shows some examples.
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Fig. 1. Normalized cumulative energy content of eigenmodes vs. the number of eigen-
modes used for the representation for a database of human hands (left figure) and for
a car database segmented manually from aerial images (right).

a) b)

c) d)

e) f)

Fig. 2. Shape information: On the left side a hand database is used, on the right side we
use a collection of manually-segmented cars from aerial images. a) and b) are example
shapes from our database. c) and d) are the mean shapes μ from equation (4). e) and
f) represent the first eigenmode ψ1 of the database.
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3 Multiple Object Detection

In this section we describe how to detect multiple object using shape and color
information. First we formulate a convex energy function and show that it can
be computed efficiently by parallelization. Then we describe the following steps
of our algorithm.

3.1 Convex Functional

The energy function used in [9] was formulated for color-based image segmenta-
tion.We extend this approach to incorporate also shape information. The general
form of a functional for a desired segmentation u : IR2 → [0, 1] is

E(u) = Eimg(u) + β ·Eshape(u). (7)

The color based energy function is of the form

Eimg(u) =
∫

Ω

f(x)u(x) dx + γ

∫

Ω

|∇u(x)| dx + ρ

∫

Ω

ξ(u(x))dx, (8)

where Ω ⊆ IR2 denotes the image plane and β, γ, ρ ∈ IR are weighting parame-
ters.The function ξ penalizes values of u lying outside of the valid range of [0, 1].
f can be an arbitrary function which measures the consistency of a point x with
the foreground. In our work we used the following function for f :

f(x) = Δ
(
IHSV(x),νobj

) −Δ
(
IHSV(x),νbgd

)
. (9)

Here, IHSV is the input image I transformed into the HSV color space. The
function Δ computes the squared distances of the single channels of IHSV to the
mean value ν of a region.

Δ
(
IHSV(x),ν

)
= wH

(
IH(x) − νH

)2
+ wS

(
IS(x) − νS

)2
+ wV

(
IV(x) − νV

)2

(10)
wH, wS and wV being (normalized) weighting parameters.

The term introducing the shape information into the segmentation isEshape(u):

Eshape(u) =
∫

Ω

|u(x) − q̃α(x)| dx (11)

with

q̃α =
K∑

k=1

Φu (qαk, Θk) . (12)

The function Φu projects the shape qαk into the image plane of u using the
transformation vector Θk = (tx, ty, φ, λ) for every object k. K is the number
of object in the image I. This number is estimated automatically. Details on
this will be given later in this paper. The transformation vector Θk contains
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two parameters for the translation (tx and ty), one for rotation (φ), and one for
scaling (λ). With these parameters we can perform any similarity transformation
of a planar shape q. qαk is a shape generated from our database given the vector
αk:

qαk = μ+
n∑

i=1

αk(i) · ψi. (13)

Let us define the transformed version of qαk as:

qΘk
αk

= Φu(qαk, Θk). (14)

Since it was shown in [9] that Eimg is a convex functional, what remains to
be shown is that Eshape(u) is also convex.

Lemma 1. The energy functional (11) is convex.

Proof (of lemma 1). To show that (11) is convex with respect to u, we have to
show that for all ρ ∈ (0, 1) holds

∀u1, u2 : Eshape ((1 − ρ)u1 + ρ · u2) ≤ (1 − ρ)Eshape(u1) + ρ ·Eshape(u2). (15)

So we can write

Eshape ((1 − ρ)u1 + ρ · u2) =
∫

Ω

|(1 − ρ)u1 + ρ · u2 − q̃α| dx (16)

≤
∫

Ω

(1 − ρ) |u1 − q̃α| + ρ · |u2 − q̃α| dx (17)

=
∫

Ω

(1 − ρ) |u1 − q̃α| dx +
∫

Ω

ρ · |u2 − q̃α| dx (18)

= (1 − ρ) ·Eshape(u1) + ρ ·Eshape(u2) (19)

��
For the sake of completeness we write down the complete energy functional:

E(u) =
∫

Ω

f(x)u(x) dx + γ

∫

Ω

|∇u(x)| dx

+ ρ

∫

Ω

ξ(u(x)) dx + β

∫

Ω

|u(x) − q̃α(x)| dx. (20)

Since the norm function is not continuously differentiable we will replace it with
a smoothed version by introducing a small offset ε ∈ IR:

|u|ε =
√
u2 + ε2. (21)

In experiments we often used ε = 0.001.
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Now we can formulate the Euler-Lagrange equation of (20):

∂E

∂u
= f − γdiv

( ∇u

|∇u|ε

)
+ ρξ′(u) + β

u− q̃α√
(u− q̃α)2 + ε2

= 0 (22)

Without the shape term you can solve equation (22) as a system of linear equa-
tions, e.g. with successive over-relaxation (SOR). Details on this can be found
in [9]. We write the new shape term in equation (22) as:

s(u) =
u− q̃α√

(u − q̃α)2 + ε2
(23)

Due the fact that s(u) is not linear in u we have to perform a linearization by
first-order Taylor expansion:

s(ut) = s
(
ut−1

)
+ s′

(
ut−1

) · (ut − ut−1
)

(24)

= s
(
ut−1

)
+

ε2

((ut−1 − q̃α) + ε2)3/2
· (ut − ut−1) (25)

Since we use a iterative solver such as SOR we know the solution of u from the
last timestep t− 1 and denote it here as ut−1. The value of s(ut−1) can then be
seen as a constant. With this we can generate a system of linear equations. For
the SOR formalism we need a linear system of equations of the form Au = b.
For this we write u as a vector u, such that the columns of the image matrix are
concatenated to an N -dimensional column vector with N the number of pixels.
The vector b is given by the constant part of (22),

bi = −f − β · s (
ut−1(i)

) − β · s′ (ut−1(i)
) · ut−1(i). (26)

Accordingly, A contains the ut-depended part (22). It is useful to replace the
function ξ(u) in the actual implementation with a simple thresholding. We obtain
for A = (aij) :

aij =

⎧
⎪⎪⎨
⎪⎪⎩

gi∼j if j ∈ N (i)
β · s′(ut−1(i)) −∑

k∈N (i)

gi∼k if i = j

0 otherwise

(27)

where gi∼j is the diffusivity between pixel i and its neighbor j. N (i) denotes the
neighborhood of pixel i. The Matrix A is diagonally dominant. In our experi-
ments we use a 4-connected neighborhood, so we get only five non-zero diagonals.
All other entries of A are zero. Because the diffusivity g = 1

|∇u| depends on the
actual solution for u, we do not really have a linear system of equations, but
we make the assumption, that the diffusion is constant, and we perform a new
computation of it only every L iterations.

For a speedup in the computation time we use the red-black computation
scheme for SOR (see [11] for details). With this we schedule the computation



Global Optimal Multiple Object Detection 449

parallel, so that we create a separate thread for every pixel that computes the
solutions using the latest information from its neighbor. For this computation
we use the NVIDIA CUDA framework, so the main computing is done in parallel
on the GPU.

3.2 Estimation of the Optimal Transformation Parameters for
Every Shape

Given an initial solution of u we need to determine the number of object candi-
dates in the segmented image. Since u is almost binary this can be solved easily,
e.g. through connected components. This gives us the number K of possible ob-
jects in the input image I. For each of these candidates we need to know its
transformation parameters Θk.

Using a parallel framework we can compute the residuum

r = b − Au. (28)

given the actual solution u, all transformation parameters Θk and all shape pa-
rameters αk for k = 1, 2, ...,K. The estimation of the optimal Θk for all k is done
by computing a ”branch & bound” search on the space of valid transformations
parameters. For initialization we set the values of the translation parameters to
the barycenter of each candidate. The norm of r indicates the correctness of the
found parameters. In every node in the branch & bound searching tree we save
the actual intervals for all parameters, the norm of r and an indicator holding
the information which interval of a parameter has to be divided for the next
level of the search. The search is stopped if a satisfying accuracy is achieved,
e.g. when the residuum does not change any more. It was shown in [10] that this
approach leads to a globally optimal solution. Although our derivation is more
general, the extension of the proof shown there is straight-forward and will not
be presented here.

3.3 Estimating the Optimal Shape Representation

Knowing the actual solution of u and the optimal transformation parameters
Θk we have to estimate the optimal shape parameters αk for every candidate
k = 1, 2, ...,K. This can be summarized in three steps:

1. divide q̃α into qΘ1
α1
, qΘ2

α2
, ..., qΘK

αK
, such that each qΘk

αk
only contains information

of candidate k (cf. Figure 3),
2. transform the eigenmodes ψ1, ..., ψn with Φu(ψi, Θk) for each eigenmode i =

1, .., n and each candidate k = 1, ...,K, so that you get a transformed set of
eigenmodes Ψk for each candidate,

3. solve:
min
αk

∥∥ ΨT
k · αk − (

qΘk
αk

− Φu(μ,Θk)
)∥∥ (29)

for all k = 1, ...,K.
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a) b) c)

Fig. 3. Examples of Step 1 in section 3.3: a) q̃α, b) qΘ1
α1 , c)qΘ2

α2

The first two steps can be easily implemented. The third step can be solved in
different ways. We use in our experiments a singular value decomposition (SVD)
to obtain αk. Due the fact that n is a very small number (in our case 3 or 5)
the computation time of the SVD is short. So we do not need a more complex
solving algorithm. If the training set database contains many dissimilar shapes
then n will be larger and a different computation strategy for step 3 would be
probably faster.

3.4 Algorithm Summary

Now we can summarize the whole algorithm:

1. solve (22) with β = 0 to get an initial solution for u only based on the color
information,

2. determine the number of object candidates K,
3. estimate the optimal translation parameters Θk for k = 1, 2, ...,K using

branch & bound,
4. estimate the optimal shape parameters αk solving (29) for k = 1, 2, ...,K,
5. check for each candidate k = 1, 2, ...,K whether the segmented object matches

the found shape representation qΘk
αk

and discard false responses,
6. solve (22) with β 	= 0 to get a optimal solution for u based on color and

shape information
7. if the accuracy is sufficient stop, else return to step 2.

Step 5 can be realized with the following procedure. First divide the segmentation
u into disjoint images u1, u2, ..., uK , so that each uk contains only the information
of u that corresponds to candidate k. Since we have already found the optimal
translation and shape parameters of the corresponding shape qΘk

αk
, we can now

simply compute the difference of uk and qΘk
αk

:

dk

(
uk, q

Θk
αk

)
=

∣∣uk − qΘk
αk

∣∣ . (30)

If the cumulated and normalized difference is bigger than a threshold τ ∈ IR,
then the candidate is discarded, and we save this information, such that the
candidate will not re-appear in the segmentation. This can be realized with:
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I(x) =

⎧⎨
⎩
uk(x) · νbgd + (1 − uk(x)) · I(x) , 1

‖Ω‖ · ∫
Ω

dk(x)dx > τ

I(x) otherwise
(31)

A more precise shape verification strategy, e.g. shape matching, can be applied
to step 5, but was not needed in our experiments. Since shape matching generally
needs high computation times we solved this problem here in a simpler way to
save runtime. Some fast algorithms for shape matching are described in [12]
and [13].

Fig. 4. Object detection results using shape and color information. Left column: input
images. Right column: Detection results presented as colored version of the segmenta-
tion result u. Each color represents a label for a pixel.
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4 Results

In this section we present the results obtained with the proposed algorithm. We
performed the presented experiments on a Intel Core2Quad 8200 CPU with 4GB
RAM and a NVIDIA GeForce GTX280 with 1GB RAM. As already described in
Section 2, we use a hand database which we test on bureau images. In addition
to this we created a car database from manually segmented aerial images. These
images were taken from a height of about 500 meters obove ground with opening
angles of 13.6 and 10.4 degrees. The resolution of both image categories is 1024
× 768 pixels.

Results can be seen in Figure 4. The first input image shows a bureau scene
with hands in it. The challenge with this image is the high level of noise and

Fig. 5. Object detection results using only color information. Left column: input im-
ages. Right column: Detection results presented as colored version of the segmentation
result u. Each color represents a label for a pixel.

Table 1. Running times for multiple object detection based on aerial images

size sec

256 × 192 0.475
512 × 384 1.077
1024 × 768 3.192
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strongly varying color distribution of both hands. Despite these difficulties our
method yields the correct segmentation and the corresponding positions of ob-
jects of interest in this scene. The next images show aerial scenes in which cars
shall be detected. Here, the challenging point is the fact that often the color of
the car windows differ strongly from the rest of the car. This leads a algorithm
only controlled by color information to the belief, that a car in a scene consists of
two objects. Examples for this behavior can be seen in Figure 5. But the fusion
of color and shape information yields the correct segmentation. Furthermore, the
man-made objects in this scene (e.g. houses) have the same color distribution as
the car, so they will appear as object candidates when using color information
only (c.f Figure 5). In addition to this the shape representation of a car is quite
unspecific (c.f Figure 2), so a shape-only algorithm will not work properly. The
benefit lies here in the fusion of both approaches.

Table 1 displays the running times for our algorithm with a GPU-based solu-
tion of (22). Since these times depend on the number of objects found, we used
the first aerial image from Figure 4 with different resolutions for our time mea-
surements. We did not use a parallel version of SVD to solve (29). This would
further decrease the computation time.

5 Conclusion

In this work we presented a novel method for a globally optimal multiple object
detection using shape and color information. The proposed method is based
on a convex energy functional for image segmentation. We showed how this
functional can be parallized to improve the computation time. In experiments
we demonstrated the capabilities of this approach with challenging scenes.

In future work we indend to decrease the computation time through a parallel
solving of (29) and a faster solving method for the transition parameters of the
objects.
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